圆柱与圆锥练习题
- 格式:docx
- 大小:40.52 KB
- 文档页数:28
圆柱圆锥练习题及答案### 圆柱圆锥练习题及答案#### 一、选择题1. 圆柱的底面半径为3厘米,高为5厘米,其体积是()立方厘米。
A. 141.3B. 94.2C. 235.5D. 47.12. 圆锥的底面半径为4厘米,高为9厘米,其体积是()立方厘米。
A. 50.24B. 100.48C. 150.72D. 200.963. 一个圆柱与一个圆锥等底等高,圆柱的体积是圆锥体积的()倍。
A. 1B. 2C. 3D. 4#### 二、填空题4. 圆柱的体积公式是V = πr²h,其中 r 代表________,h 代表________。
5. 圆锥的体积公式是V = ________πr²h,其中 1/3 是因为圆锥的体积是与它等底等高的圆柱体积的________。
#### 三、计算题6. 一个圆柱形水桶,底面直径为20厘米,高为30厘米,求水桶的体积。
7. 一个圆锥形沙堆,底面半径为6米,高为10米,求沙堆的体积。
8. 一个圆柱形容器内装满了水,容器的底面半径为8厘米,高为12厘米。
如果将容器内的水倒入一个底面半径为4厘米,高为18厘米的圆锥形容器中,问水能否完全倒入?#### 四、解答题9. 一个圆柱形的油桶,底面半径为0.5米,高为3米。
如果油桶里的油占油桶体积的75%,求油桶里油的体积。
10. 一个圆锥形的奖杯,底面半径为0.2米,高为0.5米。
如果奖杯的材质是铜,铜的密度为8.96克/立方厘米,求这个奖杯的质量。
#### 答案1. A. 141.3 立方厘米(V = π × 3² × 5 = 141.3)2. B. 100.48 立方厘米(V = 1/3 × π × 4² × 9 = 100.48)3. C. 3 倍(等底等高的圆柱体积是圆锥体积的3倍)4. 底面半径,高5. 1/3,三分之一6. 体积为3.14 × (20/2)² × 30 = 3.14 × 100 × 30 = 9420 立方厘米7. 体积为1/3 × 3.14 × 6² × 10 = 3.14 × 12 × 10 = 376.8 立方米8. 圆柱体积为3.14 × 8² × 12 = 2411.52 立方厘米,圆锥体积为1/3 × 3.14 × 4² × 18 = 301.44 立方厘米。
圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。
7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。
8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。
9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。
三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。
11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。
四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。
13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。
答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。
11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。
人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
圆柱和圆锥 20 道专项练习题1、一个圆柱形油桶,从里面量的底面半径是20 厘米,高是 3 分米。
这个油桶的容积是多少?2、一个圆柱,侧面展开后是一个边长9.42 分米的正方形。
这个圆柱的底面直径是多少分米?3、一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的后,还剩12 升汽油。
如果这个油桶的内底面积是10 平方分米,油桶的高是多少分米?4、一只圆柱形玻璃杯,内底面直径是8 厘米,内装药水的深度是16 厘米,恰好占整杯容量的。
这只玻璃杯最多能盛药水多少毫升?5、有两个底面半径相等的圆柱,高的比是 2 : 5。
第二个圆柱的体积是175 立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?6、一个圆柱和一个圆锥等底等高,体积相差 6.28 立方分米。
圆柱和圆锥的体积各是多少?7、东风化工厂有一个圆柱形油罐,从里面量的底面半径是 4 米,高是20 米。
油罐内已注入占容积的石油。
如果每立方分米石油重700 千克,这些石油重多少千克?8、一个无盖的圆柱形铁皮水桶,底面直径是30 厘米,高是 50 厘米。
做这样一个水桶,至少需用铁皮多少平方厘米?最多能盛水多少升?(得数保留整数)9、一个圆锥形沙堆,高是 1.8 米,底面半径是 5 米,每立方米沙重 1.7 吨。
这堆沙约重多少吨?(得数保留整数)10 、一个圆锥与一个圆柱的底面积相等。
已知圆锥与圆柱的体积的比是1: 6,圆锥的高是 4.8 厘米,圆柱的高是多少厘米?11 、把一个体积是282.6 立方厘米的铁块熔铸成一个底面半径是 6 厘米的圆锥形机器零件,求圆锥零件的高?12 、在一个直径是20 厘米的圆柱形容器里,放入一个底面半径 3 里米的圆锥形铁块,全部浸没在水中,这是水面上升0.3 厘米。
圆锥形铁块的高是多少厘米?13 、把一个底面半径是 6 厘米,高是10 厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是 5 厘米的圆柱形容器里,求圆柱形容器内水面的高度?14 、做一种没有盖的圆柱形铁皮水桶,每个高 3 分米,底面直径 2 分米,做 50 个这样的水桶需多少平方米铁皮?15 、学校走廊上有10 根圆柱形柱子,每根柱子底面半径是 4 分米,高是 2.5 分米,要油漆这些柱子,每平方米用油漆0.3 千克,共需要油漆多少千克?16 、一个底面周长是 43.96 厘米,高为8 厘米的圆柱,沿着高切成两个同样大小的圆柱体,表面积增加了多少?17 、一个圆柱体木块,底面直径和高都是10 厘米,若把它加工成一个最大的圆锥,这个圆锥的体积是多少立方厘米?18 、用铁皮制成一个高是 5 分米,底面周长是12.56 分米的圆柱形水桶(没有盖),至少需要多少平方分米铁皮?若水桶里盛满水,共有多少升水?19 、一根圆柱形钢材,截下 1 米。
六年级圆柱圆锥练习题及答案题一:圆柱问题某个圆柱的底面半径为5cm,高度为8cm。
请计算:1. 圆柱的侧面积;2. 圆柱的表面积;3. 圆柱的体积。
解答:1. 圆柱的侧面积计算公式为:侧面积= 2 × π × 底面半径 ×高度。
代入已知数据,侧面积= 2 × 3.14 × 5 × 8 ≈ 251.2 平方厘米。
2. 圆柱的表面积计算公式为:表面积= 2 × π × 底面半径 × (底面半径 + 高度) + 底面积。
代入已知数据,表面积= 2 × 3.14 × 5 × (5 + 8) + (3.14 × 5^2) ≈ 329 平方厘米。
3. 圆柱的体积计算公式为:体积 = 底面积 ×高度。
代入已知数据,体积= (3.14 × 5^2) × 8 ≈ 628 平方厘米。
题二:圆锥问题一个圆锥的底面半径为3cm,高度为6cm。
请计算:1. 圆锥的侧面积;2. 圆锥的表面积;3. 圆锥的体积。
解答:1. 圆锥的侧面积计算公式为:侧面积= π × 底面半径 ×斜高。
斜高可以通过勾股定理求出:斜高= √(底面半径^2 + 高度^2)。
代入已知数据,侧面积= 3.14 × 3 × √(3^2 + 6^2) ≈ 55.63 平方厘米。
2. 圆锥的表面积计算公式为:表面积= π × 底面半径 ×斜高 + 底面积。
代入已知数据,表面积= 3.14 × 3 × √(3^2 + 6^2) + (3.14 × 3^2) ≈ 84.78 平方厘米。
3. 圆锥的体积计算公式为:体积 = (底面积 ×高度) / 3。
代入已知数据,体积 = (3.14 × 3^2 ×6) / 3 ≈ 56.52 平方厘米。
【精品】圆柱与圆锥练习题(培优)一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。
【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。
2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。
大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。
【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.4.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。
六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。
解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。
其中r为底面半径,h为高度。
先求出底面半径r = 8/2 = 4厘米。
体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。
解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。
先求出底面半径r = 6厘米。
体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。
解:首先计算底面半径r = 12.6/2 = 6.3厘米。
体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。
解:先计算底面半径r = 9.8/2 = 4.9厘米。
体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。
解:底面半径r = 5厘米。
体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。
圆柱圆锥练习题以及答案圆柱圆锥练习题以及答案圆柱和圆锥是几何学中常见的几何体,它们具有广泛的应用。
在学习几何学时,我们经常会遇到与圆柱和圆锥相关的练习题。
下面,我将给大家提供一些圆柱和圆锥的练习题以及相应的答案,希望能帮助大家更好地理解和掌握这些概念。
练习题一:计算圆柱的体积已知一个圆柱的底面半径为5cm,高度为10cm,求其体积。
解答:圆柱的体积公式为V = πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = 3.14 × 5² × 10 = 785 cm³。
因此,该圆柱的体积为785立方厘米。
练习题二:计算圆锥的体积已知一个圆锥的底面半径为8cm,高度为12cm,求其体积。
解答:圆锥的体积公式为V = (1/3)πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = (1/3) × 3.14 × 8² × 12 = 803.84 cm³。
因此,该圆锥的体积为803.84立方厘米。
练习题三:计算圆柱的表面积已知一个圆柱的底面半径为6cm,高度为15cm,求其表面积。
解答:圆柱的表面积由底面积和侧面积组成。
底面积为πr²,侧面积为2πrh。
将已知数据代入公式,底面积为3.14 × 6² = 113.04平方厘米,侧面积为2 ×3.14 × 6 × 15 = 565.2平方厘米。
因此,该圆柱的表面积为113.04 + 565.2 = 678.24平方厘米。
练习题四:计算圆锥的表面积已知一个圆锥的底面半径为10cm,高度为16cm,求其表面积。
解答:圆锥的表面积由底面积、侧面积和底面到顶点的距离构成。
底面积为πr²,侧面积为πrl,其中l为底面到顶点的距离。
根据勾股定理,l = √(r² + h²)。
圆柱圆锥练习题以及答案一、选择题1. 一个圆柱的底面半径为3厘米,高为5厘米,其体积为:A. 141.3立方厘米B. 282.6立方厘米C. 94.2立方厘米D. 47.1立方厘米2. 一个圆锥的底面半径为4厘米,高为9厘米,其体积为:A. 75.36立方厘米B. 100.48立方厘米C. 50.24立方厘米D. 37.68立方厘米3. 圆柱的侧面积公式是:A. 2πr²B. πr²C. 2πrhD. πrh4. 圆锥的侧面积公式是:A. πr²B. πrlC. πr²+πrlD. 2πrh二、填空题1. 一个圆柱的底面直径为6厘米,高为10厘米,其侧面积为______平方厘米。
2. 一个圆锥的底面半径为5厘米,高为12厘米,其体积为______立方厘米。
三、解答题1. 一个圆柱形水桶的底面直径为40厘米,高为60厘米,求这个水桶的容积。
2. 一个圆锥形沙堆,底面半径为3米,高为4米,如果每立方米沙重1.5吨,求这堆沙的重量。
四、计算题1. 一个圆柱形油桶,底面直径为50厘米,高为80厘米,求油桶的表面积。
2. 一个圆锥形粮仓,底面直径为20米,高为15米,如果每立方米粮食重750千克,求粮仓的容积以及能装多少千克的粮食。
答案:一、选择题1. B2. B3. C4. C二、填空题1. 376.82. 188.4三、解答题1. 水桶的容积为:V=πr²h=π×(20)²×60=37680立方厘米。
2. 圆锥形沙堆的体积为:V=1/3πr²h=1/3×π×(3)²×4=12.56立方米。
沙堆的重量为:12.56×1.5=18.84吨。
四、计算题1. 油桶的表面积为:A=2πr(h+r)=2π×25(80+25)=4712.5平方厘米。
2. 圆锥形粮仓的体积为:V=1/3πr²h=1/3×π×(10)²×15=1570立方米。
圆柱和圆锥体积计算练习题1.把圆柱切开、再拼起来,能得到一个长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,因为长方体的体积=底面积×高,所以圆柱的体积=底面积×高,用字母表示是πr²h。
2.(1) 已知圆柱的底面半径和高,求体积。
先用公式πr²求底面积;再用公式πr²h求体积。
2) 已知底面直径和高,求体积。
先用公式πr²/4求底面积;再用公式πr²h/4求体积;最后用公式πr求半径。
3) 已知底面周长和高,求体积。
先用公式C=2πr求半径;再用公式πr²求底面积;最后用公式πr²h/C求体积。
3.已知圆柱的体积和底面积,求高,用公式V/πr²=h;已知圆柱的体积和高,求底面积,用公式S=2πrh+2πr²求侧面积,再用公式S+2πr²求底面积。
4.当圆柱和圆锥相等时,圆锥的体积是圆柱体积的1/3.等底等高的圆柱和圆锥,圆柱体积比圆锥体积大3倍,圆锥体积比圆柱体积小1/3.5.圆锥的体积计算公式用字母表示是1/3πr²h。
已知圆锥的体积和底面积,求高,用公式V=1/3πr²h求高。
6.长方体的表面积=2(lw+lh+wh),长方体的体积=lwh;正方体的表面积=6a²,正方体的体积=a³。
7.求一个圆柱形水池的占地面积,是求这个水池的底面积;求一个圆柱形水池能装多少水,是求这个水池的体积。
8.把一段圆柱形钢材加工成一个最大圆锥,削去的钢材的体积是24立方厘米,这段圆柱形钢材的体积是72立方厘米,加工成的圆锥的体积是48立方厘米。
9.将一段棱长是20厘米的正方体木材,加工成一个最大的圆柱,削去的木材的体积是2000/π立方厘米。
二、解决问题。
1.一个圆柱的底面直径是6厘米,高是10厘米,体积是141.37立方厘米。
2.一个圆柱的底面周长是25.12分米,高是2分米,体积是78.96立方分米。
圆柱与圆锥练习题第一篇:圆柱与圆锥练习题六年级数学第二学期圆柱与圆锥(切拼问题)1、把一个圆柱体沿底面直径平均分成两部分,截面是正方形,正方形的面积是4平方厘米,那么原来这个圆柱体的侧面积是多少平方厘米?3、把一个圆柱体沿底面直径平均分成两部分,截面是个长方形,长方形的面积是8平方厘米,那么原来这个圆柱体的侧面积是多少平方厘米?5、把一个圆柱体沿底面直径平均分成两部分,表面积增加了40平方厘米,那么原来圆柱的侧面积是多少平方厘米?7、把一个圆柱切成两个小圆柱后,表面积增加6.28平方厘米,若将它切成两个相等的半圆柱之后,表面积增加8平方厘米,这个圆柱的表面积是多少平方厘米?9、把一个高10厘米的圆柱体切成若干等分,拼成一个与它等底等高的近似长方体,这个长方体的表面积比圆柱体的表面积增加40平方厘米,圆柱的体积是多少立方厘米?11、一个圆柱的侧面积是9.42平方厘米,体积是235.5立方厘米这个圆柱的底面积是多少平方厘米?2、把一个圆柱切成两个相等的半圆柱体后,表面积增加了20平方厘米,底面周长12厘米这个圆柱的体积是多少立方厘米?4、把一个圆柱体切开,拼成一个与它等底等高的近似长方体,这个长方体的表面积比圆柱体的表面积增加60平方厘米,若圆柱的底面周长是12.56厘米,圆柱的体积是多少立方厘米?6、把一个圆柱体切开,拼成一个与它等底等高的近似长方体,这个长方体的表面积比圆柱体的表面积增加60平方厘米,若圆柱的底面周长是20厘米,圆柱的体积是多少立方厘米?8、把一个圆柱体沿半径和高平均切成若干份后,拼成一个与它等底等高的近似长方体,圆柱体的侧面积是251.2平方厘米,长方体表面积比圆柱体增加平方厘米?10、把一个圆柱切成两个相等的半圆柱体后,表面积增加了20平方厘米,圆柱的底面积半径是2厘米,这个圆柱的体积是多少立方厘米?12、思考题:将一个圆锥切成两个相等的半圆锥后,截面是一个等边三角形,已知三角形的周长是12厘米,原来圆锥的侧面积是多少平方厘米?13、一个高为9分米的圆柱体,沿底面直径切成相等的两部分,表面积增加72平方分米,这个圆柱体的体积是多少立方分米.14、把一个高10厘米的圆柱体沿底面直径切割成两个半圆柱体,表面积增加40平方厘米.这个圆柱体的体积是多少立方厘米.15、一个圆柱高是7厘米如果高缩短3厘米,它的表面积就减少18.84平方厘米,这个圆柱的体积是多少立方厘米?16、一个圆柱体的高是10厘米,如果高减少3厘米,则表面积比原来减少94.2平方厘米,原来圆柱体的体积是多少?17、一个圆柱沿底面直径剖开平均分成两部分截面是一个正方形那么这个圆柱的直径与高的大小关系是18、一个圆柱体沿底面直径和高切开后,切面是一个边长为6厘米的正方形,这个圆柱体的体积是多少立方厘米?19、把一个圆柱体沿底面直径垂直切开,得到的切面是一个边长10厘米的正方形.你能求出它的表面积和体积吗?20、把一个圆柱形木料沿底面直径垂直切成两个相等的半圆柱体,每个半圆柱体上的剖面长方形的面积是260平方厘米,原来这个圆柱的侧面积是多少平方厘米?第二篇:圆柱与圆锥练习题圆柱与圆锥练习题一,应用题。
1.圆柱形容器A和B的深度相等,底面半径分别为3厘米和4厘米。
把A容器装满水,然后把水倒入B容器,水深比B容器的高的少1.2厘米。
B容器的深度是多少厘米?2.用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?3.一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米。
在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?4.一个底面半径是10厘米的圆柱形玻璃杯中,装有10厘米深的水。
将一个底面半径4厘米、高6厘米的圆锥形铅锤放入杯子中,杯中的水面上升了多少厘米?5.有一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,铅锤的高是多少厘米?6.把一个底面直径为2厘米、高为6厘米的圆柱形钢材熔铸成一个圆锥体,这个圆锥的底面积是15平方厘米,它的高是多少厘米?二、填空。
1、把一个圆柱体削成一个最大的圆锥体,削去部分的体积是40立方厘米,问原来圆柱的体积是()立方厘米。
2、正方形木块的棱长是10厘米,将其加工成一个最大的圆柱形木块,圆柱形木块的体积是()立方厘米。
3、一个圆柱的高是5厘米,侧面展开是一个长为31.4厘米的长方形。
这个圆柱的体积是()厘米。
4、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱的体积最大是()立方厘米。
5、一个圆柱削成一个最大的圆锥后,削去本分的体积比圆锥体积多30立方厘米,则原来圆柱的体积是()立方厘米。
三、解决问题。
1、把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔铸成一个底面直径为10厘米的圆锥形铁块。
求圆锥形铁块的高。
2、在一只底面直径是30厘米的圆柱形木桶里,有一个直径为10厘米的圆柱形钢材浸没在水里,当钢材从桶里取出来时,桶里的水下降了3厘米。
这段钢材长为多少?第三篇:圆柱与圆锥练习题圆柱与圆锥练习题一、填空:1、用一张长是25.12厘米、宽6.28厘米的长方形厚纸板围成圆柱,有()种围法:①若围成的圆柱的高是()厘米,直径是()厘米,则体积是()②若围成的圆柱的高是()厘米,直径是()厘米,则体积是()2、如右图是圆柱的表面展开图。
它的高是(),底面周长是(),底面半径是(),算式为(),底面积是(),算式为(),侧面积是(),算式为(),表面积是(),算式为(),体积是(),算式为()。
3、圆锥的底面是个(),侧面是个(),展开后会得到一个()。
4、从圆锥的()到()的距离是圆锥的高,用字母()表示。
5、一张直角三角形的硬纸板,两条直角边长分别为6厘米和10厘米,现在以其中较长的直角边所在直线为轴,将纸板快速旋转,可以形成一个(),它的底面半径是(),高是(),底面积是(),算式为(),体积是(),算式为()。
6、一张长方形的硬纸板,长为6厘米,宽为10厘米,现在以其中较长的边所在直线为轴,将纸板快速旋转,可以形成一个(),它的底面半径是(),高是(),底面积是(),算式为(),侧面积是(),算式为(),体积是(),算式为()。
7、把一底面半径是1分米,高是3分米的圆锥沿高切成形状、大小相同的两部分,所得切面是(),切面面积是(),每一部分的体积是(),算式是()。
8、圆柱的体积等于和它等底等高的圆锥的体积的(),圆锥的体积等于和它等底等高的圆柱的体积的()。
9、一个圆锥的体积是18立方分米,与它等底等高的圆柱的体积的(),若底面积是2平方分米,则圆锥的高是(),圆柱的高是()。
10、一个圆柱的体积是18立方分米,与它等底等高的圆锥的体积的()。
若高是底面积是2平方分米,则圆锥的高是(),圆柱的高是()。
11、从体积是120立方厘米的圆柱中挖出一个最大的圆锥,则这个圆锥的体积是()。
12、等底等高的圆柱与圆锥的体积差为12.56立方厘米,则圆锥的体积是(),圆柱的体积是()。
13、一个圆柱和一个圆锥体积相等,高也相等,若圆锥的底面积是24平方厘米,则圆柱的底面积()14、一个圆柱的底面直径和高都是20厘米,则它的底面周长是(),算式是();侧面积是(),算式是();底面积是(),算式是();表面积是(),算式是();体积是(15、一个圆柱的底面积是3.14平方厘米,高是2厘米,则它的体积是(二、计算下面各圆柱的表面积与体积:(1)底面直径是6厘米,高是6厘米。
(2)底面周长是6.28米,高是6.5米。
(3)底面半径是3米,高是5米。
(4)侧面积是6.28平方米,底面周长是3.14米。
(5)侧面积是25.12分米,高是4分米。
三、计算下面各圆锥的体积:(1)底面直径是6厘米,高是6厘米。
(2)底面周长是6.28米,高是6.5米。
(3)底面半径是3米,高是5米。
),算式是()。
)四、解决问题:1、一根圆柱形水管,内直径是20厘米,水在管内的流速是40厘米/秒,1分钟流过的水是多少?2、从一个底面内直径是20厘米的圆柱形容器里取出一个完全浸没在水中的石块,水面由32厘米降到27厘米,那么这块石块的体积是多少?3、一个圆柱的底面周长与高相等,如果高缩短2厘米,则表面积就减少12.56平方厘米。
求这个圆柱原来的体积。
4、一个圆柱的底面直径与高相等,如果高缩短2厘米,则表面积就减少12.56平方厘米。
求这个圆柱原来的体积与表面积。
5、一堆稻谷堆成圆锥形,底面半径是1.8米,高是2.5米,如果每立方米稻谷重600千克,这堆稻谷的体积是多少?大约重多少千克?6、一个圆锥形的沙堆,底面直径是4米,高是1.8米,若用准载0.5立方米的小推车运送,要运送多少次?7、一根长2米的圆柱形钢管,截面外直径是10厘米,壁厚2厘米,这根钢管的体积是多少?若每立方厘米钢大约重7.8千克,则这根钢管大约重多少千克?8、一个圆柱形钢坯,底面直径是4厘米,高是5厘米,若将这个钢坯熔铸成一个与它等底面积的圆锥,则圆锥的高是多少?若每立方厘钢大约重7.8千克,则这个圆锥大约重多少千克?9、将一个圆柱切拼成一个近似的长方体后,表面积增加了12平方分米,若长方体与圆柱体的高都是2分米,求这个圆柱的体积与表面积。
10、某小区要修建一个圆柱形的游泳池,它的底面半径为10米,池深1.5米。
(1)游泳池占地面积是多少?(2)修建游泳池需挖多少立方米的泥土?(3)在池底面和四周都贴上瓷砖,贴瓷砖的面积是多少?11、如图是圆柱与圆锥的组合图,圆柱与圆锥的高都是15厘米,底面直径都是10厘米。
求这个组合图形的体积。
12、一个圆柱形的饼干盒,它的底面直径是8厘米,高25厘米,做这个饼干盒至少需要多大面积的硬纸板?体积是多少?13、一个无盖的圆柱形铁皮水桶,底面周长是62.8厘米,高30厘米,做这个水桶至少要用铁皮多少平方分米?容积是多少?14、用一块长是6分米、宽是4分米、高是5分米的长方体木料,削成一个底面最大的圆柱,这个圆柱的底面积是多少?体积是多少?第四篇:圆柱与圆锥练习题圆柱与圆锥练习题(1)1.把圆柱的侧面沿高剪开,得到一个(),这个()的长等于圆柱底面的(),宽等于圆柱的(),所以圆柱的侧面积等于()。
2、415平方厘米=()平方分米 4.5立方米=()立方分米 2.4立方分米=()升()毫升3.将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是()平方分米,体积是()立方分米。
4.一个圆柱底面半径2分米,侧面积是113.04平方分米,这个圆柱体的高是()分米。