圆的切线长定理及其推论
- 格式:docx
- 大小:3.63 KB
- 文档页数:4
圆幂定理定义圆幂=PO^2-R^2 (该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P 引两条割线与圆分别交于A、B;C、D, 则有PA ·PB=PC ·PD。
统一归纳:过任意不在圆上的一点P 引两条直线L1、L2,L1 与圆交于A、B(可重合,即切线),L2 与圆交于C、D(可重合),则有PA ·PB=PC ·PD。
相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)相交弦说明几何语言:若弦AB 、CD 交于点P则PA ·PB=PC ·PD (相交弦定理)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的例中项几何语言:若AB 是直径,CD 垂直AB 于点P, 则PC^2=PA ·PB (相交弦定理推论)相交弦定理CADPo°B⊙O中,AB、CD 为弦,交于PPA ·PB=PC·PD连结AC、BD,证:△APC△DPB切割线定理定义从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
是圆幂定理的一种。
几何语言:∵PT 切⊙O于点T,PBA 是⊙O的割线∴PT 的平方=PA ·PB (切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,P BA,PDC 是⊙O的割线∴PD·PC=PA ·PB (切割线定理推论)(割线定理)由上可知:PTA2 (平方)=PA ·PB=PC ·PD证明切割线定理证明:设ABP 是⊙O的一条割线,PT 是⊙O的一条切线,切点为T, 则PT^2=PA ·PB证明:连接AT,BT∵∠PTB=∠PAT (弦切角定理)∠P=∠P(公共角)∴△PBTO△PTA (两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT^2=PB ·PA割线定理定义从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可. 证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.图1图2证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质--与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么?解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .图3 OABCD2 31∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD。
CA圆的切线、切线长定理与弦切角定理一、圆的切线: 1.切线的判定:2.切线的性质:【运用举例】例1.如图,已知⊙O 所内接△ABC ,过点B 作直线BD ,∠DBC =∠A ,试说明,BD 与⊙O 相切。
例2.如图,已知CB 是⊙O 的切线,C 是切点,OB 交⊙O 于点D ,∠B =30,BD =6㎝,求BC 。
例3、如图,PA 、PB 切⊙O 于点A 、B ,点C 是⊙O 上一点,且∠ACB =65°,求∠P 的度数.例4、已知:如图AB 是⊙O 的直径,P 是AB 上的一点(与A 、B 不重合),QP ⊥AB ,垂足为P ,直线QA 交⊙O 于点C 点,过C 点作⊙O 的切线交直线QP 于点D ,求证:△CDQ 是等腰三角形.当P 点在AB 的延长线上时,其他条件不变,这个结论还成立吗?试说明.二、切线长定理 1、切线长:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长2、切线长定理:符号语言:∵PA 、PB 是O ⊙的切线,A 、B 是切点,∴,PA=PB 【运用举例】例1.在△ABC 中,AB=5cm BC=7cm AC=8cm, ⊙O 与BC 、AC 、 AB 分别相切于 D 、 E 、F ,则 AF=_____, BD=_______ 、CF=________例2、如图,PA 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为Q ,交PA 、PB 为E 、F 点,已知12PA cm ,求△PEF 的周长.例3、已知:如图,P 为⊙O 外一点,PA ,PB 为⊙O 的切线,A 和B 是切点,BC 是直径. 求证:AC∥OP.例4.如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径。
OCB AP三、弦切角定理及其推论1、弦切角:________________________________________________________________。
切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。
(PA长)2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。
3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。
直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。
5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。
6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。
7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB.(特殊情况)用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理(记忆的方法方法)圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。
知识点一切线长定义及切线长定理1. _____________________________________________________ 切线长定义:过圆外一点作圆的切线,这点和____________________________________________ 之间的线段长叫作这点到圆的切线长注意切线长和切线的区别和联系:切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。
2. 切线长定理:过圆外一点引圆的两条切线,它们的切线长相等,即PA=PB.推论:(1) △ PAB是等腰三角形;(2) OP 平分△ APB,即△ APO A BPO ;(3) 弧AM=弧BM ;(4)在Rt OAP和Rt OBP中,由AB OP,可通过相似得相关结论;如:OA2 OB2 OE OP, AP2 BP2 PE PO, AE2 BE2 OE EP(5)图中全等的三角形有对,分别是:题型一切线长定理的直接应用【例1】如图所示,AO的半径为3cm,点P和圆心O的距离为6cm,经过点P的两条切线与AO切于点E、F,求这两条切线的夹角及切线长.【例2】如图,FA、PB、DE分别切A0于A、B、C, A O的半径长为6 cm, PO= 10 cm,求APDE的周长.切线长定理及其应用【例3】如图所示,△ ABC中,/ C=90 , AC=3 , AB=5 , D为BC边的中点,以AD上一点0为圆心的O0和AB、BC均相切,则O 0的半径为 ______________ .£4【过关练习】1•如图所示,PA、PB是AO的切线,A、B为切点,△ OAB=30°.( 1)求厶APB的度数.(2)当0A=3时,求AP的长•2•如图所示,已知PA、PB、DE分别切e 0于A、B、C三点,AO的半径为5cm, △ PED的周长为24cm , △ APB=50°求:(1) P0 的长;(2) △ EOD 的度数•3•如图,在直角梯形 ABCD 中,AB // CD,AB 丄BC,以BC 为直径的 △ 与AD 相切,点E 为AD 的中点,下列结论 正确的个数是( )B1 2知识点二圆外切四边形1、四边形的内切圆定义:四边形的四条边都与圆相切,把这个四边形叫作圆外切四边形,把这个圆叫作圆的内切圆2、圆外切四边形的性质:圆外切四边形两组对边之和 __________________ .(如图,即AB+CD=AD+BC )题型一 四边形的内切圆计算【例1】已知四边形 ABCD 的边AB 、BC 、CD 、DA 与AO 相切于P 、Q 、M 、N ,求证:AB+CD=AD+BC 。
圆的切线长定理及其推论
一、引言
圆是数学中重要的几何概念之一,它具有许多独特的性质和定理。
本文将重点介绍圆的切线长定理及其推论,通过详细的阐述和推导,帮助读者更好地理解和应用这一定理。
二、圆的切线长定理
圆的切线长定理是指:若直线与圆相切,则切线的长度等于切点到圆心的距离的平方根乘以2。
证明:设圆的方程为x²+y²=r²,其中r为圆的半径,切点为P(x₀, y₀)。
设直线方程为y=kx+b,其中k为斜率,b为截距。
由于直线与圆相切,所以切点的坐标满足直线方程和圆的方程,即有:
kx₀+b=y₀
x₀²+y₀²=r²
将直线方程中的y用x和b表示,代入圆的方程,得到:
x²+(kx+b)²=r²
化简得:
(1+k²)x²+2kbx+b²-r²=0
由于直线与圆相切,所以直线只有一个交点,即判别式等于0,即有:
Δ=4k²b²-4(1+k²)(b²-r²)=0
化简得:
(k²+1)r²=b²
解得:
b=r√(k²+1)
由直线方程y=kx+b,可得直线长度为:
l=√(1+k²)
由此可得切线的长度为:
2l=2√(1+k²)
即圆的切线长定理成立。
三、圆的切线长定理的推论
根据圆的切线长定理,我们可以得出以下推论:
推论1:若直线过圆的直径中点,则直线与圆相切。
证明:设直线方程为y=kx+b,过圆的直径中点,则直线过圆心,即切点的坐标满足直线方程和圆的方程,即有:
kx₀+b=y₀
x₀²+y₀²=r²
将直线方程中的y用x和b表示,代入圆的方程,得到:
x²+(kx+b)²=r²
化简得:
(1+k²)x²+2kbx+b²-r²=0
由于直线过圆的直径中点,所以切点的坐标满足圆的方程,即有:x₀²+y₀²=r²
将x₀²+y₀²=r²代入直线方程,得到:
(1+k²)x₀²+2kbx₀+b²-r²=0
由于直线方程与圆的方程有唯一交点,所以判别式等于0,即有:Δ=4k²b²-4(1+k²)(b²-r²)=0
化简得:
(k²+1)r²=b²
由于直线方程过圆心,即切线的长度为0,所以有:
b=0
解得:
k=0
即斜率为0,即直线垂直于x轴,即直线过圆的直径中点。
所以推论1成立。
推论2:若直线与圆相切,则直线与过切点的半径垂直。
证明:设直线方程为y=kx+b,过切点的半径方程为y=k'x,其中k'为斜率。
由于直线与圆相切,所以切点的坐标满足直线方程和圆的方程,即有:
kx₀+b=y₀
x₀²+y₀²=r²
将直线方程中的y用x和b表示,代入圆的方程,得到:
x²+(kx+b)²=r²
化简得:
(1+k²)x²+2kbx+b²-r²=0
由于直线与圆相切,所以直线只有一个交点,即判别式等于0,即有:
Δ=4k²b²-4(1+k²)(b²-r²)=0
化简得:
(k²+1)r²=b²
由直线方程y=kx+b,可得直线的斜率为k,过切点的半径方程y=k'x,可得半径的斜率为k'。
由于直线与半径相交,所以直线的斜率与半径的斜率的乘积为-1,即有:
kk'=-1
即直线与过切点的半径垂直。
所以推论2成立。
四、结论
通过本文的介绍和推导,我们详细讲解了圆的切线长定理及其推论。
圆的切线长定理指出了直线与圆相切时切线的长度与切点到圆心的距离的关系,推论进一步探讨了直线与圆的关系。
这些定理和推论在解决相关的几何问题时具有重要的应用价值,深入理解并熟练运用它们,将有助于我们更好地理解和应用圆的性质和定理,提高数学解题的能力。