初二数学上册整式乘法练习题
- 格式:docx
- 大小:15.62 KB
- 文档页数:3
八年级数学上册第十四章整式的乘法与因式分解知识点题库单选题1、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.2、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;3、若x 2+ax =(x +12)2+b ,则a ,b 的值为( ) A .a =1,b =14B .a =1,b =﹣14 C .a =2,b =12D .a =0,b =﹣12答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解.解:∵x 2+ax =(x +12)2+b =x 2+x +14+b , ∴a =1,14+b =0, ∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.4、下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x +14=(x ﹣12)2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)答案:B分析:直接利用提取公因式法以及公式法分解因式进而判断即可.解:A 、a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)=a 2b (a ﹣3)2,故此选项错误;B 、x 2﹣x +14=(x ﹣12)2,故此选项正确;C 、x 2﹣2x +4,无法运用完全平方公式分解因式,故此选项错误;D 、x 2﹣4=(x +2)(x ﹣2),故此选项错误;故选:B .小提示:本题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法进行解题.5、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分)①2xy−4xyz=2xy(1−2z);②−3x−6x2=−3x(1−2x);③a2+2a+1=a(a+2);④m2−4n2= (m−2n)2;⑤−2x2+2y2=−2(x+y)(x−y)A.40分B.60分C.80分D.100分答案:A分析:根据提公因式法及公式法分解即可.①2xy−4xyz=2xy(1−2z),故该项正确;②−3x−6x2=−3x(1+2x),故该项错误;③a2+2a+1=(a+1)2,故该项错误;④m2−4n2=(m+2n)(m−2n),故该项错误;⑤−2x2+2y2=−2(x+y)(x−y),故该项正确;正确的有:①与⑤共2道题,得40分,故选:A.小提示:此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若2a+3b−3=0,则4a×23b的值为()A.23B.24C.25D.26答案:A分析:先利用已知条件2a+3b−3=0,得2a+3b=3,再利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:∵2a+3b−3=0,∴2a+3b=3,∵4a×23b=(22)a×23b=22×a×23b=22a+3b,∴原式=4a×23b=(22)a×23b=22×a×23b=22a+3b=23,故选:A.小提示:本题主要考查了同底数幂的乘法运算和幂的乘方,正确将原式变形是解题关键.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知2n=a,3n=b,12n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b答案:D分析:直接利用积的乘方、幂的乘方运算法则将原式变形得出答案.A选项:ab=2n⋅3n=6n≠12n,即c≠ab,A错误;B选项:ab3=2n⋅(3n)3=2n⋅33n=2n⋅27n=54n≠12n,即c≠ab3,B错误;C选项:a3b=(2n)3⋅3n=8n⋅3n=24n≠12n,即c≠a3b,C错误;D选项:a2b=(2n)2⋅3n=4n⋅3n=12n=c,D正确.故选:D.小提示:本题主要考查了积的乘方运算,幂的乘方运算,正确将原式变形是解题关键.填空题11、计算:(√5-2)2018(√5+2)2019的结果是_____.答案:√5+2分析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.12、若|a|=2,且(a−2)0=1,则2a的值为_______.答案:1##0.254分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4.所以答案是:14小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.13、已知x−y=3,xy=10,则(x+y)2=______.答案:49分析:根据(x+y)2=(x-y)2+4xy即可代入求解.解:(x+y)2=(x-y)2+4xy=9+40=49.所以答案是:49.小提示:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14、分解因式:am+an−bm−bn=_________________答案:(m+n)(a−b)分析:利用分组分解法和提取公因式法进行分解因式即可得.解:原式=(am+an)−(bm+bn)=a(m+n)−b(m+n)=(m+n)(a−b),所以答案是:(m+n)(a−b).小提示:本题考查了因式分解,熟练掌握因式分解的方法是解题关键.15、若x−y−3=0,则代数式x2−y2−6y的值等于______.答案:9分析:先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.解:∵x−y−3=0,∴x−y=3,∴x2−y2−6y=(x+y)(x−y)−6y=3(x+y)−6y=3x+3y−6y=3(x−y)=9所以答案是:9.小提示:本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.解答题16、化简:3(a﹣2)(a+2)﹣(a﹣1)2.答案:2a2+2a-13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a﹣2)(a+2)﹣(a﹣1)2=3(a2-4)-(a2-2a+1)=3a2-12-a2+2a-1=2a2+2a-13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.17、爱动脑筋的小明在学习《幂的运算》时发现:若a m=a n(a>0,且a≠1,m、n都是正整数),则m= n,例如:若5m=54,则m=4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x×32x=236,求x的值;(2)如果3x+2+3x+1=108,求x的值.答案:(1)x=5(2)x=2分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.18、阅读:已知a、b、c为△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.答案:(1)③,忽略了a2−b2=0的情况;(2)见解析分析:(1)根据题意可直接进行求解;(2)由因式分解及勾股定理逆定理可直接进行求解.解:(1)由题意可得:从第③步开始错误,错的原因为:忽略了a2−b2=0的情况;故答案为③;忽略了a2−b2=0的情况;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2)c2(a2−b2)−(a2+b2)(a2−b2)=0(a2−b2)[c2−(a2+b2)]=0当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.小提示:本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键.解析:解:因为a2c2−b2c2=a4−b4,①所以c2(a2−b2)=(a2−b2)(a2+b2)②所以c2=a2+b2③所以△ABC是直角三角形④请据上述解题回答下列问题:(1)上述解题过程,从第______步(该步的序号)开始出现错误,错的原因为______;(2)请你将正确的解答过程写下来.。
初中数学八年级上册整式的乘法练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 计算a3⋅a4的结果是( )A.a3B.a4C.a7D.a122. 当x=2时,代数式x2(2x)3−x(x+8x4)的值是()A.4B.−4C.0D.13. 下列计算正确的是( )A.(−3a3)2=9a9B.(4a4b2−6a3b+2ab)÷2ab=2a3b−3a2C.(2x3y2)2×(−3x)=−12x6y4b)=9a9b7D.(−3a3b2)3×(−134. 计算x2y3÷(xy)2的结果是()A.xyB.xC.yD.xy2)100的结果是()5. 计算(−2)101×(−12A.1B.−2C.−1D.26. 在长方形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD−AB=2时,S2−S1的值为( )A.2aB.2bC.2a−2bD.−2b7. 小明做了以下5道题:①(x−1)(x+4)=x2−4;②(−3+x)(3+x)=x2−9;③(−5x+7y)(−5x−7y)=25x2−49y2;④(xy−6)2=x2y2−12xy+36;⑤(−x−y)2=x2+2xy+y2,你认为小明一共做对了()A.5道B.4道C.3道D.2道8. (−2a4b2)⋅(−3a)2的结果是()A.−18a6b2B.18a6b2C.6a5b2D.−6a5b29. 若,,则的值是()A.15B.20C.50D.4010. 若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.−1B.1C.3D.511. 3a(a2−2a+1)−2a2(a−3)=________.12. 若3x+5y−3=0,则8x⋅32y的值是________.13. 一个矩形的面积是3(x2−y2),如果它的一边长为(x+y),则它的周长是________.14. 计算:(3+a)(1−a)=________.)n⋅(−2n)=________;−y2n+1÷y n+1=________;[(−m)3]2=________.15. (1216. 用幂的形式表示计算结果:−54×(−5)2=________.17. 计算6a9÷(−2a3)3的结果为________.18. (________)÷(−2a2b)=−2a2b+a2−1.19. (3a2b−4ab2−5ab−1)⋅(−2ab2)=________.20. (x n)2+(x2)n−x n⋅x2=________.21. 计算:(−2x2y)2⋅3xy÷(−6x2y).22. 计算:(3a+2)×(a−4)23. 计算图中长方体的体积.24. 计算:(1)(x−1)(x2+x+1);(2)(−2a+b)(−2a−b);(3)(2a−3b)2−2(2a−3b)(a−b).25. 已知10a=4,10b=3,求(1)102a+103b的值;(2)102a+3b的值.26. (a+5)2−(a−2)(a−3)27. 计算(1)x3·(−x²)3(2)(−x)−2·(3x2)3÷x4(3)(15xy²−3xy+10x²y)÷5x(4)(x−y+z)228. 若n为正整数,且a2n=3,计算(3a3n)2÷(27a4n)的值.29. 计算:[x(x2y2−xy)−y(x2−x3y)]÷x2y.30. 计算:(1)2a(3a−2)−(2a−1)2(2)(x−2)(x2+2x+4)(3)先化简,再求值:(x+2y)2−(x+2y)(−2y−x)−(2x)2,其中x=−3,y=13.31. 计算:(1)y2(12y−y2);(2)[−(a2)5+(ab)2+3]⋅(ab5);(3)(32x2+xy−35y2)⋅(−43x2y2).32. 先化简,再求值:(a+b)(a−2b)−(a+2b)(a−b),其中a=2,b=−1.33. 计算x⋅x3+(2x2)2−2x5÷x34. 计算:(1)(−13x3y)3;(2)(2a−3)(3a+1)−6a(a−4);(3)(2x−3y)(2x+3y)−(2x−y)2;(4)(4a3b2−8ab3)÷(−4ab2)35. 利用所给的数据求出图中梯形的面积.36. 计算:(1)(2)704×696(3)(4).37. 已知6x2−7xy−3y2+14x+y+a=(2x−3y+b)(3x+y+c),试确定a、b、c的值.38. 一般地,n个相同的因数a相乘a⋅a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logn b(即lognb).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=________;log216=________;log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n⋅a m=a n+m以及对数的含义说明上述结论.39. 如图所示,现有边长分别为a、b的正方形、邻边长为a和b(b>a)的长方形硬纸板若干.(1)从这三种硬纸板中选择一些拼出面积为8ab的不同形状的长方形,则这些长方形的周长共有________种不同情况;(2)请选择适当形状和数量的硬纸板,拼出面积为2a2+5ab+2b2的长方形,画出拼法的示意图;(3)完成以上任务后,还剩下18块边长为a的正方形,14块边长为a、b的长方形,2块边长为b的正方形,需去掉其中一块后,才能拼出一个长方形.则应该去掉的一块四边形是________.40. 先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,a⋅a⋯a记为a n,如23=8,此时3叫做以2为底8}n的对数,记为log28(即log28=3)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,4叫做以3为底81的对数,记为log381=4.问题(Ⅰ)计算以下各对数的值:log24=2;log216=4;log264=6.(1)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?log24、log216、log264之间又满足怎样的关系?(2)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=________(a>0,且a≠1,M>0,N>0)根据幂的运算法则a m⋅a n=a m+n以及对数的含义证明上述结论.参考答案与试题解析初中数学八年级上册整式的乘法练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】同底数幂的乘法【解析】此题暂无解析【解答】解:a3⋅a4=a3+4=a7.故选C.2.【答案】B【考点】整式的混合运算——化简求值【解析】首先利用单项式于多项式的乘法法则计算,然后合并同类项即可求解.【解答】解:原式=x2⋅8x3−x2−8x5=8x5−x2−8x5=−x2.当x=2时,原式=−4.故选B.3.【答案】D【考点】多项式除以单项式单项式乘单项式幂的乘方与积的乘方【解析】根据多项式除以单项式的法则,积的乘方的法则,单项式乘以单项式的法则,依次计算,即可解答.【解答】解:(−3a3)2=9a6,故A错误;(4a4b2−6a3b+2ab)÷2ab=2a3b−3a2+1,故B错误;(2x3y2)2×(−3x)=(4x6y4)×(−3x)=−12x7y4,故C错误;(−3a3b2)3×(−13b)=(−27a9b6)×(−13b)=9a9b7,故D正确.故选D.4.【答案】C【考点】整式的除法【解析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.根据法则即可求出结果.【解答】x2y3÷(xy)2,=x2y3÷x2y2,=x2−2y3−2,=y.5.【答案】B【考点】幂的乘方与积的乘方【解析】根据积的乘方公式的逆运用,即可解答.【解答】解:(−2)101×(−12)100=(−2)×(−2)100×(−12)100=(−2)×[(−2)×(−12 )]100=(−2)×1100=(−2)×1=−2.故选:B.6.【答案】B【考点】整式的混合运算整式的混合运算在实际中的应用【解析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB−a)⋅a+(CD−b)(AD−a)=(AB−a)⋅a+(AB−b)(AD−a),S2=AB(AD−a)+(a−b)(AB−a),∴S2−S1=AB(AD−a)+(a−b)(AB−a)−(AB−a)⋅a−(AB−b)(AD−a)=(AD−a)(AB−AB+b)+(AB−a)(a−b−a)=b⋅AD−ab−b⋅AB+ab=b(AD−AB)=2b.故选B.7.【答案】B【考点】整式的混合运算【解析】各式计算得到结果,即可作出判断.【解答】解:①(x−1)(x+4)=x2+3x−4,不符合题意;②(−3+x)(3+x)=x2−9,符合题意;③(−5x+7y)(−5x−7y)=25x2−49y2,符合题意;④(xy−6)2=x2y2−12xy+36,符合题意;⑤(−x−y)2=x2+2xy+y2,符合题意,故选B8.【答案】A【考点】单项式乘单项式【解析】先算积的乘方,再根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:(−2a4b2)⋅(−3a)2=(−2a4b2)⋅(9a2)=−18a6b2.故选:A.9.【答案】C【考点】同底数幂的乘法【解析】根据同底数幂的乘法法则解答即可.【解答】解:∵3a=5,3b=10故选:C.10.【答案】D【考点】整式的混合运算——化简求值【解析】利用多项式的乘法法则把所求式子展开,然后代入已知的式子即可求解.【解答】(1+x)(1+y)=x+y+xy+1,则当x+y=3,xy=1时,原式=3+1+1=5.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】a3+3a【考点】单项式乘多项式【解析】首先利用单项式与多项式的乘法法则计算,然后去括号、合并同类项即可.【解答】解:原式=3a3−6a2+3a−2a3+6a2=a3+3a.故答案是:a3+3a.12.【答案】8【考点】幂的乘方与积的乘方同底数幂的乘法【解析】原式两因式化为底数为2的幂,利用同底数幂的乘法法则变形,将已知等式变形后代入计算即可求出值.【解答】解:∵3x+5y−3=0,即3x+5y=3,∴原式=23x+5y=23=8.故答案为:813.【答案】8x−4y【考点】整式的混合运算整式的混合运算在实际中的应用多项式除以单项式【解析】利用矩形的面积先求另一边的长,再根据周长公式求解.【解答】解:3(x2−y2)÷(x+y)=3(x+y)(x−y)÷(x+y)=3(x−y),周长=2[3(x−y)+(x+y)]=2(3x−3y+x+y)=2(4x−2y)=8x−4y.故答案为:8x −4y .14.【答案】3−2a −a 2【考点】多项式乘多项式【解析】根据多项式乘以多项式的法则,可表示为(a +b)(m +n)=am +an +bm +bn ,计算即可.【解答】解:(3+a)(1−a)=3−3a +a −a 2=3−2a −a 2.故答案是3−2a −a 2.15.【答案】−1,−y n ,m 6【考点】整式的除法幂的乘方与积的乘方单项式乘单项式【解析】根据积的乘方的性质的逆用;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘计算.【解答】解:(12)n •(−2n )=−(12×2)n =−1;−y 2n+1÷y n+1=−y 2n+1−n−1=−y n ;[(−m)3]2=m 6.16.【答案】−56【考点】同底数幂的乘法【解析】根据同底数幂的乘法的运算法则求解即可求得答案.【解答】解:−54×(−5)2=−54×52=−56.故答案为:−56.17.【答案】−34【考点】单项式除以单项式幂的乘方与积的乘方【解析】本题考查了幂的乘方与积的乘方及单项式除以单项式运算.【解答】.解:原式=6a9÷(−8a9)=−34故答案为:−3.418.【答案】4a4b2−2a4b+2a2b【考点】整式的除法【解析】本题利用乘除法互为逆运算的关系进行分析,多项式)÷(−2a2b)=−2a2b+a2−1,所以可得:多项式=(−2a2b+a2−1)×(−2a2b),然后利用多项式乘以单项式的法则即可求出结果【解答】解:依题意:所求多项式=(−2a2b+a2−1)×(−2a2b)=4a4b2−2a4b+2a2b,故答案为:4a4b2−2a4b+2a2b.19.【答案】−6a3b3+8a2b4+10a2b3+2ab2【考点】单项式乘多项式【解析】根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.【解答】(3a2b−4ab2−5ab−1)⋅(−2ab2)=3a2b⋅(−2ab2)−4ab2⋅(−2ab2)−5ab⋅(−2ab2)−1⋅(−2ab2)=−6a3b3+8a2b4+10a2b3+2ab2故答案为:−6a3b3+8a2b4+10a2b3+2ab220.【答案】2x2n−x n+2【考点】幂的乘方与积的乘方同底数幂的乘法【解析】直接利用幂的乘方运算法则再结合同底数幂的乘法运算法则求出答案.【解答】解:(x n)2+(x2)n−x n⋅x2=x2n+x2n−x n+2故答案为:2x2n−x n+2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:原式=4x4y2⋅3xy÷(−6x2y)=12x5y3÷(−6x2y)=−2x3y2.【考点】单项式除以单项式单项式乘单项式【解析】此题暂无解析【解答】解:原式=4x4y2⋅3xy÷(−6x2y)=12x5y3÷(−6x2y)=−2x3y2.22.【答案】3a2−10a−8.【考点】多项式乘多项式【解析】先运用多项式乘多项式的法则把第一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:(3a+2)×(a−4)=3a2−12a+2a−8=3a2−10a−8;23.【答案】解:根据题意得:x⋅2x⋅(3x−5)=6x3−10x2.【考点】单项式乘单项式多项式乘多项式【解析】根据长方体的体积为长×宽×高,计算即可得到结果.【解答】解:根据题意得:x⋅2x⋅(3x−5)=6x3−10x2.24.【答案】解:(1)原式=x3+x2+x−x2−x−1=x3−1;(2)原式=(−2a)2−b2=4a2−b2;(3)原式=(2a−3b)(2a−3b−2a−2b)【考点】整式的混合运算【解析】(1)先利用多项式乘多项式展开,然后合并即可;(2)利用平方差公式计算;(3)先提公因式2a−3b,然后合并后进行单项式乘多项式运算.【解答】解:(1)原式=x3+x2+x−x2−x−1=x3−1;(2)原式=(−2a)2−b2=4a2−b2;(3)原式=(2a−3b)(2a−3b−2a−2b)=−2ab+3b2.25.【答案】解:(1)原式=(10a)2+(10b)3=42+33=16+27=43(2)原式=102a⋅103b=(10a)2⋅(10b)3=42×33=432【考点】幂的乘方与积的乘方同底数幂的乘法【解析】(1)幂的乘方即可求出答案.(2)根据同底数幂的乘法以及的幂的乘方即可求出答案.【解答】解:(1)原式=(10a)2+(10b)3=42+33=16+27=43(2)原式=102a⋅103b=(10a)2⋅(10b)3=42×33=43226.【答案】解:原式=a2+10a+25−a2+5a−6=15a+19.【考点】整式的混合运算【解析】原式第一项利用完全平方公式展开,第二项利用多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:原式=a2+10a+25−a2+5a−6=15a+19.27.【答案】解:原式=x3·(−x2)3=x3·(−x6)=−x9解:原式=(−x)−2·(3x2)3÷x4=x−2·27x6÷x4=27x0=27y+2xy解:原式=(15xy²−3xy+10x²y)÷5x=3y2−35解:原式=(x−y+z)2=x2−xy+xz−xy+y2−yz+xz−yz+z2=x2+y2+z2−2xy−2yz+2xz.【考点】多项式除以单项式多项式乘多项式整式的混合运算【解析】(1)先根据积的乘方进行计算,再利用单项式乘法法则计算;(2)先根据积的乘方进行计算,再利用同底数幂的乘、除法法则进行计算;(3)根据多项式除以单项式的运算法则计算,即用多项式的每一项分别除以单项式,再把所得的商相加;(4)先根据多项式乘多项式的法则展开,再进行合并同类项.【解答】此题暂无解答28.【答案】a2n,解:原式=9a6n÷(27a4n)=13∵a2n=3,∴原式=1×3=1.3【考点】整式的除法【解析】先进行幂的乘方运算,然后进行单项式的除法,最后将a2n=3整体代入即可得出答案.【解答】a2n,解:原式=9a6n÷(27a4n)=13∵a2n=3,∴原式=13×3=1.29.【答案】解:[x(x2y2−xy)−y(x2−x3y)]÷x2y=(x3y2−x2y−x2y+x3y2)÷x2y=(2x3y2−2x2y)÷x2y=2xy−2.【考点】整式的混合运算单项式乘多项式多项式除以单项式【解析】首先利用整式的乘法运算法则进而化简合并同类项,进而利用整式的除法运算法则求出答案.【解答】解:[x(x2y2−xy)−y(x2−x3y)]÷x2y=(x3y2−x2y−x2y+x3y2)÷x2y=(2x3y2−2x2y)÷x2y=2xy−2.30.【答案】解:(1)原式=6a2−4a−4a2+4a−1=2a2−1;(2)原式=x3+2x2+4x−2x2−4x−8=x3−8;(3)原式=x2+4xy+4y2−4y2+x2−4x2=−2x2+4xy当x=−3,y=13时,原式=−2×(−3)2+4×(−3)×13=−22.【考点】整式的混合运算——化简求值整式的混合运算【解析】(1)先算乘法,再合并同类项即可;(2)根据多项式乘以多项式法则进行计算即可;(3)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=6a2−4a−4a2+4a−1=2a2−1;(2)原式=x3+2x2+4x−2x2−4x−8(3)原式=x2+4xy+4y2−4y2+x2−4x2 =−2x2+4xy当x=−3,y=13时,原式=−2×(−3)2+4×(−3)×13=−22.31.【答案】(1)解:12y3−y4;(2)解:−a11b5+a3b7+3ab5(3)−2x4y2−43x3y3+45x2y4【考点】单项式乘多项式【解析】此题暂无解析【解答】略32.【答案】解:原式=a2−2ab+ab−2b2−a2+ab−2ab+2b2=−2ab,把a=2,b=−1代入,原式=−2ab=−2×2×(−1)=4.【考点】整式的混合运算——化简求值【解析】根据多项式的乘法法则进行计算,再代入a,b的值进行计算即可.【解答】解:原式=a2−2ab+ab−2b2−a2+ab−2ab+2b2=−2ab,把a=2,b=−1代入,原式=−2ab=−2×2×(−1)=4.33.【答案】原式=x4+4x4−2x4=3x4.【考点】幂的乘方与积的乘方整式的除法同底数幂的乘法【解析】根据整式的运算法则即可求出答案.【解答】原式=x4+4x4−2x4=3x4.34.x9y3;解:(1)原式=−127(2)原式=6a2+2a−9a−3−6a2+24a=17a−3;(3)原式=4x2−9y2−4x2+4xy−y2=−10y2+4xy;(4)原式=−a2+2b.【考点】整式的混合运算【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式第一项利用多项式乘以多项式法则计算,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(3)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果;(4)原式利用多项式除以单项式法则计算即可得到结果.【解答】x9y3;解:(1)原式=−127(2)原式=6a2+2a−9a−3−6a2+24a=17a−3;(3)原式=4x2−9y2−4x2+4xy−y2=−10y2+4xy;(4)原式=−a2+2b.35.【答案】(5a−2+5a)⋅2a=10a2−2a(cm2).解:根据题意得:12【考点】整式的混合运算【解析】由于梯形的面积公式列出关系式,化简即可得到结果.【解答】(5a−2+5a)⋅2a=10a2−2a(cm2).解:根据题意得:1236.【答案】ax4y;(1)165(2)489984;(3)−10x2+7x−6;(4)−618【考点】单项式除以单项式单项式乘单项式【解析】(1)利用单项式乘单项式以及单项式除以单项式的法则计算即可得到答案;(2)把704×696拆成(700+4)×(700−4),再利用平方差公式计算即可得到答案;(3)先去括号,再合并同类项即可得到答案;(4)根据任何不为的数的0次方都等于1以及负指数幂的运算法则和绝对值的定义即可得到答案;【解答】(2)704×696=700+4)×(700−4)=7002−42=49994(3)(x −3)(2x +1)−3(2x −1)2=2x 2−5x −3−3(4x 2−4x +1)=2x 2−5x −3−12x 2+12x −3=−10x 2+7x −6(4)(−5)0×(−2)−3+(−3)−1=(13)−1×32−|−5|=1×(−18)+(−13)÷3×9−5 =−18+(−19)×9−5 =−18−1−5 =−61837.【答案】解:∵ (2x −3y +b)(3x +y +c)=6x 2−7xy −3y 2+(2c +3b)x +(b −3c)y +bc ∴ 6x 2−7xy −3y 2+(2c +3b)x +(b −3c)y +bc =6x 2−7xy −3y 2+14x +y +a ∴ 2c +3b =14,b −3c =1,a =bc联立以上三式可得:a =4,b =4,c =1故a =4,b =4,c =1.【考点】多项式乘多项式【解析】根据多项式乘以多项式的法则把式子展开,将展开所得的式子与6x 2−7xy −3y 2+14x +y +a 作比较,即可得出关于a 、b 、c 的三个式子,联立求解即可得出a 、b 、c 的值.【解答】解:∵ (2x −3y +b)(3x +y +c)=6x 2−7xy −3y 2+(2c +3b)x +(b −3c)y +bc ∴ 6x 2−7xy −3y 2+(2c +3b)x +(b −3c)y +bc =6x 2−7xy −3y 2+14x +y +a ∴ 2c +3b =14,b −3c =1,a =bc联立以上三式可得:a =4,b =4,c =1故a =4,b =4,c =1.38.【答案】2,4,6(2)∵ 4×16=64,∴ log 24+log 216=log 264;(3)log a M +log a N =log a MN ;(4)设M =a m ,N =a n ,∵ log a a m =m ,log a a n =n ,log a a m+n =m +n ,∴ log a a m +log a a n =log a a m+n ,∴ log a M +log a N =log a MN .【考点】同底数幂的乘法【解析】(1)根据题中给出已知概念,可得出答案.(2)观察可得:三数4,16,64之间满足的关系式为:log 24+log 216=log 264.(3)通过分析,可知对数之和等于底不变,各项b 值之积;(4)首先可设设M =a m ,N =a n ,再根据幂的运算法则:a n ⋅a m =a n+m 以及对数的含义证明结论.【解答】解:(1)log 24=2;log 216=4;log 264=6,(2)∵ 4×16=64,∴ log 24+log 216=log 264;(3)log a M +log a N =log a MN ;(4)设M =a m ,N =a n ,∵ log a a m =m ,log a a n =n ,log a a m+n =m +n ,∴ log a a m +log a a n =log a a m+n ,∴ log a M +log a N =log a MN .39.【答案】4;(2)如图1所示:(3)去掉的一块边长为a 、b 的长方形.【考点】多项式乘多项式【解析】(1)利用8ab可以分解为:a,8b;8a,b;2a,4b;4a,2b即可得出答案;(2)利用已知硬纸板,结合边长进而得出符合题意的图形即可;(3)两块边长为b的正方形结合一块边长为a、b的长方形,所以边长为a、b的长方形应为奇数;【解答】解:(1)从这三种硬纸板中选择一些拼出面积为8ab的不同形状的长方形,则这些长方形的周长共有4种不同情况;(2)如图1所示:(3)去掉的一块边长为a、b的长方形.40.【答案】∵4=22,16=24,64=26,∴log24=2;log216=4;log264=6.log a MN【考点】同底数幂的乘法【解析】(1)根据对数的定义,把求对数的数写成底数数的幂即可求解;(2)根据(1)的计算结果即可写出结论;(3)利用对数的定义以及幂的运算法则a m⋅a n=a m+n即可证明.【解答】∵4=22,16=24,64=26,∴log24=2;log216=4;log264=6.4×16=64,log24+log216=log264;(1)loga N+logaM=logaMN.证明:loga M=m,logaN=n,则M=a m,N=a n,∴MN=a m⋅a n=a m+n,∴loga MN=logaa m+n=m+n,故loga N+logaM=logaMN.试卷第21页,总21页。
14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 . 5.某市环保局欲将一个长为2×103dm ,宽为4×102dm ,高为8×10dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x2y)2·(-23xyz)·34xz2;(2)(-4ab3)(-18ab)-(12ab2)2.9.先化简,再求值:2x2y·(-2xy2)3+(2xy)3·(-xy2)2,其中x=4,y=1 4.10.已知(-2ax b y2c)(3x b-1y)=12x11y7,求a+b+c的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( )A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b 2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A .3xyB .-3xyC .-1D .18.一个拦水坝的横断面是梯形,其上底是3a 2-2b ,下底是3a +4b ,高为2a 2b ,要建造长为3ab 的水坝需要多少土方?9.计算:2xy 2(x 2-2y 2+1)= . 10.计算:-2x(3x 2y -2xy)= . 中档题11.要使(x 2+ax +5)(-6x 3)的展开式中不含x 4项,则a 应等于( )A .1B .-1 C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x-5y)(3x-y)=2x·3x+2x·+(-5y)·3x+(-5y)·=.3.计算:(1)(2a+b)(a-b)=;(2)(x-2y)(x2+2xy+4y2)=.4.计算:(1)(3m-2)(2m-1);(2)(3a+2b)(2a-b);(3)(2x-3y)(4x2+6xy+9y2);(4)a(a-3)+(2-a)(2+a).5.先化简,再求值:(x-5)(x+2)-(x+1)(x-2),其中x=-4.6.若一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是( ) A.6x3-5x2+4x B.6x3-11x2+4x C.6x3-4x2D.6x3-4x2+x+4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a厘米,宽为3 4a厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是平方厘米.8.我校操场原来的长是2x米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了平方米.9.计算(a-2)(a+3)的结果是( )A.a2-6 B.a2+a-6 C.a2+6 D.a2-a+610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3 C.a=-2,b=3D.a=2,b=-316.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A,B,C三类卡片若干张,拼出了一个长为2a+b、宽为a+b的长方形图形.请你通过计算求出小思同学拼这个长方形所用A,B,C三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A.-4x2B.-4x4C.-4x6D.4x6 10.(黔南中考)下列运算正确的是(D)A.a3·a=a3 B.(-2a2)3=-6a5 C.a3+a5=a10 D.8a5b2÷2a3b=4a2b 11.计算:(1)2x2y3÷(-3xy);(2)10x2y3÷2x2y;(3)3x4y5÷(-23xy2).12.计算(6x3y-3xy2)÷3xy的结果是( )A.6x2-y B.2x2-y C.2x2+y D.2x2-xy 13.计算:(1)(x5y3-2x4y2+3x3y5)÷(-23xy);(2)(6x3y4z-4x2y3z+2xy3)÷2xy3.14.计算:310÷34÷34=.中档题15.下列说法正确的是( )A.(π-3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103 D.若(x+4)0=1,则x≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = .18.已知(x -5)x =1,则整数x 的值可能为 .19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h ,一架喷气式飞机的速度为1.8×106 m/h ,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x +y)(x -y)-(4x 3y -8xy 3)÷2xy ,其中x =1,y =-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4. 2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z.(2)5a 2·(3a 3)2.解:原式=5a 2·9a 6=45a 8.4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3.6.3x 5y 4z .7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2; 解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3. (2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4. 9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7=-8x 5y 7.当x =4,y =14时,原式=-12. 10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7.∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C2.D3.C4.计算:(1)(2xy 2-3xy)·2xy ;解:原式=2xy 2·2xy -3xy·2xy=4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a) =a 3b 3+43a 3b 2. (3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1)=-2a 2b 2+6a 2b 3+2ab.(4)(34a n +1-b 2)·ab. 解:原式=34a n +1·ab -b 2·ab =34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14.6.C7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3. 答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方.9.2x 3y 2-4xy 4+2xy 2.10.-6x 3y +4x 2y .11.D12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b)=(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).综合题17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x2-8x+15;(2)x2-2x-24.12.-5.13.(1)(x+1)(x+4);解:原式=x2+5x+4.(2)(m+2)(m-3);解:原式=m2-m-6.(3)(y-4)(y-5);解:原式=y2-9y+20.(4)(t-3)(t+4).解:原式=t2+t-12.14.x2-9xy+8y2.15.B16.20x2.17.2.18.(1)(a+3)(a-2)-a(a-1);解:原式=a2-2a+3a-6-a2+a=2a-6.(2)(-7x2-8y2)·(-x2+3y2);解:原式=7x4-21x2y2+8x2y2-24y4=7x4-13x2y2-24y4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x -2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4.(2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa2=12h +2H.答:需要(12h +2H)个这样的杯子.。
第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480. 10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
《整式的乘法》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a2 2.(5分)8x6÷x2的结果是()A.8x3B.x3C.x3D.8x43.(5分)若(x+4)(x﹣2)=x2+mx+n,则m、n的值分别是()A.2,8B.﹣2,﹣8C.2,﹣8D.﹣2,84.(5分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x25.(5分)下列运算正确的是()A.a8÷a4=a2B.(a2)3=a6C.a2•a3=a6D.(ab2)3=ab6二、填空题(本大题共5小题,共25.0分)6.(5分)计算:(4a3﹣a3)•a2=.7.(5分)计算:(2x﹣4)(2x+1)=.8.(5分)计算(x﹣1)(2x+3)的结果是.9.(5分)(2x2﹣3x﹣1)(x+b)的计算结果不含x2项,则b的值为.10.(5分)计算:(3m﹣1)(2m﹣1)=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知a+b=4,ab=3,求代数式(a+2)(b+2)的值.12.(10分)计算:x2(x﹣1)﹣x(x2+x﹣1)13.(10分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=,b=;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.14.(10分)某市有一块长为3a+b米,宽为2a+b米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是(a﹣b)的正方形雕像.(1)请用含a,b的代数式表示绿化面积s;(2)当a=3,b=2时,求绿化面积.15.(10分)定义:一个多项式A乘以另一个多项式B化简得到新的多项式C,若C的项数比A的项数多不超过1项,则称B是A的“友好多项式”.特别地,当C的项数和A 相同时,则称B是A的“特别友好多项式”.(1)若A=x﹣2,B=x+3,那么B是否是A的“友好多项式”?请说明理由;(2)若A=x﹣2,B是A的“特别友好多项式”,①请举出一个符合条件的二项式B=.②若B是三项式,请举出一个符合条件的B,并说明理由;(3)若A是三项式,是否存在同样是三项式的B,使得B是A的“友好多项式”?若存在,请举例说明,若不存在,请说明理由.《整式的乘法》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.(5分)8x6÷x2的结果是()A.8x3B.x3C.x3D.8x4【分析】根据同底数幂的除法法则计算.【解答】解:8x6÷x2=8x4,故选:D.【点评】本题考查的是同底数幂的除法,同底数幂的除法法则:底数不变,指数相减.3.(5分)若(x+4)(x﹣2)=x2+mx+n,则m、n的值分别是()A.2,8B.﹣2,﹣8C.2,﹣8D.﹣2,8【分析】先根据多项式乘以多项式的法则展开,再合并,然后根据等于号两边对应项相等,可求m、n的值.【解答】解:∵(x+4)(x﹣2)=x2+2x﹣8,∴x2+2x﹣8=x2+mx+n,∴m=2,n=﹣8.故选:C.【点评】本题考查了多项式乘以多项式,解题的关键是找准对应项.4.(5分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x2【分析】根据单项式乘单项式、同底数幂的乘法和积的乘方进行解答.【解答】解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.【点评】此题考查单项式乘单项式、同底数幂的乘法和积的乘方,关键是根据单项式乘单项式、同底数幂的乘法和积的乘方法则解答.5.(5分)下列运算正确的是()A.a8÷a4=a2B.(a2)3=a6C.a2•a3=a6D.(ab2)3=ab6【分析】根据同底数幂的除法的法则,同底数幂的乘法的法则,幂的乘方与积的乘方的性质解答即可.【解答】解:A、a8÷a4=a4,故选项A错误;B、(a2)3=a6,故B选项正确;C、a2•a3=a5,故选项C错误;D、(ab2)3=a3b6,故选项D错误;故选:B.【点评】本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方,熟记法则是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)计算:(4a3﹣a3)•a2=3a5.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=4a5﹣a5,=3a5,故答案为:3a5【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.(5分)计算:(2x﹣4)(2x+1)=4x2﹣6x﹣4.【分析】直接利用多项式乘以多项式运算法则化简进而得出答案.【解答】解:(2x﹣4)(2x+1)=4x2﹣6x﹣4,故答案为:4x2﹣6x﹣4.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.8.(5分)计算(x﹣1)(2x+3)的结果是2x2+x﹣3.【分析】根据多项式乘多项式的法则计算即可.法则可表示为(a+b)(m+n)=am+an+bm+bn.【解答】解:(x﹣1)(2x+3)=2x2+x﹣3.故答案为:2x2+x﹣3.【点评】本题主要考查多项式乘多项式的法则,熟练掌握运算法则是解题的关键.9.(5分)(2x2﹣3x﹣1)(x+b)的计算结果不含x2项,则b的值为.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2x3+2bx2﹣3x2﹣3bx﹣x﹣b由于不含x2项,∴2b﹣3=0,∴b=,故答案为:.【点评】本题考查整式的运算,解的关键是熟练运用整式的运算法则,本题属于基础题型.10.(5分)计算:(3m﹣1)(2m﹣1)=6m2﹣5m+1.【分析】根据多项式与多项式相乘的法则计算.【解答】解:(3m﹣1)(2m﹣1)=6m2﹣2m﹣3m+1=6m2﹣5m+1,故答案为:6m2﹣5m+1.【点评】本题考查的是多项式乘多项式,掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知a+b=4,ab=3,求代数式(a+2)(b+2)的值.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=ab+2a+2b+4,当a+b=4,ab=3时,∴原式=3+8+4=15.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(10分)计算:x2(x﹣1)﹣x(x2+x﹣1)【分析】去括号合并即可得到结果.【解答】解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x.【点评】考查了单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.(10分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为x=2;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=1,b=3;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.【分析】(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=﹣4k,整体代入即可;【解答】解:(1)当k=2,b=﹣4时,方程◇为:2x﹣4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=﹣4.解得:y=﹣2.方法二:依题意:4k+b=0,∴b=﹣4k.解关于y的方程:k(3y+2)﹣(﹣4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=﹣2.【点评】本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.14.(10分)某市有一块长为3a+b米,宽为2a+b米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是(a﹣b)的正方形雕像.(1)请用含a,b的代数式表示绿化面积s;(2)当a=3,b=2时,求绿化面积.【分析】(1)根据绿化面积=长方形地块的面积﹣正方形雕像的面积,列式计算即可,(2)把a=3,b=2带入(1)所求结果,计算后可得到答案.【解答】解:(1)根据题意得:长方形地块的面积=(3a+b)(2a+b)=6a2+5ab+b2,正方形雕像的面积为:(a﹣b)2=a2﹣2ab+b2,则绿化面积s=(6a2+5ab+b2)﹣(a2﹣2ab+b2)=5a2+7ab,即用含a,b的代数式表示绿化面积s=5a2+7ab,(2)把a=3,b=2代入s=5a2+7ab,s=5×32+7×3×2=87,即绿化面积为87平方米.【点评】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.15.(10分)定义:一个多项式A乘以另一个多项式B化简得到新的多项式C,若C的项数比A的项数多不超过1项,则称B是A的“友好多项式”.特别地,当C的项数和A 相同时,则称B是A的“特别友好多项式”.(1)若A=x﹣2,B=x+3,那么B是否是A的“友好多项式”?请说明理由;(2)若A=x﹣2,B是A的“特别友好多项式”,①请举出一个符合条件的二项式B=x+2.②若B是三项式,请举出一个符合条件的B,并说明理由;(3)若A是三项式,是否存在同样是三项式的B,使得B是A的“友好多项式”?若存在,请举例说明,若不存在,请说明理由.【分析】(1)根据多项式乘多项式的法则计算,根据“友好多项式”的定义判断;(2)①根据“特别友好多项式”的定义解答;②根据“特别友好多项式”的定义写出多项式,根据多项式乘多项式的法则证明;(3)根据“友好多项式”的定义写出多项式,根据多项式乘多项式的法则证明.【解答】解:(1)B是A的“友好多项式”,理由如下:(x﹣2)(x+3)=x2﹣2x+3x﹣6=x2+x﹣6,x2+x﹣6的项数比A的项数多不超过1项,则B是A的“友好多项式”;(2)①(x﹣2)(x+2)=x2﹣4,∴x+2是A的“特别友好多项式”;②(x﹣2)(x2+2x+4)=x3﹣2x2+2x2﹣4x+4x﹣8=x3﹣8,∴x2+2x+4是A的“特别友好多项式”;(3)存在,例如,a+b+c与a+b﹣c是“友好多项式”,理由如下:(a+b+c)(a+b﹣c)=(a+b)2﹣c2=a2+2ab+b2﹣c2,∴a+b+c与a+b﹣c是“友好多项式”.【点评】本题考查的是多项式乘多项式,掌握“友好多项式”的定义,多项式乘多项式的运算法则是解题的关键.。
八年级数学(上)整式的乘法单元测试题一、填空题(每空2分,共32分) 1、a 2·a 5= 2、(3a 2)3=3、(-b)2·b 3=_______4、a m ·a 2m =______________5、〔(-x )2〕3=6、若x ﹒x 2﹒x n =2008x ,则n =_________.7、(2a-b )(-2ab)=__________8、(-a 2)3﹒(-a 3)2=_________9、如果2423)(a a a x =⋅,则______=x .10、计算:(12)(21)a a ---= . 11、2323433428126b a b a b a b a =-+(_____________________)12、222____9(_____)x y x ++=+; 13、2235(7)x x x +-=+(______) 14、若22916x mxy y ++是一个完全平方式,那么m 的值是__________。
15、因式分解:=++224124n mn m ____________________________。
16、计算:=⨯-⨯-⨯8002.08004.08131.0_____________________。
二、选择题(每题3分,共45分) 1、 下列计算中正确的是( )A 、()6623333-y x y x = B 、20210a a a =⋅C 、()()162352m m m=-⋅- D 、1263428121y x y x -=⎪⎭⎫⎝⎛-2、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-8 3、(-a +1)(a +1)(a 2+1)等于( )A 、a 4-1B 、a 4+1C 、a 4+2a 2+1D 、1-a 4 4、下列因式分解正确的是( )A 、)34(3422y x xy xy xy y x +=++B 、22)2(4+=+m mC 、222)2(4141b a b ab a +=++ D 、()()22x y x y x y --=--+5、下列从左边到右边的变形,是因式分解的是( )A 、29)3)(3(x x x -=+-B 、))((2233n mn m n m n m ++-=-C 、)1)(3()3)(1(+--=-+y y y yD 、z yz z y z z y yz +-=+-)2(22426、下列运算正确的是 ( ).A.236x x x =B. 2242x x x +=C.22(2)4x x -=- D .358(3)(5)15a a a --=7、如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ).A .14acB .214a cC .294a cD .94ac8、计算233[()]()a b a b ++的正确结果是( ). A .8()a b + B .9()a b + C .10()a b + D .11()a b +9、长方形的长为(a -2)cm ,宽为(3a +1) cm ,那么它的面积是多少?( ). A .2(352)a a cm -- B .2(352)a a cm -+ C .2(352)a a cm +- D .2(32)a a cm +-10、下列关于301300)2(2-+的计算结果正确的是 ( ). A .3003013003016012(2)(2)(2)(2)+-=-+-=- B .1301300301300222)2(2-=-=-+C .300300300301300301300222222)2(2-=⨯-=-=-+D .601301300301300222)2(2=+=-+11、下列各式中,计算结果是2718x x +-的是 ( ).A .(1)(18)x x -+B .(2)(9)x x -+C .(3)(6)x x -+D .(2)(9)x x ++ 12、下列多项式中能用平方差公式分解因式的是A 、22)(b a -+B 、mn m 2052-C 、22y x --D 、92+-x 13、若E p q p q q p ⋅-=---232)()()(,则E 是(A )p q --1 (B )p q - (C )q p -+1 (D )p q -+1 14、若)5)(3(+-x x 是q px x ++2的因式,则p 为A 、-15B 、-2C 、8D 、215.下列各式,能够表示图中阴影部分的面积的是( ).①()at b t t +- ②2at bt t +- ③()()ab a t b t --- ④2()()a t t b t t t -+-+A .只有① B.①和② C.①、②和③ D .①、②、③、④ 三、计算:(每小题4分,共24分)(1)3243-ab c 2⎛⎫ ⎪⎝⎭ (2)()2232315x y-xy -y -4xy 426⎛⎫⎪⎝⎭(3)、(-6a 2b 5c )÷(-2ab 2)2 (4)、(-6x 2)2+(-3x)3﹒x(5)、(3x-y+4)(3x-y-4) (6)、(-2x 2)﹒(-y)+3xy(1-2x)四、分解因式:(每小题4分,共24分) 1、)(6)(4)(8a x c x a b a x a ---+- 2、5335y x y x +-3、25x 2+20xy+4y 24、(x-y )2+4xy5、2224)1(a a -+6、n 2-3n-18五、先化简,再求值:(每小题6分,共12分)1、(3x 4-2x 3)÷(-x)-(x-x 2)﹒3x ,其中x=- 12-2、〔(ab+1)(ab-2)-2a 2b 2+2〕÷(-ab) 其中a=32 b=-43六、解方程:2(10)(8)(4)100x x x +-=+- (8分)七、探究、归纳:在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.(5分)(1)计算后填空:()()=++21x x ; ()()=-+13x x ; (2)归纳、猜想后填空:()()()()++=++x x b x a x 2(3)运用(2)猜想的结论,直接写出计算结果:()()=++m x x 2 .。
一、选择题(每小题2分,共20分)1.1.化简2)2()2(a a a −−⋅−的结果是( )A .0B .22aC .26a −D .24a −2.下列计算中,正确的是( )A .ab b a 532=+B .33a a a =⋅C .a a a =−56D .222)(b a ab =−3.若)5)((−+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或54.下列各式中,从左到右的变形是因式分解的是( )A .a a a a +=+2)1(B .b a b a b a b a b a −+−+=−+−))((22B .)4)(4(422y x y x y x −+=− D .))((222a bc a bc c b a −+=+−5.如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边行.依照图中标注的数据,计算图中空白部分的面积为(A .2c ac ab bc ++−B .2c ac bc ab +−−C .ac bc ab a −++2D .ab a bc b −+−22 6.三个连续奇数,中间一个是k ,则这三个数之积是( A .k k 43− B .k k 883− C .k k −34 D .k k 283−7.如果7)(2=+b a ,3)(2=−b a ,那么ab 的值是( )A .2B .-8C .1D .-18.如果多项式224y kxy x ++能写成两数和的平方,那么k 的值为( )A .2B .±2C .4D .±49.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a10.多项式251244522+++−x y xy x 的最小值为( )A .4B .5C .16D .25二、填空题(每小题2分,共20分)11.已知23−=a ,则6a = .12.计算:3222)()3(xy y x −⋅−= .13.计算:)1312)(3(22+−−y x y xy = . 14.计算:)32)(23(+−x x = .15.计算:22)2()2(+−x x = .16.+24x ( 2)32(9)−=+x .17.分解因式:23123xy x −= .18.分解因式:22242y xy x −+−= .19.已知3=−b a ,1=ab ,则2)(b a += .20.设322)2()1(dx cx bx a x x +++=−+,则d b += .三、解答题(本大题共60分)21.计算:(每小题3分,共12分)(1))311(3)()2(2x xy y x −⋅+−⋅−;(2))12(4)392(32−−+−a a a a a ;(3))42)(2(22b ab a b a ++−;(4)))(())(())((a x c x c x b x b x a x −−+−−+−−.22.先化简,再求值:(第小题4分,共8分)(1))1)(2(2)3(3)2)(1(−+++−−−x x x x x x ,其中31=x .(2)2222)5()5()3()3(b a b a b a b a −++−++−,其中8−=a ,6−=b .23.分解因式(每小题4分,共16分):(1))()(22a b b b a a −+−; (2))44(22+−−y y x .(3)xy y x 4)(2+−; (4))1(4)(2−+−+y x y x ;(5)1)3)(1(+−−x x ; (6)22222222x b y a y b x a −+−.24.(本题4分)已知41=−b a ,25−=ab ,求代数式32232ab b a b a +−的值.25.(本题5分)解方程:)2)(13()2(2)1)(1(2+−=++−+x x x x x .26.(本题5分)已知a 、b 、c 满足5=+b a ,92−+=b ab c ,求c 的值.27.(本题5分)某公园计划砌一个形状如图1所示的喷水池.①有人建议改为图2的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需要的材料多(即比较哪个周长更长)?②若将三个小圆改成n 个小圆,结论是否还成立?请说明.28.(本题5分)这是一个著名定理的一种说理过程:将四个如图1所示的直角三角形经过平移、旋转、对称等变换运动,拼成如图2所示的中空的四边形ABCD .(1)请说明:四边形ABCD 和EFGH 都是正方形;(2)结合图形说明等式222c b a =+成立,并用适当的文字叙述这个定理的结论.四、附加题(每小题10分,共20分)29.已知n 是正整数,且1001624+−n n 是质数,求n 的值.a ab b b G H F图1 图230.已知522++x x 是b ax x ++24的一个因式,求b a +的值.参考答案一、选择题1.C 2.D 3.B 4.D 5.B 6.A 7.C 8.D 9.A 10.C二、填空题11.4 12.879b a − 13.xy y x xy 36233−+− 14.6562−+x x 15.16824+−x x16.x 12− 17.)2)(2(3y x y x x −+ 18.2)(2y x −− 19.13 20.2三、解答题21.(1)xy y x 32+ (2)a a a 1335623+− (3)338b a −(4)ca bc ab x c b a x +++++−)(2222.(1)210−−x ,315− (2)22102010b ab a +−,40 23.(1))()(2b a b a +− (2))2)(2(+−−+y x y x (3)2)(y x +(4)2)2(−+y x (5)2)2(−x (6)))()((22b a b a y x −++24.原式=3254125)(22−=⎪⎭⎫ ⎝⎛⨯−=−b a ab 25.3−=x26.由5=+b a ,得b a −=5,把b a −=5代入92−+=b ab c ,得∴222)3(969)5(−−=−−=−+−=b b b b b b c .∵2)3(−b ≥0, ∴22)3(−−=b c ≤0.又2c ≥0,所以,2c =0,故c =0.27. ①设大圆的直径为d ,周长为l ,图2中三个小圆的直径分别为1d 、2d 、3d ,周长分别为1l 、2l 、3l ,由321321321)(l l l d d d d d d d l ++=++=++==πππππ. 可见图2大圆周长与三个小圆周长之和相等,即两种方案所用材料一样多.②结论:材料一样多,同样成立.设大圆的直径为d ,周长为l ,n 个小圆的直径分别为1d ,2d ,3d ,…,n d ,周长为1l ,2l ,3l ,…,n l ,由+++==321(d d d d l ππ…)n d ++++=321d d d πππ…n d π++++=321l l l …n l +.所以大圆周长与n 个小圆周长和相等,所以两种方案所需材料一样多.28.(1)在四边形ABCD 中,因为AB =BC =CD =DA =b a +, 所以四边形ABCD 是菱形. 又因为∠A 是直角, 所以四边形ABCD 是正方形.在四边形EFGH 中, 因为EF =FG =GH =HE =c , 所以四边形EFGH 是菱形. 因为∠AFE +∠AEF =90°,∠AFE =∠HED ,所以∠HED +∠AEF =90°,即∠FEH =90°,所以四边形EFGH 是正方形.(2)因为S 正方形ABCD =4S △AEF +S 正方形EFGH , 所以,22214)(c ab b a +⨯=+, 整理,得222c b a =+.这个定理是:直角三角形两条直角边的平方和等于斜边的平方.四、附加题29.)106)(106(100162224+−++=+−n n n n n n ,∵n 是正整数,∴1062++n n 与1062+−n n 的值均为正整数,且1062++n n >1.∵1001624+−n n 是质数,∴必有1062+−n n =1,解得3=n .30.设))(52(2224n mx x x x b ax x ++++=++,展开,得a ab b b G Hn x m n x m n x m x b ax x 5)52()52()2(23424++++++++=++. 比较比较边的系数,得⎪⎪⎩⎪⎪⎨⎧==++=+=+.5,52,052,02b n a m n m n m 解得2−=m ,5=n ,6=a ,25=b . 所以,31256=+=+b a .。
《整式的乘法》同步测试一、选择题:1.下列各式中,正确的是()A.t2·t3 = t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t5·t5 = 2t52.下列计算错误的是()A.−a2·(−a)2 = −a4 B.(−a)2·(−a)4 = a6C.(−a3)·(−a)2 = a5 D.(−a)·(−a)2 = −a33.下列计算中,运算正确的个数是()①5x3−x3 = x3 ② 3m·2n = 6m+n③a m+a n = a m+n ④x m+1·x m+2 = x m·x m+3A.1 B. 2 C.3 D.44.计算a6(a2)3的结果等于()A.a11 B.a 12 C.a14 D.a365.下列各式计算中,正确的是()A.(a3)3 = a6 B.(−a5)4 = −a 20 C.[(−a)5]3 = a15 D.[(−a)2]3 = a6 6.下列各式计算中,错误的是()A.(m6)6 = m36 B.(a4)m = (a 2m) 2 C.x2n = (−x n)2 D.x2n = (−x2)n 7.下列计算正确的是()A.(xy)3 = xy3 B.(2xy)3 = 6x3y3C.(−3x2)3 = 27x5 D.(a2b)n = a2n b n8.下列各式错误的是()A.(23)4 = 212 B.(− 2a)3 = − 8a3C.(2mn2)4 = 16m4n8 D.(3ab)2 = 6a2b29.下列计算中,错误的是()A.m n·m2n+1 = m3n+1 B.(−a m−1)2 = a 2m−2C.(a2b)n = a2n b n D.(−3x2)3 = −9x610.下列计算中,错误的是()A.(−2ab2)2·(− 3a2b)3 = − 108a8b7B.(2xy)3·(−2xy)2 = 32x5y5C.(m2n)(−mn2)2 =m4n4D.(−xy)2(x2y) = x4y311.下列计算结果正确的是()A.(6ab2− 4a2b)•3ab = 18ab2− 12a2bB.(−x)(2x+x2−1) = −x3−2x2+1C.(−3x2y)(−2xy+3yz−1) = 6x3y2−9x2y2z2+3x2yD.(34a3−12b)•2ab=32a4b−ab212.若(x−2)(x+3) = x2+a+b,则a、b的值为()A.a = 5,b = 6 B.a = 1,b = −6C.a = 1,b = 6 D.a = 5,b = −6二、解答题:1.计算(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b);(2)− 2a2b3·(m−n)5·13ab2·(n−m)2+13a2(m−n)·6ab2;(3) 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a);(4)(3x2−5y)(x2+2x−3).2.当x = −3时,求8x2−(x−2)(x+1)−3(x−1)(x−2)的值.3.把一个长方形的长减少3,宽增加2,面积不变,若长增加1,宽减少1,则面积减少6,求长方形的面积.4.(x+my−1)(nx−2y+3)的结果中x、y项的系数均为0,求3m+n之值.参考答案:一、选择题1.A说明:t4与t2不是同类项,不能合并,B错;同底数幂相乘,底不变,指数相加,所以t3·t4 = t3+4 = t7≠t12,C错;t5•t5 = t5+5 = t10≠2t5,D错;t2•t3 = t2+3 = t5,A 正确;答案为A.2.C说明:−a2·(−a)2 = −a2·a2 = −a2+2 = −a4,A计算正确;(−a)2·(−a)4 = a2·a4 = a2+4 = a6,B计算正确;(−a3)·(−a)2 = −a3·a2 = −a5≠a5,C计算错误;(−a)·(−a)2 = −a·a2 = −a3,D计算正确;所以答案为C3.A说明:5x3−x3 = (5−1)x3 = 4x3≠x3,①错误;3m与2n不是同底数幂,它们相乘把底数相乘而指数相加显然是不对的,比如m = 1,n = 2,则3m·2n = 31·22 = 3·4 = 12,而6m+n = 61+2 = 63= 216≠12,②错误;a m与a n只有在m = n时才是同类项,此时a m+a n = 2a m≠a m+n,而在m≠n时,a m与a n无法合并,③错;x m+1·x m+2 = x m+1+m+2 = x m+m+3 =x m·x m+3,④正确;所以答案为A.4.B说明:a6(a2)3 = a6·a2×3 = a6·a6 = a6+6 = a12,所以答案为B.5.D说明:(a3)3 = a3×3 = a9,A错;(−a5)4 = a5×4 = a20,B错;[(−a)5]3 = (−a)5×3 = (−a)15 = −a15,C错;[(−a)2]3 = (−a)2×3 = (−a)6 = a6,D正确,答案为D.6.D说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−x n)2 = x2n,C计算正确;当n为偶数时,(−x2)n = (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.7.D说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y3,B错;(−3x2)3 = (−3)3(x2)3 = −27x6,C错;(a2b)n = (a2)n b n = a2n b n,D正确,答案为D.8.C9.D 10.C 11.D 12.B二、解答题1.解:(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b) = [(−5)×(−3)×(−7)](a3·a·a2)(b2·b2·b)c = −105a6b 5c.(2)− 2a2b3·(m−n)5·13ab2·(n−m)2+13a2(m−n)·6ab2= (−2·13)·(a2·a)·(b3·b2)[(m−n)5·(m−n)2]+(13·6)(a2·a)(m−n)b2 = −23a3b5(m−n)7+2a3b2(m−n).(3) 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a) = 3a2·13ab2− 3a2b+ 2a2b2· 3a−3ab· 3a= a3b2− 3a2b+ 6a3b2− 9a2b = 7a3b2− 12a2b.(4)(3x2−5y)(x2+2x−3) = 3x2·x2−5y·x2+3x2·2x−5y·2x+3x2·(−3)−5y·(−3)= 3x4−5x2y+6x3−10xy−9x2+15y= 3x4+6x3−5x2y−9x2−10xy+15y.2. 解:8x2−(x−2)(x+1)−3(x−1)(x−2) = 8x2−(x2−2x+x−2)−3(x2−x−2x+2)= 8x2−x2+x+2−3x2+9x−6 = 4x2+10x−4.当x = −3时,原式= 4·(−3)2+10·(−3)−4 = 36−30−4 = 2.3. 解:设长方形的长为x,宽为y,则由题意有即解得xy = 36.答:长方形的面积是36.4. 解:(x+my−1)(nx−2y+3) = nx2−2xy+3x+mnxy−2my2+3my−nx+2y−3= nx2−(2−mn)xy−2my2+(3−n)x+( 3m+2)y−3∵x、y项系数为0,∴得故3m+n = 3·(−23)+3 = 1.。
八上-第十四章整式的乘法与因式分解-第3课时习题课一、选择题(共6小题;共30分)1.计算2⋅4的结果是 A.2×4rB.2rr1C.2rBD.2r22.若=3,=5,则r的值为 A.8B.15C.35D.533.若3=,3=,则32r的值为 A.−2B.2C.2BD.2+4.下列式子:①−43;②−5⋅−23;③4⋅−3;④−23⋅32.其中,计算结果为−12的是 A.①②B.②③C.①④D.③④5.比较274与343的大小,正确的是 A.274=343B.274>343C.274<343D.无法判断6.若⋅⋅⋅5=1015,则32+1的值为 A.15B.8C.12D.0二、填空题(共4小题;共20分)7.(1)若2×8×16=2,则=;(2)若92=312,则=;(3)若9×272=812,则=.8.(1)若⋅⋅3=915,则=,=;(2)若8612,则=.9.(1)若=1−716,则=;(2)若4=2r3,则=.10.若∣+3∣+3−12++1=0,则2017⋅2017⋅2018=.三、解答题(共6小题;共78分)11.(1)已知3⋅⋅2r1=31,求的值;(2)已知243=310,9=81,求B的值;(3)已知2r1=5,求6r3的值;(4)已知=2,=3,求22的值.12.计算:(1)−35⋅−3⋅−2;(2)0.2599×4100−9100×.13.(1)已知4×16=64×256×16,求的值;(2)已知3×9×27=321,求的值.14.已知为正整数,且2=12,求432−3234的值.15.阅读下面比较2100与375的大小的解题过程:解:∵2100=2425=1625,375=3325=2725,16<27,∴1625<2725,即2100<375.请根据上述解题过程,比较3555,4444,5333的大小.16.已知K3=2,r4=5,r1=10,试探究,,之间的关系,并说明理由.答案第一部分1.D2.B3.B4.C5.A6.A第二部分7.8,3,18.4,3,−2249.2,310.−1第三部分11.(1)9.(2)4.(3)125.(4)144.12.(1)20.(2)3.13.(1)=4.(2)=4.14.432−3234 =16−32=16×−32×=32.15.∵3555=35×111=35111=243111,4444=44×111=44111=256111,5333=53×111=53111= 125111,且125<243<256,∴5333<3555<4444.16.+=.理由:∵2×5=10,∴K3⋅r4=r1.∴K3+r4=r1.∴−3++4=+1.∴+=.。
人教版八年级数学上册《14.1 整式的乘法》练习题-附参考答案一、选择题1.计算a3•a2的结果是()A.2a5B.a5C.a6D.a92.计算(x3)5的结果是()A.x2B.x8C.x15D.x163.已知2x+y=3,则4x×2y的值为()A.2 B.4 C.8 D.164.计算(−13)2021×32020的结果是()A.−3B.3 C.−13D.135.已知a=355,b=444,c=533则a、b、c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.a<c<b 6.如果(2x+m)与(x+3)的乘积中不含x的一次项,那么m的值为()A.﹣6 B.﹣3 C.0 D.17.下列计算正确的是()A.x10÷x2=x5B.(x3)2÷(x2)3=xC.(15x2y﹣10xy2)÷5xy=3x﹣2y D.(12x3﹣6x2+3x)÷3x=4x2﹣2x8.设(x m−1y n+2)(x5m y2)=x5y7,则(−12m)n的值为()A.−18B.−12C.1 D.12二、填空题9.已知33x+1=81,则x=.10.计算:(x−1)2⋅x3=.11.已知(a n b m+2)3=a6b15,则m n=.12.计算(x+3)(x+4)−2(x+6)的结果为.13.已知(x+4)(x﹣9)=x2+mx﹣36,则m的值为三、解答题14.计算:(1)(a2)3⋅(a2)4÷(a2)5;(2)(x-4y)(2x+3y)(3)[(3x+4y)2−3x(3x+4y)]÷(−4y)(4)(−7x2y)(2x2y−3xy3+xy);15.已知n是正整数,且,求的值.16.在计算(x+a)(x+b)时,甲把错b看成了6,得到结果是:x2+8x+12;乙错把a看成了-a,得到结果:x2+x−6.(1)求出a,b的值;(2)在(1)的条件下,计算(x+a)(x+b)的结果.17.学习了《整式的乘除》这一章之后,小明联想到小学除法运算时,会碰到余数的问题,那么类比多项式除法也会出现余式的问题.例如,如果一个多项式(设该多项式为A)除以的商为,余式为,那么这个多项式是多少?他通过类比小学除法的运算法则:被除数=除数×商+余数,推理出多项式除法法则:被除式=除式×商+余式.请根据以上材料,解决下列问题:(1)请你帮小明求出多项式A;(2)小明继续探索,如果一个多项式除以3x的商为,余式为,请你根据以上法则求出该多项式参考答案1.B2.C3.C4.C5.A6.A7.C8.A9.110.x11.912.x2+5x x+x213.-514.(1)解:(a2)3⋅(a2)4÷(a2)5=a6·a8÷a10=a14÷a10=a4(2)解:(x-4y)(2x+3y)=2x2−8xy+3xy−12y2=2x2−5xy−12y2(3)解:[(3x+4y)2−3x(3x+4y)]÷(−4y)=(9x2+24xy+16y2−9x2−12xy)÷(−4y)=(12xy+16y2)÷(−4y)=−3x−4y(4)解:(−7x2y)(2x2y−3xy3+xy)=−14x4y2+21x3y4−7x3y215.解:原式∵∴=9×4+[-8×4]=416.(1)解:由甲计算得:(x+a)(x+6)=x2+8x+12∴6a=12∴a=2;代入乙的式子,得(x−2)(x+b)=x2+x−6∴−2b=−6∴b=3.(2)解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6.17.(1)解:由题意得;(2)解:由题意可得该多项式为:。