《-基本不等式的证明》教学设计
- 格式:doc
- 大小:136.50 KB
- 文档页数:10
基本不等式教案范文一、教学目标1.知识与技能目标a.掌握基本不等式的定义和基本性质;b.掌握不等式的加减乘除性质;c.能够解决基本不等式的证明和计算问题。
2.过程与方法目标a.通过例题引导学生发现不等式的性质;b.引导学生进行探究性学习,提高独立解决问题的能力;c.培养学生的逻辑思维和推理能力。
3.情感态度目标a.培养学生的数学思维和抽象思维能力;b.培养学生的合作意识和团队精神;c.培养学生的实际问题解决能力。
二、教学重点1.不等式的加减和乘除性质;2.不等式的证明和计算方法。
三、教学难点1.不等式的证明方法;2.复杂不等式的解决方法。
四、教学方法1.探究教学法:通过解决例题引导学生发现不等式的性质;2.讲授教学法:通过讲解和示范的方式,介绍不等式的性质和解决方法;3.案例分析法:通过分析实际问题的案例,引导学生解决不等式问题。
五、教学过程1.引入a.导入问题:小明计划购买一款手机,他想知道自己有多少钱可以花在手机上。
请问该怎样计算?b.引导学生讨论,并给予提示,引出不等式的概念。
2.探究不等式的性质a.通过解决一些简单的例题,让学生发现不等式的性质。
b.给出以下几个例题:(1)若a>b,b>0,则a+b>b;(2)若a > b,b > 0,则ab > b;(3)若a>b,b>0,则a/b>1c.让学生在小组内讨论,并找出规律。
d.分组展示结果,学生进行交流与讨论。
e.教师总结不等式的加减和乘除性质。
3.不等式证明a.讲解不等式证明的一般方法,包括逆否命题法、反证法等。
b.通过案例讲解不等式证明的具体步骤和技巧。
c.给出以下例题:(1)证明:若a>b,b>0,则a+b>0。
(2)证明:对于任意实数x,都有x>-1c.引导学生运用之前学到的证明方法进行解答,然后进行讨论。
4.解决不等式问题a.讲解不等式的解决方法,包括绝对值法、区间法等。
基本不等式教学设计(多篇)第1篇:基本不等式教学设计基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用基本不等式解决生活中的应用问题2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是基本不等式应用举例的延伸。
基本不等式课程设计一、教学目标本节课的教学目标是让学生掌握基本不等式的概念、性质和应用,能够运用基本不等式解决一些简单的问题。
具体目标如下:1.了解基本不等式的定义和性质。
2.掌握基本不等式的证明方法。
3.理解基本不等式在实际问题中的应用。
4.能够运用基本不等式解决一些简单的问题。
5.能够运用基本不等式进行不等式的证明。
情感态度价值观目标:1.培养学生的逻辑思维能力。
2.培养学生的数学美感。
二、教学内容本节课的教学内容主要包括基本不等式的定义、性质和应用。
具体内容如下:1.基本不等式的定义:介绍基本不等式的定义,解释其含义和作用。
2.基本不等式的性质:讲解基本不等式的性质,包括对称性、单调性等。
3.基本不等式的应用:介绍基本不等式在实际问题中的应用,如求最值、证明不等式等。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法:1.讲授法:教师通过讲解基本不等式的定义、性质和应用,引导学生理解并掌握知识。
2.讨论法:教师学生进行小组讨论,让学生通过互动交流,加深对基本不等式的理解。
3.案例分析法:教师通过举例子,让学生运用基本不等式解决实际问题,巩固知识。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:为学生提供《数学课本》等相关教材,作为学习的基本依据。
2.参考书:提供一些数学参考书,供学生课后拓展学习。
3.多媒体资料:制作课件、视频等多媒体资料,帮助学生直观理解基本不等式的性质和应用。
4.实验设备:准备一些实验设备,如白板、黑板等,方便教师进行演示和讲解。
五、教学评估为了全面、客观、公正地评估学生的学习成果,本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。
2.作业:布置与本节课内容相关的作业,评估学生对基本不等式的掌握情况和应用能力。
3.考试:安排一次考试,测试学生对基本不等式的概念、性质和应用的掌握程度。
2.2基本不等式教材分析:“基本不等式”是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标 【知识与技能】1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.2a b+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.教学重难点 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a bab +≤的证明过程; 【教学难点】 1.基本不等式2a bab +≤等号成立条件; 2.利用基本不等式2a bab +≤求最大值、最小值. 教学过程 1.课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a >0,b >0,我们用,分别代替上式中的a ,b ,可得①当且仅当a =b 时,等号成立.通常称不等式(1)为基本不等式(basicinequality ).其中,叫做正数a ,b 的算术平均数,叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.思考:上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下. 2.讲授新课1)2a bab +≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥,(a>0,b>0)2a bab +≤2)2a bab +≤用分析法证明: 要证2a b ab +≥(1)只要证a +b ≥(2)要证(2),只要证a +b -≥0(3) 要证(3),只要证(-)2≥0(4)显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立. 探究1:在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .你能利用这个图形得2a bab +≤的几何解释吗? 易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB即CD =ab .这个圆的半径为2b a +,显然,它大于或等于CD ,即ab b a ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立. 因此:基本不等式2a bab +≤几何意义是“半径不小于半弦” 评述:1.如果把2b a +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2.在数学中,我们称2b a +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力. 例1已知x >0,求x +的最小值.分析:求x +的最小值,就是要求一个y 0(=x 0+),使x >0,都有x +≥y .观察x +,发现x=1.联系基本不等式,可以利用正数x 和的算术平均数与几何平均数的关系得到y 0=2. 解:因为x >0,所以x +=2当且仅当x =,即x 2=1,x =1时,等号成立,因此所求的最小值为2.在本题的解答中,我们不仅明确了x>0,有x+≥2,而且给出了“当且仅当x=,即=1,x=1时,等号成立”,这是为了说明2是x+(x>0)的一个取值,想一想,当y0<2时,x+=y0成立吗?这时能说y.是x+(x>0)的最小值吗?例2已知x,y都是正数,求证:(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值;(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值.证明:因为x,y都是正数,所以.(1)当积xy等于定值P时,,所以,当且仅当x=y时,上式等号成立.于是,当x=y时,和x+y有最小值.(2)当和x+y等于定值S时,,所以,当且仅当x=y时,上式等号成立.于是,当x=y时,积xy有最大值例3(1)用篱笆围一个面积为100m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?分析:(1)矩形菜园的面积是矩形的两邻边之积,于是问题转化为:矩形的邻边之积为定值,边长多大时周长最短.(2)矩形菜园的周长是矩形两邻边之和的2倍,于是问题转化为:矩形的邻边之和为定值,边长多大时面积最大.解:设矩形菜园的相邻两条边的长分别为xm,ym,篱笆的长度为2(x+y)m.(1)由已知得xy=100.由,可得x+y≥2=20,所以2(x+y)≥40,当且仅当x=y=10时,上式等号成立因此,当这个矩形菜园是边长为10m的正方形时,所用篱笆最短,最短篱笆的长度为40m.(2)由已知得2(x+y)=36,矩形菜园的面积为xym2.由,可得xy≤81,当且仅当x=y=9时,上式等号成立.因此,当这个矩形菜园是边长为9m的正方形时,菜园的面积最大,最大面积是81m2.例4某工厂要建造一个长方体形无盖贮水池,其容积为4800m2,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?分析:贮水池呈长方体形,它的高是3m,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价也就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低.解:设贮水池池底的相邻两条边的边长分别为xm,ym,水池的总造价为2元.根据题意,有z =150×+120(2×3x +2×3y )=240000+720(x +y ).由容积为4800m 3,可得3xy =4800,因此xy =1600.所以z ≥240000+720×2,当x =y =40时,上式等号成立,此时z =297600.所以,将贮水池的池底设计成边长为40m 的正方形时总造价最低,最低总造价是297600元. 【设计意图】例题讲解,学以致用. 3.随堂练习1.已知a 、b 、c 都是正数,求证:(a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab b a ≥+2(a >0,b >0)灵活变形,可求得结果.解:∵a ,b ,c 都是正数 ∴a +b ≥2>0 b +c ≥2>0c+a≥2>0∴(a+b)(b+c)(c+a)≥2·2·2=8abc即(a+b)(b+c)(c+a)≥8abc.【设计意图】讲练结合,熟悉新知.4.课时小结本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b 的算术平均数(),几何平均数()及它们的关系().它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab≤,ab ≤()2.我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.。
高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。
《基本不等式的证明及应用》优质课比赛教案基本不等式的证明及应用教学目标a,b知识目标:探索并了解基本不等式的证明过程,体会证ab,(a,b,0)2明不等式的基本方法,能应用基本不等式解决一些简单问题,渗透数形结合和等价化归等数学思想.能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力.情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣.教学重点、难点a,bab,基本不等式()及其证明. a,b,02教学过程一、问题情境1.有一架天平两臂之长略有差异,其他均精确,小王要用它来称一物体的重量,将此物体放在左右两个托盘各称一次,再将称的的数据相加后,除以2所得的结果就认为是物体的真实重量,你认为小王所测量结果是否准确,如果不准确,比真实重量是重还是轻,你能给小王提供一种用这架天平称量此物体真实重量的方法吗,2.引入课题ll设第一次称量时,放物体一边的臂长为,另一边的臂长为,称得物体的重21 a,baA,量为,第二次称得物体的重量为,用小王的方法所得的结果为,这b2样合理吗,事实上,设物体的实际质量为,根据力学原理有 MlM,la, ? 12lM,la, ? 21ll??相乘再除以,可以得到 12M,ab .第 1 页共 5 页a,b问题:A,与M,ab是否相等,若不相等,大小关系又怎样, 2二、学生活动a,baaaba1.对于非负数,,称为、的算术平均数,为、的几何bbb2平均数.2.学生分组讨论.3.学生通过取一些具体数据进行探究.a 30 59 92 70 25 11 20b 39 99 23 99 54 100 2034.21 76.43 46 83.25 36.74 33.17 20 aba,b34.5 79 57.5 84.5 39.5 55.5 20 2a,ba,bab,ab,4.猜想:若,,当时,;当时,;a,0b,0a,ba,b22a,bab,ab当,时,很明显;当时,无意义. a,0b,0ab,02a,bab,5.初步结论:如果,,那么成立. a,0b,02点评:诱发学生深入思考问题,教会学习、研究的方法——从特殊到一般是科学探求未知的有效手段.三、建构数学1.呈现课题:基本不等式的证明.引导学生分析、思考,给出基本不等式的证明,点评有关问题. 2.基本不等式的证明:证法1:(比较法)a,b,ab 2122=[(a),(b),2ab] 212(a,b),0=. 2证法2:(分析法)a,bab,要证, 22ab,a,b只要证,第 2 页共 5 页只要证 a,2ab,b,0,2(a,b),0 只要证,a,bab, 只要证最后一个不等式成立,所以成立,当且仅当a,b2时取“=”.证法3:(综合法)对于正数a、b有2(a,b),0a,b,2ab,0 ,a,b,2ab,a,b ,, ,ab2点评:(,)由证明过程可以发现,当且仅当时,两个均值相等,并解a,b释“当且仅当”两方面的含义.a (,)强调结论成立的条件: ,都是非负数,并举反例加以说明. b(,)比较法、分析法、综合法都是证明不等式的基本方法.3.通过严格的证明,得到下列结论:a,baab,定理:如果、是正数,那么(当且仅当时取“=”). ba,b2让学生根据右图,尝试给出上述基本不等式的几何解释,并思考这个基本不等式的其他证明方法.a,bab,4.对的几何解释: 2'DD,AB如图,在圆中:为圆的直径,弦ABO2垂足为,,,由射影定理:,CD,AC,CBCAC,aBC,b''CD,AC,CB,abDD,2abDD,则弦;而直径弦.所以AB,a,ba,b,2abab,,变形得:,当点与圆心重合时,即时取等COa,b2号.第 3 页共 5 页点评:抓住时机,渗透数形结合思想,引导学生善于捕捉的暗示信息,从多方位、多角度去理解并掌握所学知识,提升思维的灵活性.5.教师点评:(1)这个基本不等式的几何解释,即“半弦半径”. ,n(2)这个基本不等式可否推广到“个(,)非负数”的情形,n,1n,N有兴趣的同学可以课后查阅有关资料.四、数学运用(一)例题a例1.已知、为正数,试证明下列不等式: bba1(1);(2). ,,2a,,2aab分析:可直接应用基本不等式进行证明,并注意基本不等式的应用条件.证明:(略)16例2.已知函数,,求此函数的最小值. y,x,x,(,2,,,)x,216分析:不能直接使用基本不等式,应将其变形为,并对前(x,2),,2x,2 两项使用基本不等式.解:(略)点评:(1)在使用基本不等式求函数最值时,常需要将函数形式进行变形,以创造条件使用基本不等式.(2)在利用基本不等式求函数最值时,应注意“一正、二定、三相等”,即必须两个量都是正数(也可是非负数),才能直接使用基本不等式;要把函数式放缩到常数;等号才能取到.(二)练习3x,f(x),x,1.若,则有_________值为_________,此时________; x,0x 3x,f(x),x,2.若,则有_________值为_________,此时________; x,0x y,0x,y,23.已知,,且,求的最大值; xyx,0y,0xy,14.已知,,且,求的最小值; x,yx,0y,x(x,2)5.已知,求函数的最大值; 0,x,2第 4 页共 5 页26.已知0,x,,求函数的最大值. y,x(2,3x)3做到师生互动;讲练结合. 让学生板演,教师评析.五、回顾小结让学生回顾小结本节课所学内容及主要收获,教师总结.a,b1.基本不等式及其证明. ab,(a,b,0)22.基本不等式的简单应用(证明不等式,求函数最值).六、教学反思1.在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构.每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答.使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深,但实施落实的可能还不到位,有待改进.2.本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,意图使学生在比较中对基本不等式得以深刻理解.“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的.3.本课的设计是想通过师生课上的探索、互动学习,达到理解掌握知识的目的.在教师的引导和启发下,学生自己寻找、探求解决问题的途径是本节教学所采用的教学方式.课上学生学习热情很高,师生的互动非常好,出现了很多讨论问题的高潮.学生能够针对教师的问题进行充分的分析和讨论,而且通过讨论,学生对知识点的理解得到了深化,达到了掌握知识的目的.七、课后作业,2,3,4,5题. 教材第91页习题3.4第1第 5 页共 5 页。
2a b +≤的证明 一、教材分析(一)教材所处的地位和作用(0,0)2a b a b +>>”是全日制普通高中新课程标准实验教科书数学必修5“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用数学知识,灵活解决实际问题,学数学用数学的好素材,同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质.(二)教学目标1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣(三)教学重点、难点教学重点:创设代数与几何背景,从不同角度探索基本不等的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵(四)教材处理依据新大纲和新教材,本节分为二个课时进行教学.第一课时讲解不等式(两个实数的平方和不小于它们之积的2倍)和基本不等式:(0,0)2a b a b +≤>>及它们的几何解释.掌握应用基本不等式:(0,0)2a b a b +>>解决某些数学问题.第二课时讲解基本不等式:(0,0)2a b a b +>>解决某些实际问题.为了讲好基本不等式这节内容,在紧扣新教材的前提下,对例题作适当的调整,适当增加例题.二、教法分析(-)教学方法为了激发学生学习的主体意识,又有利于教师引导学生学习,培养学生的数学能力与创新能力,使学生能独立实现学习目标.在探索结论时,采用发现法教学;在基本不等式的应用及其条件的教学中采用归纳法;在训练部分,主要采用讲练结合法进行.(二)教学手段根据知识特点,可以结合多媒体教学三、学法指导在教学中,学生始终是主体,教师只是起主导作用,因此在教学中引导学生去观察、发现、分析、解决问题。
《基本不等式的证明》教学设计【教材分析】不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。
建立不等观念,处理不等关系与处理等量问题是同样重要的。
而基本不等式是本章重要的一个单元,它是证明不等式、求解某些函数的最大值及最小值的理论依据,在解决数学问题和实际问题中应用广泛。
基本不等式是高中数学的重要内容之一,在高考说明中等级要求为C级。
在不同的章节中都有应用,是培养学生逻辑推理能力和数学应用意识的好素材。
本教材特别强调基本不等式的代数与几何背景以及在求最值中的应用。
【学情分析】学生对函数中求最值,在一元二次不等式中都已经学过接触过有不等式的问题,因此提到不等式最值问题学生也不会陌生。
在两个数的算术平均数和几何平均上,我们可以以两个数的等差中项和等比中项来引用这两个概念。
这样对两个数据形式上就不会陌生,在初步了解大小关系后在给出概念。
但由于学生的基础薄弱,可以预见在探索基本不等式时,寻找不等关系也有一定的困难。
【教学目标】知识目标:1、知道算术平均数和几何平均数的概念并且能求出两个数的算术平均数和几何平均数。
2、理解基本不等式的证明过程。
技能目标:1、掌握基本不等式的取等条件,并能用此方法求函数最大值。
2、通过对基本不等式证明的理解,体会三种证明方法,能准确用三种证明中简单的方法证明其它不等式问题。
3、体会类比的数学思想方法,培养其观察分析问题的能力和总结概括的能力情感目标:通过不等式基本性质的探究过程,培养学生合作交流的思维品质,渗透不等式中的数学美,激发学生学习兴趣,陶冶学生的数学情操。
【教学重点】1、如果a,b是正书,则为a、b的算术平均数;为a、b的几何平均,且有“两个正数的算术平均数不小于它们的几何平均数”。
即定理,()(当且仅当时取)2、上面公式中“当且仅当的含义是:当时取等号,即;仅当时取等号,即,综合起来就是的充要条件。
【教学难点】1、不等式求函数最值时的取等条件2、对于公式的变形可求的最大值【教学方法】启发学生探究,多媒体辅助教学【教具准备】多媒体电脑课件【教学过程】一、设置问题情境:(展示并介绍古代弦图)同学们现在看到的是中国古代数学中著名的一副图,叫做弦图。
《基本不等式》教学设计一、教学目标1、知识与技能目标(1)学生能够理解基本不等式的内容和证明过程。
(2)掌握运用基本不等式求最值的方法和条件。
2、过程与方法目标(1)通过对基本不等式的推导和证明,培养学生的逻辑推理能力。
(2)通过实际问题的解决,提高学生的数学建模能力和应用意识。
3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。
(2)培养学生严谨的治学态度和创新精神。
二、教学重难点1、教学重点(1)基本不等式的内容和证明。
(2)运用基本不等式求最值的方法和条件。
2、教学难点(1)基本不等式的证明。
(2)运用基本不等式求最值时,等号成立的条件的判断和应用。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示生活中的一些实际问题,如矩形面积与周长的关系,引出本节课的主题——基本不等式。
例如:有一个矩形,长为 x,宽为 y,周长为 L,面积为 S。
已知 L = 2(x + y),S = xy,如何找到 x 和 y 的关系,使得面积最大?2、探索新知(1)给出基本不等式:对于任意的正实数 a、b,有\(\frac{a +b}{2} \geq \sqrt{ab}\),当且仅当 a = b 时,等号成立。
(2)证明基本不等式方法一:作差法\\begin{align}\frac{a + b}{2} \sqrt{ab} &=\frac{a + b 2\sqrt{ab}}{2}\\&=\frac{(\sqrt{a} \sqrt{b})^2}{2}\end{align}\因为\((\sqrt{a} \sqrt{b})^2 \geq 0\),所以\(\frac{(\sqrt{a} \sqrt{b})^2}{2} \geq 0\),即\(\frac{a + b}{2} \geq \sqrt{ab}\),当且仅当\(\sqrt{a} =\sqrt{b}\),即 a = b 时,等号成立。
《基本不等式》教学设计一、教材解读《基本不等式》在人教A 版高中数学必修第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。
本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。
同时本节课的内容也是之后基本不等式应用的必要基础。
是理论数学与应用数学结合的良好典范。
下面我们来分析一下本节教材。
(一)内容结构(1) 通过课题揭示重点。
从课题可以很清楚的知道我们将要学习的内容以及重点,所有内容都是围绕这个基本不等式展开。
(2) 实践出真知。
以一个实际问题来探究其中所蕴涵的相等或不等关系,充分体现了新课标所要求的培养学生创新精神及数学应用的意识。
通过探究,学生很容易得到结论:一般地,对于任意实数a ,b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。
(3) 代换与证明。
通过代换思想,得到基本不等式0,0)2a b a b +≥>>,接着用分析法及数形结合法来证明基本不等式,体现了一题多解及证明不等式的基本方法。
这部分内容简单,学生基本可独立完成,对于培养学生的自学能力有积极作用。
(4) 课本提示概念。
在正文旁边有一个框图,说明了算术平均数与几何平均数的概念,由此可以总结出一条定理:一列正数的算术平均数不小于它的几何平均数。
这部分虽非重点,但对于拓展对基本不等式的认识是非常重要的,在教学中有必要提示一下。
(5) 实例揭示应用价值。
通过两个实例,体现了基本不等式在求最值时的价值,更进一步体现了“当且仅当时,等号成立”这一条件的重要性。
学生可以从中体会到“积定和最小”及“和定积最大”这两条基本的解题思路。
这两个例题使数学与生活不再那么遥远。
对于培养学生的数学应用意识功不可没。
(6) 习题进一步巩固所学。
共有四道习题,第一道强调了“当且仅当a b =时,等号成立”这一重要条件,是基本不等式的直接应用,难度较小;后面三道是基本不等式在实际生活中的应用,强调了数学与生活有着密切联系这一基本数学观。
《基本不等式的证明》教学设计
【教材分析】
不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。
建立不等观念,处理不等关系与处理等量问题是同样重要的。
而基本不等式是本章重要的一个单元,它是证明不等式、求解某些函数的最大值及最小值的理论依据,在解决数学问题和实际问题中应用广泛。
基本不等式是高中数学的重要内容之一,在高考说明中等级要求为C级。
在不同的章节中都有应用,是培养学生逻辑推理能力和数学应用意识的好素材。
本教材特别强调基本不等式的代数与几何背景以及在求最值中的应用。
【学情分析】
学生对函数中求最值,在一元二次不等式中都已经学过接触过有不等式的问题,因此提到不等式最值问题学生也不会陌生。
在两个数的算术平均数和几何平均上,我们可以以两个数的等差中项和等比中项来引用这两个概念。
这样对两个数据形式上就不会陌生,在初步了解大小关系后在给出概念。
但由于学生的基础薄弱,可以预见在探索基本不等式时,寻找不等关系也有一定的困难。
【教学目标】
知识目标:1、知道算术平均数和几何平均数的概念并且能求出两个数的算术平
均数和几何平均数。
2、理解基本不等式的证明过程。
技能目标:1、掌握基本不等式的取等条件,并能用此方法求函数最大值。
2、通过对基本不等式证明的理解,体会三种证明方法,能准确用三种
证明中简单的方法证明其它不等式问题。
3、体会类比的数学思想方法,培养其观察分析问题的能力和总结概括
的能力
情感目标:通过不等式基本性质的探究过程,培养学生合作交流的思维品质,渗透不等式中的数学美,激发学生学习兴趣,陶冶学生的数学情操。
【教学重点】
1、如果a,b是正书,则为a、b的算术平均数;为a、b的几何平均,且有“两个正数的算术平均数不小于它们的几何平均数”。
即定理,
()(当且仅当时取)
2、上面公式中“当且仅当的含义是:当时取等号,即
;
仅当时取等号,即,综合起来就是的
充要条件。
【教学难点】
1、不等式求函数最值时的取等条件
2、对于公式的变形可求的最大值
【教学方法】
启发学生探究,多媒体辅助教学
【教具准备】
多媒体电脑课件
【教学过程】
一、设置问题情境:
(展示并介绍古代弦图)
同学们现在看到的是中国古代数学中著名的一副图,叫做弦图。
它是由我国三国时期的数学家赵爽设计的。
早在1300多年以前,这位数学家就巧妙的利用弦图中的面积关系证明了勾股定理,这是世界上最早证明勾股定理的方法之一。
弦图不仅造型美观,而且蕴藏着很多玄机。
(展示24届国际数学家大会会标)
大家现在看到的是20XX年在我们北京召开的第24届国际数学家大会的会标。
这个会标设计源于古代弦图。
它的色调明暗相间,使它看上去象一个风车,这不
但象征中国人民的热情好客,
同时也充分展现了中国古代数学对世界所做出的重大贡献。
今天咱们也来研究一下弦图。
问题1.请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)
形的角度 (利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积。
)
问题2. 数的角度若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?
学生讨论结果:。
问题3.大家看,这个图形里还真有点奥妙。
我们从图中找到了一个不等式。
这里a、b的取值有没有什么限制条件? 不等式中的等号什么时候成立呢?(师生共同探索)
咱们再看一看图形的变化,(教师演示)
(学生发现)a、b为正数,当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即。
探索结论:我们得到不
等式,当且仅当时等号成立。
二、数学建构
问题1:若设直角三角形的两直角边分别为,应怎样表示这种不等关系?如果把它变形,我们能得到什么?
这个不等式就是今天我们要研究的重点内容,我们把
它叫做基本不等式。
我们常把叫做正数的几何平均数,叫做正数的算术平均数。
基本不等式说明两个正数的算术平均数不小于其几
何平均数。
问题2:这个不等式怎么证明呢?请与同学讨论一下。
求证:基本不等式,()(当且仅当时取)
证法一:
作差
=变形
=判断符号
当且仅当,即时取取等条件
学生容易忽视取等“=”时的情况,出现这种情况可以让学生仔细从证明问题中注意“”号,进而提示学生没有完成。
该过程可以提高学生对问题的细心程度,可以培养学生对周围事物的观察力,善于发现问题的能力。
证法二:
要证
只要证
只要证
只要证
因为最后一个不等式成立,所以成立,当且仅当,即
时取
问题3:本证明方法有什么特点?平时有没有遇到过?
生:从结论出发,逐步反推已知。
在初中几何中遇到过。
有了第一种证明方法此时学生已经不会忽视取“=”条件。
证法2的方法我们称之为“分析”,其特点是从结论出发(出发点让学生总结),形式是“要证……,只要证……只要证……”(形式让学生自己总结),从本质上看,只是对问题做尝
试的探索的过程(即执果索因)。
当证题不知从何入手时,有时可以运用分析法而获得解决,特别对于条件简单而结论复杂的题目往往是行之有效的。
探究:对基本不等式再研究
在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。
过点C作垂直于AB的弦DE,连接AD、BD。
你能利用这个图形得出基本不等式
的几何解释吗?(教师演示,学生直观感觉)
易证Rt△ACD∽Rt△DCB,
那么CD2=CA·CB
即CD=.
这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.
因此:基本不等式几何意义是“半径不小于半弦”
这正象著名数学家华罗庚说的:数无形时少直观,形无数时难入微,数形结合千般好,数形分离万事非.可见,数与形真的是密不可分呀。
问题4:前面,我们刚刚学习了数列,和在数列中代表什么?
学生:等差中项·等比中项
基本不等式说明两个正数的等差中项不小于他们的等比中项。
三、要点训练
例1 设为正数,证明下列不等式成立:
(1)(2)
注意:
要说明不等式中等号成立的条件。
这两道例题在讲授时以提问学生为主,让学生自己说,老师在前面板书。
练习:课后练习2题
例2 已知函数,,求此函数的最小值。
注意:
要说明什么时候取得最小值。
这是证明基本不等式在函数上的第一个应用,要让学生能够结合基本不等式和函数综合解决最值的问题。
四、课堂练习:练习2题,4题
五、课堂小结:请大家想一想,这节课你有哪些收获?
1.知识:基本不等式
2.思想方法:数形结合,转化与化归数学思想
六、课后作业巩固升华
课本第100页,习题3.4A组1、2
七、板书设计
基本不等式的证明
基本不等式内容证法2 例
1 例2
证法1
八、教学反思
1、导入新课采用学生比较感兴趣的变换的几何图形为背景,并且,配以解说,使学生从方方面面感受弦图的玄妙,容易被学生接受,从而产生兴趣,迅速激发学习动机。
兴趣是驱使学生探究的良方,教学过程中,时刻应注意照顾学生的学习兴趣,推动学生动手动脑去探究。
2、在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。
每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。
使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。
但实施落实的可能还不到位,有待改进。
3、本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。
“数形结合”作为一种重要的数学思想方
法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。
4、本课的设计是想通过师生课上的探索、互动学习,达到理解掌握知识的目的。
在教师的引导和启发下,学生自己寻找、探求解决问题的途径是本节教学所采用的教学方式。
课上学生学习热情很高,师生的互动非常好,出现了很多讨论问题的高潮。
学生能够针对教师的问题进行充分的分析和讨论,而且通过讨论,学生对知识点的理解得到了深化,达到了掌握知识的目的。
九、对本节教学设计的说明
新课程的理念倡导学生积极主动地探索知识的发生、发展,但这必须是在教师的引领之下,否则学生很容易误入歧途。
教师应该尽力做好学生探究活动的引路人。
在设计这节课的教学时,课堂上采取让学生“自主、合作、探索”的教学方式,教师是学生学习的组织者、引导者和服务者,为了让学生的探究活动积极有效,主要设想以问题立意,始终围绕基本不等式的发现、发展这一中心问题并渗透数型结合、转化与化归思想。
在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,这正是新课程所倡导的数学教学理念。