(完整word版)七年级数学有理数(教师讲义带答案)
- 格式:doc
- 大小:1.30 MB
- 文档页数:21
第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( ) A a>0,b>0 B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。
(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。
(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。
2.如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).运动次数运动方向运动路程数轴上对应的数第1次____①_____3-3第2次左____②_____第3次____③_________④_____(1)完成表格;①________;②________;③________;④________.(2)已知第4次运动的路程为 .①此时数轴上对应的数是________;②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?________【答案】(1)左;;右; .(2)或;解:当时,或-0.5,不符合题意;当时,,,所以这4次运动的总路程是32.【解析】【解答】解:(1)动点从原点运动到点-3,所以是向左运动;再从点-3向左运动,故终点数字是;∵,∴,∴第三次点是向右运动,运动路程是,故答案为:左,,右, .( 2 )①向右运动时,;向左运动时,,故答案为或;【分析】(1)根据始点与终点的数字符号确定第一次运动方向;第一次终点数字与第二次运动路程的差即第二次终点数字;根据第三次终点数字与第二次终点数字的差的符号确定运动方向和运动路程.(2)①分向左或向右两种可能,根据确定第四次移动后最终在数轴上的对应数字;②根据第四次运动后的对应数字确定的值,再计算总路程.3.阅读下面的材料:如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B 点,然后向右移动6cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A、B、C三点的位置:(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,(2)5;1或-7(3)-3+x(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,∵点C的速度比点A的速度快,∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,∵点B向左移动,点A向右移动,∴点A在点B的右侧,∴AB=(-3+t)-(-4-3t)=1+4t,∴CA-AB=(5+4t)-(1+4t)=4.【解析】【解答】(2)CA=2-(-3)=2+3=5;当点D在点A右侧时,点D表示的数是:4+(-3)=1;当点D在点A左侧时,点D表示的数是:-3-4=-7;故答案为5;1或-7.( 3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D 在点A左侧时,两种情况;(3)向右移动x,在原数的基础上加“x”;(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A 的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.4.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.5.已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)【答案】(1)解:乙到达A处时所用的时间是(秒),此时甲移动了个单位,所以甲所在位置对应的数是(2)解:∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动秒后,甲所在位置对应的数是:,乙所在位置对应的数是(3)解:由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时,,,所以,运行()秒后,甲,乙间的距离是:个单位【解析】【分析】(1)根据有理数的减法算出AB的长度,再根据路程除以速度等于时间算出乙到达A处时所用的时间,接着利用速度乘以时间算出甲移动的距离,用甲移动的距离减去其离开原点的距离即可算出其即可得出答案;(2)根据移动的方向,用甲移动的距离减去其距离原点的距离即可得出移动秒后,甲所在位置对应的数;用乙距离原点的距离减去其移动的距离即可得出移动秒后,乙所在位置对应的数;(3)由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时甲已经移动到原点右边了,乙也移动到原点左边了,即,,根据两点间的距离公式即可算出它们之间的距离.6.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距离都等于7,点在点的右侧,(1)请在数轴上表示点,位置, ________, ________;(2)请用含的代数式表示 ________;(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.【答案】(1);6(2)(3)解:点在点的左侧,且,,.设点移动的时间为秒.当点在点的左侧时,,解得:,此时点对应的数为14,在点的右侧,不合题意,舍去;当点在点的右侧且在点的左侧时,,解得:.点移动的时间为秒.【解析】【解答】(1)解:(1)根据题意得:,,,,将其表示在数轴上,如图所示.故答案为:;62)解:根据题意得:.故答案为:【分析】(1)由,到所对应的点的距离都等于7,点在点的右侧,可得出关于,的一元一次方程,解之即可得出,的值;(2)由点,对应的数,利用两点间的距离公式可找出的值;(3)由点在点的左侧及的值可得出的值,设点移动的时间为秒,分点在点的左侧和点在点的右侧且在点的左侧两种情况考虑,由,找出关于的一元一次方程,解之即可得出结论.7.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.【答案】(1)解:,在数轴上与原点距离为3的点的对应数为-3和3,即的值为-3和3(2)解:,在数轴上与-2距离为4的点的对应数为-6和2,即的值为-6和2;(3)解:有最小值,最小值为3,理由是:∵理解为:在数轴上表示到3和6的距离之和,∴当在3与6之间的线段上(即)时:即的值有最小值,最小值为.【解析】【分析】(1)由阅读材料中的方法求出的值即可;(2)由阅读材料中的方法求出的值即可;(3)根据题意得出原式最小时的范围,并求出最小值即可.8.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.【答案】(1)解:∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5(2)解:①∵点A到原点的距离为3且a<0,∴a=﹣3,∵点B到点A,C的距离相等,∴c-b=b-a,∵c﹣b=b﹣a,a=﹣3,∴c=2b+3,答:b、c之间的数量关系为c=2b+3.②依题意,得x﹣c<0,x-a>0,∴|x﹣c|=c﹣x,|x-a|=x-a,∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,∵c=2b+3,∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,∴3b﹣3=0,∴b=1.答:b的值为1【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值.9.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;④解方程|x+1|+|x﹣2|=5.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.所以答案为:3或-2.【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.10.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。
初一数学上册重点知识学习参考第一章 有理数一、知识结构有理数: 按定义分 按符号分正整数 正整数 正有理数0 整数 有 正分数(含正有限小数负整数 理 0 和循环小数)有限小数 正分数 数 负整数分数 负有理数无限循环小数 负分数 负分数(含负有限小数和循环小数)注意:常见的不是有理数的数有π和有规律的但不循环的小数。
如:0.0100100010001000010000010000001……二、掌握要点1、了解有理数的概念(什么是有理数、有理数包含的范围有哪些、有理数之间的大小比较)。
(1)大于0的数叫做正数,如3、1.8、5%等。
(2)在正数前面加上负号“—”的数叫负数,即小于0的数,如-3、-2.5、-5%等。
(3)数0既不是正数,也不是负数。
0除了表示一个也没有以外,是正数和负数的分界,是基准。
(4)在同一个问题中,分别用正数与负数表示的量具有相反的意义。
强调:用正数、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是他们的意义相反,如向东与向西、收入与支出;二是他们都是数量,而且是同类的量。
(5)正整数、0、负整数统称整数。
整数可以看作分母为1的分数。
(6)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
(7)把一些数放在一起,就组成了一个数的集合,简称“数集”。
所有有理数组成的数集叫“有理数集”,所有整数组成的数集叫“整数集”,所有负数组成的数集叫“负数集”……数集一般用圆圈或大括号表示,因为集合中的数是无限的。
(8)有理数可以按不同的标准进行分类,标准不同,分类结果也不同。
问:有理数可分为正数和负数两大类,对吗?为什么?有理数可分为整数和分数两大类,对吗?为什么?2、有理数与数轴上的点一一对应(数轴的三要素、怎样看数轴、掌握应用数轴来进行去绝对值符号的简单运算)。
(1)通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、正方向、单位长度原点——在直线上任取一点表示数0,这个点叫原点。
完整)七年级数学有理数(教师讲义带答案)Chapter 1 nal Numbers___ DiagramKnowledge Point 1: Basic Concepts of nal Numbers___:___.nal numbers can be represented by points on a number line。
Knowing the correspondence een real numbers and points on a number line can help compare the sizes of nal numbers.___ numbers with the help of a number line and being able to find the opposite number of a real number are essential.With the help of a number line。
understanding the meaning of absolute value and being able to find the absolute value of a real number are important。
The knowledge of absolute value can be used to simplify problems.Summary of Knowledge Points:Positive numbers。
negative numbers。
nal numbersAs students' perspectives expand。
the natural numbers。
ns。
___。
some quantities with opposite meanings。
such as e of 300 yuan and expenditure of 200 yuan。
第二章有理数及其运算第07讲有理数课程标准1.掌握正数和负数的数学含义;2.掌握“0”的含义;3.掌握有理数的概念;4.掌握有理数的分类;5.能够正确理解“0”的含义;6.能够正确的判断有理数的分类.知识点01正数和负数正数:比大的数;负数:在正数前面加上的数,既不是正数,也不是负数.【答案】0;负号;0.知识点02相反意义的量(1)在同一个问题中,用“+”和表示具有相反意义的量;(2)若没有规定哪个量为正或负,习惯把“前进、上升、收入、零上温度”等记为,把“后退、下降、支出、零下温度”等记为;相反意义的量一是意义,二是要有数量.【答案】-;+;-;相反.知识点03有理数的分类(1)按照性质分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫负分数正分数分数负整数自然数正整数整数有理数0(2)按照符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0(3)小数分类:⎪⎩⎪⎨⎧⎩⎨⎧→→→数不可化为分数,是有理无限不循环小数可化为分数,是有理数无限循环小数无限小数可化为分数,是有理数有限小数小数和统称为非负数;和统称为非正数.【答案】正数;0;负数;0.例1在1、﹣2、﹣5.6、﹣0、34、71-、π中负数有()A .3个B .4个C .5个D .6个A .3个B .4个C .5个D .6个【分析】根据负数的定义,直接判断即可.【解答】解:在1、﹣2、﹣5.6、﹣0、43、−17、π中负数有﹣2、﹣5.6、−17共3个,故选:A .例2下列结论中正确的是()A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数【答案】选D.变1给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有()A .2个B .3个C .4个D .5个【答案】选B.变2下列说法中,正确的为()A .一个数不是正数就是负数B .0是最小的数C .正数都比0大D .﹣a 是负数【分析】根据正数和负数的定义判断即可.【解答】解:A 、0既不是正数也不是负数,故本选项不合题意;B 、负数比0小,故本选项不合题意;C 、正数都比0大,说法正确,故本选项符合题意;D 、当a ≤0时,﹣a 是非负数,故本选项不合题意;故选:C .变3以下各数:π-,0.6,-100,20122011,0,752-,368中,正数有_________________;负数有_________________,既不是正数也不是负数的是______.【答案】0.6,20122011,368;π-,-100,752-;0.例1仔细思考以下各对量:①胜二局与负三局;②气温为C ︒-3与气温升高C ︒30;③盈利5万元与亏损5万元;④增加10%与减少20%.其中具有相反意义的量有()A .1对B .2对C .3对D .4对【解答】(1)C ;[①③④具有相反意义];例2把向北移动记作“+”,向南移动记作“﹣”,下列说法正确的是()A .﹣5米表示向北移动了5米B .+5米表示向南移动了5米C .向北移动﹣5米表示向南移动5米D .向南移动5米,也可记作向南移动﹣5米【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:A 、﹣5米表示向南移动了5米,故本选项不合题意;B 、+5米表示向北移动了5米,故本选项不合题意;C 、向北移动﹣5米表示向南移动5米,故本选项符合题意;D 、向南移动5米,也可记作向北移动﹣5米,故本选项不合题意;故选:C .变1我国是最早使用负数的国家,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利20元记作“+20元”,那么亏损30元记作()A .-30元B .30元C .50元D .-50元【答案】A【分析】利用相反意义量的定义判定即可.【解答】解:如果盈利20元记作“+20元”,那么亏损30元记作”-30元“,故选:A .变22020年12月17日凌晨,嫦娥五号返回器携带月球样品安全着陆地球.月球表面白天温度约为零上180℃,可记作+180℃,则夜间温度约为零下150℃,可记作______℃.【答案】-150.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:月球表面白天温度约为零上180℃,可记作+180℃,则夜间温度约为零下150℃,可记作-150℃.故答案为:-150.变3如图所示的是某用户微信支付情况,100-表示的意思是()A.发出100元红包B.收入100元C.余额100元D.抢到100元红包【答案】A【解析】【分析】根据用正负数表示两种具有相反意义的量解答即可.【详解】解:如图某用户微信支付情况,−100表示的意思是发出100元红包故选:A.例1某品牌的大米包装袋上的质量标识为:“50±0.5kg”.质检人员随机抽测了四袋该品牌大米的质量,依次记录为:50.4kg,50.1kg,49.7kg,49.4kg,则所抽测的四袋大米中,符合该品牌大米包装袋上的质量标识要求的有()A.4袋B.3袋C.2袋D.1袋【答案】B【分析】先求出大米的合格重量的范围即可判断.【解答】解:质量标识为“50±0.5kg”表示50上下0.5即49.5到50.5之间为合格;分析选项可得49.4kg不在此范围内,不合格;其余3袋在此范围内,合格.故选:B.例2如图,是图纸上一个零件的标注,02.003.030±ϕ表示这个零件直径的标准尺寸是30mm,实际产品的直径最大可以是30.03mm,最小可以是()A.30mm B.30.03mm C.30.02mm D.29.98mm【答案】D【分析】根据标注可知,零件直径标准30mm,最大多0.03mm,最小少0.02mm,则最小为30-0.02=29.98mm.【解答】解:由零件标注02.003.030±ϕ可知,零件的直径范围最大30+0.03mm,最小30-0.02mm,∴30-0.02=29.98(mm);故选:D.变1足球是全球最具影响力的单项体育运动,它能增强人们的体质,培养团队意识和拼搏精神.足球的质量有严格标准,如果将超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,以下四个足球质量最接近标准的是()A.B.C.D.【答案】C.【分析】由已知和要求,只要求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.【解答】解:通过求4个数的绝对值得:|-1.2|=1.2,|+0.8|=0.8,|-0.5|=0.5,|+1.4|=1.4,0.5<0.8<1.2<1.4-0.5的绝对值最小.所以这个球是最接近标准的球.故选:C.变2某圆形零件的直径要求是50±0.2mm,下表是6个已生产出来的零件圆孔直径检测结果(以50mm 为标准则)则在这6个产品中合格的有()序号123456误差(mm)﹣0.3﹣0.50+0.1﹣0.05+0.12A.2个B.3个C.4个D.5个【分析】根据直径要求是50±0.2mm,产品若要合格,则|误差|≤0.2,据表格可知|0|<0.2;|+0.1|<0.2;|﹣0.05|<0.2;|+0.12|<0.2,所以3号、4号、5号、6号产品合格.【解答】解:根据直径要求是50±0.2mm,即49.8mm~50.2mm都合格,误差±0.2mm内也都合格,∴有4个,故选:C.例3纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京9月12日8时,纽约的时间是()A.9月11日5时B.9月11日19时C.9月12日19时D.9月12日21时【分析】根据题意,得纽约比北京时间要晚13个小时,也就是9月11日19时.【解答】解:纽约时间是:9月12日8时﹣13小时=9月11日19时.故选:B.例4下面的五个时钟显示了同一时刻国外四个城市时间和北京时间,若下表给出的是国外四个城市与北京的时差,则这五个时钟对应的城市从左到右依次是()城市时差/h纽约﹣13悉尼+2伦敦﹣8罗马﹣7A.纽约、悉尼、伦敦、罗马、北京B.罗马、北京、悉尼、伦敦、纽约C.伦敦、纽约、北京、罗马、悉尼D.北京、罗马、伦敦、悉尼、纽约变3下表是国外几个城市与北京的时差:(“+”表示早于北京时间,“﹣”表示迟于北京时间)城市悉尼莫斯科伦敦温哥华时差(时)+2﹣5﹣8﹣16如果现在是北京时间2021年1月10日下午5:00.(1)现在悉尼时间是多少?伦敦时间是多少?(2)此时在北京的小明想给在温哥华出差的妈妈打电话,你认为合适吗?请说明理由.【分析】(1)根据有理数加减法的计算法则,直接计算可求解;(2)合不合适主要是看时间是不是正好在休息时间,由此判断即可.【解答】解:(1)∵北京时间2021年1月10日下午5:00,∴5+2=7,即悉尼时间为2021年1月10日下午7:00;17﹣8=9,即伦敦时间为2021年1月10日上午9:00;(2)17﹣16=1,此时温哥华时间为凌晨1:00,不适合打电话.考点四有理数的分类例1下列说法正确的是()A.正有理数和负有理数组成全体有理数B.零既不是正数,也不是负数C.0.5既不是整数,也不是分数,因而它不是有理数D.在有理数中,零的意义表示没有【答案】B【解析】【分析】根据有理数的意义和分类逐项进行判断即可.【详解】解:A.有理数分为正有理数、0、负有理数,故此选项不符合题意;B.0既不是正数,也不是负数,是最小的非负整数,故此选项符合题意;C.0.5就是十分之五,是分数,是有理数,故此选项不符合题意;D.0不仅可以表示没有,也可以表示实际的意义,如,在标准条件下,冰与水的混合物的冰与水的混合物的温度为0℃,故此项不符合题意.故选:B.例2下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数【答案】B【分析】应该正整数和负整数数统称为有理数,正数和分数包括部分无理数,因此,A选项不正确;0既不是正数也不是负数,但它是整数,因此,B选项正确、D选项不正确;有理数中没有最大的数,也没有最小的数,因此,C选项不正确.【解答】解:0是整数但不是正数正确.故选:B.变1下列说法不正确的是()A.有理数可分为正整数、正分数、0、负整数、负分数B.一个有理数不是分数就是整数C .一个有理数不是正数就是负数D .若一个数是整数,则这个数一定是有理数【答案】C【分析】根据有理数的定义逐一判断即可.【解答】解:A 、有理数可分为正整数、正分数、0、负整数、负分数,正确;B 、一个有理数不是分数就是整数,正确;C 、一个有理数不是正数就是负数,还有可能是0,错误;D 、若一个数是整数,则这个数一定是有理数,正确;故选:C .变2下列说法正确的是()A .整数、分数和负数统称为有理数B .有理数包括正数和负数C .正整数都是整数,整数都是正整数D .0是整数,也是自然数【答案】D【分析】根据有理数的定义逐一判断即可.【解答】解:A 、整数和分数统称有理数,错误;B 、一个有理数不是分数就是整数有理数包括正数、负数、0,错误;C 、整数还有负整数和0,错误;D 若一个数是整数,数一定是有理数则这个,正确;故选:D .变3下面说法中,不正确的是()A .有最小的正整数B .没有最小的正有理数C .没有最大的负整数D .没有最大的非负数【答案】C【分析】自然数是大于等于0的整数,0是最小的自然数A 正确;没有最小的正有理数,故B 正确;-1是最大的负整数,故C 不正确;无最大非负数,D 正确.【解答】解:A 、0是最小的正整数,故本选项正确;B 、没有最小的正有理数,故本选项正确;C 、-1是最大的负整数,故本选项错误;D 、写出自然数列,0,1,2,3,n ,易知无最大非负数,故本选项正确.故选:C .例3在数3 ,-0.4,120 .,3.14,0.1010010001…(每两个之间多一个0),120%,20212020,100,722这9个数中,有理数有______个.【答案】7例4把下列各数填入相应的大括号内上:10...010010001.07200926014.3618.03------,,,,,,,,,π.有理数集合:{…};整数集合:{…};非正数集合:{…}.【答案】有理数集合:{1,0,76200926014.3618.031----,,,,};整数集合:{102009260--,,,};非正数集合:{1...010010001.0200914.331------,,,,,π}.变4把下列各数填在相应的集合里:3,﹣1,﹣2,0.5,11,103-,﹣0.75,0,30%,π.负数集合:{…};整数集合:{…};正有理数集合:{…}.【答案】见解析【解析】【分析】根据有理数的定义分类即可.【详解】解:负数集合:{﹣1,﹣2,13-,﹣0.75…};整数集合:{3,﹣1,﹣2,0…};正有理数集合:{3,0.5,110,30%…}.故答案为:﹣1,﹣2,13-,﹣0.75;3,﹣1,﹣2,0;3,0.5,110,30%.变5把下列各数填入相应的集合内:321,-3.5,+7,0,136,0.3,15%,-16.分数集合:{…};整数集合:{…};非正数集合:{…}.【答案】261-3.50.315313,,,,%;+70-16,,;+70-16,,【解析】【分析】根据有理数的分类“有理数包括整数(正整数,0和负整数)和分数(正分数个负分数)”进行判断即可得.【详解】解:由题意得,分数的集合:261-3.50.315%313⎧⎫⎨⎬⎭⎩ ,,,;整数的集合:}{+70-16 ,,;非正数集合:}{-3.50-16 ,,.课后强化1.在﹣1,0,+2020,45-,﹣0.27中,负数有()A .1个B .2个C .3个D .4个【分析】根据负数小于0判断即可.【解答】解:在﹣1,0,+2020,−54,﹣0.27中,负数有﹣1,−54,﹣0.27共3个.故选:C .【点评】本题主要考查了正数和负数,熟记定义是解答本题的关键.2.在﹣2,﹣1.5,1,0,31这些数中,是正数的有()A .1个B .2个C .3个D .4个【分析】根据正数和负数的定义解答即可.正数大于0,负数小于0.【解答】解:在﹣2,﹣1.5,1,0,13这些数中,是正数的有1,13共2个.故选:B .3.下列说法正确的个数是()①加正号的数是正数,加负号的数是负数;②任意一个正数,前面加上“-”,就是一个负数;③0是最小的正数;④大于零的数是正数;⑤字母a 既是正数,又是负数.A .0B .1C .2D .3【答案】C 【解析】【分析】根据正数、负数的概念逐个判断即可.【详解】解:对于①:加正号的数不一定是正数,如+(-5)=-5是负数,加负号的数不一定是负数,如-(-5)=5是正数,故①错误;对于②:任意一个正数,前面加上“-”,就是一个负数,故②正确;对于③:0既不是正数,也不是负数,故③错误;对于④:大于0的数是正数,故④正确;对于⑤:如果a是正数,就必定不是负数,故⑤错误;所以正确的有:②、④,故选:C.4.通常,我们规定海平面的海拔高度为0m,高于海平面的为正.珠穆朗玛峰的海拔高度为_______m,吐鲁番盆地的海拔高度为_______m.【答案】+8844.43-155【解析】【分析】根据负数的意义,可得海平面以上记作“+”,则海平面以下记作“-”,据此解答即可.【详解】解:根据分析,可得珠穆朗玛峰的海拔高度为+8844.43m,吐鲁番盆地的海拔高度为-155m.故答案为:+8844.43、-155.5.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣8℃表示气温为零下8℃.故选:B.6.一批零件超过规定长度记为正数,短于规定长度记为负数,越接近规定长度质量越好.检查其中四个,结果如下:第一个为0.13mm,第二个为﹣0.12mm,第三个为﹣0.15mm,第四个为0.11mm,则质量最差的零件为()A.第一个B.第二个C.第三个D.第四个【分析】此题是理解误差的大小,无论正负,绝对值最小的零件质量最好,反之,绝对值最大的零件质量最差.【解答】解:∵|0.11|<|﹣0.12|<|0.13|<|﹣0.15|,∴质量最差的零件是第三个.故选:C.【点评】此题考查的知识点是正数负数和绝对值,明确绝对值最大的零件与规定长度偏差最大是解题的关键.7.綦江区永辉超市出售的三种品牌大米袋上,分别标有质量为(10±0.2)kg,(10±0.3)kg,(10±0.25)kg的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A.0.4kg B.0.5kg C.0.55kg D.0.6kg 【分析】根据正负数的意义,分别求出每种品牌的大米袋质量最多相差多少,再比较即可.【解答】解:根据题意可得:它们的质量相差最多的是标有(10±0.3)kg的;其质量最多相差(10+0.3)﹣(10﹣0.3)=0.6(kg).故选:D.8.下列说法错误的是()A.零既不是正数也不是负数B.-a一定是负数C.有理数不是整数就是分数D.正整数、零和负整数统称为整数【答案】B【分析】按照有理数的分类解答即可.【解答】解:A、零既不是正数也不是负数,说法正确,故本选项不合题意;B、-a不一定是负数,如-(-1)=1,故原说法错误,故本选项符合题意;C、有理数不是整数就是分数,说法正确,故本选项不合题意;D、正整数、零和负整数统称为整数,说法正确,故本选项不合题意.故选:B.9.在数32218,,0.275,2,0, 1.04,,8,100,473++----中,负分数有______________________,非负整数有__________________________.【答案】11.04,3--8,2,0+【解析】【分析】按照有理数的分类填写.【详解】解:负分数有1 1.04,3 --,非负整数有8,2,0 +,故答案为:11.04,3--;8,2,0+.10.在31-,722,0,-1,0.4,π,2,-3,-6这些数中,有理数有m 个,自然数有n 个,分数有k 个,则m -n -k 的值为()A .3B .2C .1D .4【答案】D 【解答】解:根据题意,有理数共有8个,故m=8,自然数有2个,故n=2,分数有2个,故k=2.所以m-n-k=8-2-2=4.故选D.11.把下列各数填入相应的大括号内(将各数用逗号分开):6,-3,2.4,43-,0,-3.14,92,+2,213-,-1.414,-17,32,2π-.正数:{…};非负整数:{…};负分数:{…}.【答案】正数:{6,2.4,92,+2,32};非负整数:{6,0,+2};负分数:{43-,-3.14,213-,-1.414}.。
有理数1. 掌握有理数有关分类、数轴、相反数、近似数、有效数字和科学计数法等有关概念 2. 熟练去括号法则,以及有理数的有关运算模块一 正负数与有理数的分类1. 对于正负数的理解不能简单理解为带“+”号的数就是正数,带“-”号的数就是负数。
2. 相反意义的两个量是相互的,也是相对的。
3. 掌握有理数的两种分类:按“定义”分类与按“性质符号”分类☞有理数的分类【例1】 下列说法:①0是整数;②负分数一定是负有理数;③一个数不是整数就是负数;④π-为有理数;⑤最大的负有理数是1-,正确的序号是【难度】2星【解析】考察有理数的分类 【答案】①②【巩固】下列说法:①存在最小的自然数;②存在最小的正有理数;③不存在最大的正有理数;④存在最大的负有理数;⑤不是正整数就不是整数,错误的序号是【难度】2星【解析】考察有理数的分类 【答案】②④⑤模块二 数轴、相反数、倒数1. 数形结合思想是一种重要的数学思想。
数轴就是数形结合的工具。
2. 数轴是条直线,可以向两方无限延伸。
3. 数轴的三要素:原点、正方向、单位长度、三者缺一不可。
4. 所有有理数都可以用数轴上点表示,反过来,不能说数轴上所有的点都表示有理数5. 相反数是成对出现的,不能单独存在。
相反数和为零。
☞数轴例题精讲重难点【例2】 如图所示,小明在写作业时,不慎将两滴墨水滴在数轴上,根据图中的数值,试定墨迹盖住的整数共有几个【难度】1星【解析】考察数轴的有关概念【答案】如图,盖住数中的整数有4-、3-、2-、2、3、4,共有6个【巩固】 数轴上表示整数的点称为整点,某条数轴的单位长度为1cm ,若在数轴上任意画出一条长2006cm 的线段,则线段盖住的整数点共有 个【难度】2星【解析】考察数轴的有关概念 【答案】2006或2007☞相反数与倒数【例3】 已知a 、b 互为相反数,c 、d 互为倒数,1x =±,求2a b x cdx ++-的值 【难度】3星【解析】考察相反数与倒数的有关概念 【答案】解:由相反数、倒数的定义可得 0a b +=,1cd =则当1x =时,原式=01110+-⨯= 当1x =-时,原式=20(1)1(1)2+--⨯-=【巩固】已知a 和b 互为相反数,m 和n 互为倒数,(2)c =-+,求22mna b c++的值 【难度】3星【解析】考察相反数与倒数有关概念 【答案】解:由相反数和倒数的定义可得 0a b +=,1mn =∵(2)c =-+ ∴原式112()022mn a b c =++=+=--【巩固】已知数轴上点A 和点B 分别表示互为相反数的两个数,a 和b ()a b <并且A 、B 两点间的距离是144,求a 、b 【难度】3星【解析】考察相反数有关概念【答案】解:∵a 、b 两数互为相反数 ∴0a b += ∴a b =-∵A 、B 两点间距离有144b a -= ∴1()44b b --=∴178b =,178a =-模块三 有理数的运算1. 在进行有理数加法运算时,优先确定符号,然后在计算绝对值,这样就不容易出错。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.3.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。
一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。
第1讲有理数第一部分知识梳理知识点一:正数、负数1、正数:像1、2.5、这样大于0的数叫做正数;2、负数:在正数前面加上“-”号,表示比0小的数叫做负数;3、0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①、判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;0小的数叫做负数”去识别。
②、正数和负数的应用:正数和负数通常表示具有相反意义的量。
③、所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④、常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;知识点二:有理数整数和分数统称为有理数。
有理数的分类如下:(1)按定义分类:(2)按性质符号分类:概念剖析:①、整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数;②、正有理数和0又称为非负有理数,负有理数和0又称为非正有理数③、整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;知识点三:数轴标有原点、正方向和单位长度的直线叫作数轴。
数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。
概念剖析:①、画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②、数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③、数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等; ④、有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a -的点在原点的左边,与原点的距离是a 个单位长度。
第一章有理数知识网络结构图知识点1:有理数的基本概念中考要求:有理数 理解有理数的意义会比较有理数的大小数轴 能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系会借助数轴比较有理数的大小相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题知识点总结:正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数. 正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号. 正数前面的“+”可以省略,注意3与3+表示是同一个正数. 用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -. “相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数. ()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.板块一、基本概念 例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0B.1C.2D.3 2、下面关于有理数的说法正确的是( ). A .有理数可分为正有理数和负有理数两大类.B. 正整数集合与负整数集合合在一起就构成整数集合C. 整数和分数统称为有理数D. 正数、负数和零的统称为有理数 板块二、数轴、相反数、倒数、绝对值3、a 和b 是满足ab ≠0的有理数,现有四个命题: ①224a b -+的相反数是224a b -+;②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有( )A. 1个B. 2个C. 3个D. 4个4、一个数的绝对值大于它本身,那么这个数是( )A 、正有理数B 、负有理数C 、零D 、不可能 5、数轴上离开原点2个单位长度的点表示的数是____________;6、有理数-3,0,20,-1.25,1.75,-∣-12∣,-(-5)中,正整数有________个, 非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。
8、-2.5的相反数是________,绝对值是________,倒数是________。
9、平方是它本身的数是 ;倒数是它本身的数是 ; 相反数是它本身的数是 ;立方是它本身的数是 。
绝对值小于4的所有整数的和是________;绝对值大于2且小于5的所有负整数的和是________。
10、在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为知识点2:比较大小比较大小的主要方法:① 代数法:正数大于非正数,零大于负数,对于两个负数,绝对值大的反而小. ② 数轴法:数轴右边的数比左边的数大.③ 作差法:0a b a b ->⇔>,0a b a b -=⇔=,0a b a b -<⇔<.④ 作商法:若0a >,0b >,1a a b b >⇔>,1a a b b =⇔=,1aa b b<⇔<.⑤ 取倒法:分子一样,通过比较分母从而判定两数的大小.板块一、数轴法【例1】 a 、b 为有理数,在数轴上如图所示,则( )A .111a b << B .111a b << C .111b a << D .111b a<< 【例2】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d+的大小关系【例3】 若有理数a b ,在数轴上的位置如图所示,则下列各式中错误的是( )A .2ab -<B .11b a >-C .12a b +<-D .1ba<-x【例4】 在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”;连接起来【例5】 实数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小板块二、代数法【例6】 比较大小:12- 23-【例7】 把四个数..2.371 2.37% 2.37---,, 和 2.37- 用“<”号连接起来【例8】 比较23-,58-,1523-,1017-,1219-的大小.【例9】 已知01x <<,则2x ,x ,1x的大小关系是什么?【例10】 若1a m <<,则21m m m,,的大小关系【例11】 如果10a -<<,请用“<”将a ,a -,2a ,2a -,1a ,1a-连接起来.【例12】 若20072008a =,20082009b =,试不用..将分数化小数的方法比较a ,b 的大小.知识点3:运算及运算法则有理数基本加、减混合运算 有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加. ②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律) 有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式. ②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零. ④若有可以凑整的数,即相加得整数时,可先结合相加. ⑤若有同分母的分数或易通分的分数,应先结合在一起. ⑥符号相同的数可以先结合在一起.有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b -=+-有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算. 有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.板块二、有理数基本乘法、除法有理数乘、除法Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba=(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc=(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac+=+(乘法分配律)有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b ab÷=⋅,(0b≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.例题讲解板块一、有理数的加减运算1、下列各组数中,数值相等的是()A 、-(-2)和+(-2); B、-2 2 和(-2)2;C、-32 和(-3)2 ;D、—2 3 和(-2)2、两数相加,其和小于每一个加数,那么().A、这两个数相加一定有一个为零.B、这两个加数一定都是负数.C、这两个加数的符号一定相同.D、这两个加数一正一负且负数的绝对值大3、计算:⑴21(4)(3)33-+-⑵21(6)(9)|3|7.49.2(4)55-+-+-+++-⑶17(14)(5)( 1.25)88-+++- ⑷111(8.5)3(6)11332-++-+⑸5317(9)15(3)(22.5)(15)124412-++-+-+-⑹434(18)(53)(53.6)(18)(100)555-+++-+++-⑺1132|1()|3553----- ⑻ 4.7( 3.3)( 5.6)( 2.1)--+----⑼1111(3)[(3)3](3)4444⎡⎤-------⎢⎥⎣⎦板块二、有理数的乘除运算1、 奇数个负数相乘,积的符号为 , 个负数相乘,积的符号为正.2、 计算下列各题:⑴()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭;⑵()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭⑶735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦⑷111(0.25)(5)( 3.5)()2244-⨯-+⨯-+-⨯⑸114()1()16845-⨯⨯-⨯ ⑹11171113()71113⨯⨯⨯++⑺11111(1)(1)(1)(1)(1)4916252500-⨯-⨯-⨯-⨯⨯-L3、计算 ⑴111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ⑵()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭⑶231(4)()324+÷⨯÷-; ⑷71()2(3)93-÷⨯+⑸11111()()234560-+-÷-; ⑹44192()77÷-知识点四、字母相关的运算1、若2,3==b a ,则=+b a ________。