2019年江苏省贾汪中学高考数学选择题专项训练(一模)
- 格式:doc
- 大小:549.52 KB
- 文档页数:14
2019年江苏省高考数学全真模拟试卷(1)含答案2019年江苏省高考数学全真模拟试卷(一)注意事项:1.本试卷共4页,包括填空题(第1题~第14题)和解答题(第15题~第20题)两部分。
本试卷满分为160分,考试时间为120分钟。
2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内。
试题的答案写在答题纸上对应题目的答案空格内。
考试结束后,交回答题纸。
一、填空题(本大题共14小题,每小题5分,计70分。
不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A = {2.3},B = {1.log2a},若AB = {3},则实数a的值为 ________。
2.已知复数z = 1 - i3,其中i为虚数单位,则z的模为________。
3.根据XXX所示的伪代码,可知输出的结果S为________。
4.一组数据2.x。
4.6.1的平均值是5,则此组数据的标准差是 ________。
5.有一个质地均匀的正四面体木块,4个面分别标有数字1.2.3.4.将此木块在水平桌面上抛两次,则两次看不到的数字都大于2的概率为 ________。
6.若抛物线x^2 = 4y的焦点到双曲线C:x^2/a^2 - y^2/b^2 = 1(a。
0,b。
0)的渐近线距离等于1/3,则双曲线C的离心率为 ________。
7.若实数a。
b满足a ≤ 1,b - a - 1 ≤ 0,则(a + 2b)/(2a + b)的最大值为 ________。
8.在三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABC的体积为V1,三棱锥DE-ABC的体积为V2,则V1/V2 = ________。
9.设等差数列{an}的公差为d(d ≠ 0),若a1 + a2 + a3 = 6,a2 + a3 + a4 = 8,则d的值为 ________。
10.已知tan(α + β) = 1,tan(α - β) = 2,其前n项和为Sn。
2019年高三第一次模拟考试数学含答案本试卷共4页,满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题纸指定位置上。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题纸上每题对应的答题区域内,答在试题卷上无效。
一、选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合,,若,则( )A. B. C. D. 2、已知,则( )A. B. C. D. 3、已知函数,则下列结论正确的是( ) A. B. C. D.4、设,则“”是“”的( )A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 5、若,,则( )A. B. C. D.6、等差数列中,则310122log (2222)aaaa⋅⋅⋅⋅=…( ) A. B. C. D.7、在不等式组00x y x y y a -≤⎧⎪+≥⎨⎪≤⎩确定的平面区域中,若的最大值为,则的值为( )A. B. C. D. 8、若,则( )A. B. C. D.9、小王从甲地到乙地往返的时速分别为,其全程的平均时速为,则( ) A. B. C. D.10、已知关于的方程的解集为,则中所有元素的和可能是( ) A. B. C. D.11、已知点是直线上的动点,点为圆上的动点,则的最小值为( ) A. B. C. D.12、已知定点,是圆上的任意一点,点关于点的对称点为,线段的中垂线与直线相交于点,则点的轨迹是( )A. 椭圆 B. 双曲线 C. 抛物线 D. 圆第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.13、已知满足,则 。
14、已知递增的等差数列满足,则 。
15、设是线段的中点,点在直线外,,,则 。
2019年高考数学一模试题(及答案)一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .4.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<05.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12 C .23 D .346.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .428.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}9.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .410.sin 47sin17cos30cos17-A .32-B .12-C .12D .3211.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是15.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C ________.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)三、解答题21.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.22.已知椭圆22221(0)x y a b a b +=>>的离心率为63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.23.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.4.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .5.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.6.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.7.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
2019年高考数学模拟试题(理科)注意事项:1. 本试卷分第I 卷(选择题)和第□卷(非选择题)两部分。
答卷前,考生务必将自 己的姓名、准考证号填写在答题卡上。
2. 回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3•回答第□卷时,将答案写在答题卡上。
写在本试卷上无效。
4•考试结束后,将本试卷和答题卡一并收回。
每小题 5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的 uur umr•选择题:本大题共 12个小题,1•已知集合A {x2x 3 0},B {2,3,4},则(C R A )A. {2,3} B . {2,3,4}C {2}D.2 .已知 i 是虚数单位,A.B . ,10C.丄10D.3 •执行如图所示的程序框图,若输入的点为 P (1,1),则输出的n 值为A. 3B . 4C. 5D.4 •如图,DE且F为BC的中点,贝U EA EFA. 10B . 12 C. 16D. 20x y 25 .若实数x, y 满足 y x 1,则z 2x 8y 的最大值是y 0A. 4B . 8 C. 16 D. 326. 一个棱锥的三视图如右图,则该棱锥的表面积为上的数字之和大于 5的概率是 11 3 4 A .B.- C .-D .1051058 .设S n 是数列{ a n }的前n 项和, 且a 11 , a n 1S n S n 1,则 a 5 =人1 B .1 1 1 A .C.-D.30302029•函数f x In x 的大致图像为10.底面为矩形的四棱锥 P ABCD 的体积为8,若PA 平面ABCD ,且PA 3,则四棱锥P ABCD 的外接球体积最小值是A . 16 5 8.2 B. 32 5 32 C. 16 2 32 D . 16.5 16.27. 5张卡片上分别写有 0,1,2,3,4,若从这 5张卡片中随机取出张,则取出的2张卡片 33A. 25 B • 125 C . I?5 D . 256 611.已知抛物线y22px p 0 ,过焦点且倾斜角为30°的直线交抛物线于A,B两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为A. x 1B• x C . x D.x ^32312.已知函数f(x)x2 ln x ( x),函数g(x)1x —,直线y t分别与两函数交于22A, B两点,则AB的最小值为A. 1B. 1C.3D.222二•填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据为,X2,…,X20!8的方差是5,若y 3X i 1( i 1.2.....2018 ),则%H,…,y2018的方差是 _________14. 已知函数f(x) sin x J3cos x ( 0),若3,则方程f(x) 1在(0,)的实数根个数是______15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1, 2, ... , 9填入3 3的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1, 2, 3, …,n2填入n n的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方.记n阶幻方的一条对角线上数的和为N n(女口:在3阶幻方中,N3 15),则N5= _______16. 已知ABC中,内角A B, C所对的边分别为a , b , c,且c 1 , C n.3若si nC sin (A B) sin2B,贝y ABC 的面积为______________三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分.17. (本小题满分12分)设数列{a n}是公差为d的等差数列.(I )推导数列{a n}的通项公式;(n)设d 0,证明数列{a n 1}不是等比数列.18. (本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0, 5) , [5 , 10) , [10, 15) , [15 , 20) , [20, 25],得到如图所示的频率分布直方图.(I)写出女生组频率分布直方图中a的值;(n )在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X表示随机抽取的2人中男生的人数,求X的分布列和数学期望.19. (本小题满分12分)在直三棱柱ABC A1B1C1中,AB AC AA 2 , BA CA。
江苏省徐州市贾汪实验中学高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图,在△OAB中,P为线段AB上的一点, =x+y,且=3,则()A.x=,y=B.x=,y=C.x=,y=D.x=,y=参考答案:D【考点】平面向量的基本定理及其意义.【分析】由=3,利用向量三角形法则可得,化为,又=x+y,利用平面向量基本定理即可得出.【解答】解:∵ =3,∴,化为,又=x+y,∴,y=.故选:D.2. 已知函数,在[-3,3]的大致图象如图所示,则可取()A. B. π C. 2π D. 4π参考答案:B分析:从图像可以看出为偶函数,结合形式可判断出为偶函数,故得的值,最后通过得到的值.详解:为上的偶函数,而为上的偶函数,故为上的偶函数,所以.因,故,.因,故,所以,.因,故,所以.综上,,故选B .点睛:本题为图像题,考察我们从图形中扑捉信息的能力,一般地,我们需要从图形得到函数的奇偶性、单调性、极值点和函数在特殊点的函数值,然后利用所得性质求解参数的大小或取值范围.3. 直线与曲线有且仅有1个公共点,则b的取值范围是()A.B.或C.D.或参考答案:试题分析:曲线化简为 ,所以曲线表示单位圆在轴及其右侧的半圆.其上顶点为,下顶点,直线与直线平行,表示直线的纵截距,将直线上下平移,可知当直线①时,与曲线有一个交点;②与曲线在第四象限相切时,只有一个交点,即,此时;③经过时,即其纵截距时,与曲线有两个交点,所以与曲线有两个交点.考点:直线与半圆的位置关系;纵截距的应用.4. 当时,在同一平面直角坐标系中,函数与的图象可能为()A. B.C. D.参考答案:C当时,单调递增,单调递减故选.5. 计算下列几个式子,①,②2(sin35︒cos25︒+sin55︒cos65︒), ③, ④ ,结果为的是A.①②B. ①③C. ①②③D.①②③④参考答案:C6. 设,,,则有()A、 B、 C、 D、参考答案:C略7. 如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于()A.B.C.D.参考答案:C8. 把集合用列举法表示为( )A. {1,3}B.C.D.参考答案:A9. 不在3x+2y<6表示的平面区域内的一个点是()A.(0,0)B.(1,1)C.(0,2)D.(2,0)参考答案:D10. 已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于()A.2x+1 B.2x﹣1 C.2x﹣3 D.2x+7参考答案:B【考点】函数解析式的求解及常用方法.【专题】计算题.【分析】先根据f(x)的解析式求出g(x+2)的解析式,再用x代替g(x+2)中的x+2,即可得到g (x)的解析式.【解答】解:∵f(x)=2x+3,g(x+2)=f(x),∴g(x+2)=2x+3=2(x+2)﹣1,∴g(x)=2x+3=2x﹣1故选B【点评】本题主要考查了由f(x)与一次函数的复合函数的解析式求f(x)的解析式,关键是在g (x+2)中凑出x+2,再用x代替x+2即可.二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,若,则______.参考答案:【分析】根据奇偶函数的定义可判断的奇偶性,利用,从而可求得的值【详解】因为的定义域为,所以,所以为奇函数,所以,故答案为. 【点睛】本题考查了求函数的值以及函数奇偶性的性质,重点考查学生的分析问题与转化问题能力,属于基础题.12. 设为不等式组所表示的平面区域,为不等式组所表示的平面区域,其中,在内随机取一点,记点在内的概率为.(1)若,则__________.(2)的最大值是__________.参考答案:;解:由题意可得,当时,如图,,如图,当取得最大值时,最大,最大值为.13. 已知二次函数f(x)满足,则 f(x)的解析式为______________.参考答案:略14. 正方体-中,与平面所成角的余弦值为 .参考答案:15. (3分)向量=(n ,1)与=(9,n )共线,则n= .参考答案:±3考点: 平面向量共线(平行)的坐标表示.专题: 平面向量及应用.分析: 由题意可得存在实数λ使=λ,即,解方程组可得.解答: ∵向量=(n ,1)与=(9,n )共线, ∴存在实数λ使=λ,即(n ,1)=λ(9,n ),∴,解得n=±3故答案为:±3点评: 本题考查平面向量的共线,属基础题.16. 不等式的解集是 ▲参考答案:17. 若函数为奇函数,则实数的值为 ▲ .参考答案:1三、 解答题:本大题共5小题,共72分。
贾汪区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>02. 在ABC ∆中,b =3c =,30B =,则等于( )AB. CD .2 3. 矩形ABCD 中,AD=mAB ,E 为BC的中点,若,则m=( )A.B.C .2D .34. 设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <35. 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A .11B .11.5C .12D .12.56. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. B. C. D.7.给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即{x}=m在此基础上给出下列关于函数f (x )=|x ﹣{x}|的四个命题:①;②f (3.4)=﹣0.4;③;④y=f (x )的定义域为R,值域是;则其中真命题的序号是( ) A .①② B .①③C .②④D .③④班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离 B .相交 C .内切 D .外切9. 复数=( )A .B .C .D .10.数列1,,,,,,,,,,…的前100项的和等于( )A .B .C .D .11.已知抛物线C :28y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=12.若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()32y f x x =-+的零点个数为( )A .1B .2C .3D .4二、填空题13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .14.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .15.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)16.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面其中正确命题的序号是.17.已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程.18.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)三、解答题19.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]20.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.21.已知函数.(Ⅰ)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;(Ⅱ)求函数f(x)在区间[1,e]上的最小值.22.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
2019年数学高考一模试卷(带答案)一、选择题1.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1C .2D .32.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③3.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .354.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144+AB AC D .1344+AB AC 5.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1006.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .107.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( ) A .2 B .23C .28D .248.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .9.已知a 为函数f (x )=x 3–12x 的极小值点,则a= A .–4B .–2C .4D .210.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定11.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .12.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______. 15.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.16.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 17.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C 是锐角,且27a =,1cos 3A =,则ABC △的面积为______. 20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 22.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积.23.已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =25. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ=,求12λλ+的值.24.已知0,0a b >>.(1)211a b≥+ ; (2)若a b >,且2ab =,求证:224a b a b+≥-.25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π4⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值. 26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3.C解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭ 则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.4.A解析:A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果. 详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-,故选A. 点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.6.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.7.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=,利用cos ,a b a b a b ⋅<>=求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=,解得:12a b ⋅=cos ,422a b a b a b⋅∴<>===本题正确选项:D 【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.8.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.9.D解析:D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.10.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.D解析:D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.12.C解析:C 【解析】 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。
江苏省徐州市贾汪区英才中学2019-2020学年高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 阅读如图的程序框图,运行相应的程序,输出S的值为( )A.15 B.105 C.245 D.945参考答案:B考点:程序框图.专题:算法和程序框图.分析:算法的功能是求S=1×3×5×…×(2i+1)的值,根据条件确定跳出循环的i值,计算输出S的值.解答:解:由程序框图知:算法的功能是求S=1×3×5×…×(2i+1)的值,∵跳出循环的i值为4,∴输出S=1×3×5×7=105.故选:B.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.2. 复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:D3. 若点(x,y)满足线性条件,则的最大值为A. 2B. 3C. 4D. 5参考答案:D由可行域可知在点处取得最大值.故选D.4. 设的最小正周期为,且对任意实数都有,则(A)在上单调递减(B)在上单调递减(C) 在上单调递增(D)在上单调递增参考答案:B5. 某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多参考答案:D【分析】结合两图对每一个选项逐一分析得解.【详解】对于选项A, 互联网行业从业人员中90后占56%,占一半以上,所以该选项正确;对于选项B, 互联网行业中90后从事技术岗位的人数占总人数的,超过总人数的20%,所以该选项正确;对于选项C, 互联网行业中从事运营岗位的人数90后占总人数的,比80前多,所以该选项正确.对于选项D, 互联网行业中从事运营岗位的人数90后占总人数的,80后占总人数的41%,所以互联网行业中从事运营岗位的人数90后不一定比80后多.所以该选项不一定正确.故选:D【点睛】本题主要考查饼状图和条形图,意在考查学生对这些知识的理解掌握水平和分析6. 已知函数,函数F(x)=f(x)﹣b有四个不同的零点x1,x2,x3,x4,且满足:x1<x2<x3<x4,则的取值范围是()A. [,+∞)B. (3,]C. [3,+∞)D.参考答案:D【分析】函数有4个不同的零点x1,x2,x3,x4,转化为有4个交点,结合函数的图象得x1+x2=﹣4,x3x4=1,利用换元法求出新函数的值域即可.【详解】函数图象如图所示,函数F(x)=f(x)﹣b有四个不同的零点x1,x2,x3,x4,且满足:x1<x2<x3<x4,转化为有4个不同的交点,由图象,结合已知条件得x1+x2=﹣4,x3x4=1,0<b≤1,解不等式0<﹣log3x≤1得:≤x3<1,,令t=x32,则≤t<1,令g(t)=2t+,则g(t)在[,]上单调递减,[,1)上是增函数.g()=,g()=,,∴g()≤g(t)≤g(),即≤2t+≤.【点睛】本题考查了函数零点与函数图象的关系,对数的运算,函数单调性的判断与应用,属于中档题.7. 不等式(x-2y+1)(x+y-3)≤0在坐标平面内表示的区域(用阴影部分表示)应是()参考答案:C8. 复数(***).A. B. C. D.参考答案:C9. 某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图所示的柱状图:则下列结论正确的是()A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加参考答案:D【分析】设2015年该校参加高考的人数为S,则2018年该校参加高考的人数为.观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案.【详解】设2015年该校参加高考的人数为,则2018年该校参加高考的人数为.对于选项A.2015年一本达线人数为.2018年一本达线人数为,可见一本达线人数增加了,故选项A错误;对于选项B,2015年二本达线人数为,2018年二本达线人数为,显然2018年二本达线人数不是增加了0.5倍,故选项B错误;对于选项C,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C错误;对于选项D,2015年不上线人数为.2018年不上线人数为.不达线人数有所增加.故选D.【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.10. 设直线的方程为,则直线的倾斜角的取值范围()A.[0,π) B. C. D.∪参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 某同学用球形模具自制棒棒糖.现熬制的糖浆恰好装满一圆柱形容器(底面半径为,高为),共做了20颗完全相同的棒棒糖,则每个棒棒糖的表面积为(损耗忽略不计).参考答案:【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/简单几何体的研究/球.【试题分析】圆柱形容器的体积为,设棒棒糖的半径为,所以每个棒棒糖的体积为,所以,则,故答案为.12. 等差数列{a n}的前n项和为S n,若a1+a9+a11=30,则S13= .参考答案:130【考点】等差数列的前n项和.【专题】转化思想;整体思想;等差数列与等比数列.【分析】由题意和等差数列的性质可得a7,再由等差数列的性质和求和公式可得S13=13a7,代值计算可得.【解答】解:由等差数列的性质可得a1+a9+a11=a1+a11+a9=a5+a7+a9=3a7=30,解得a7=10,∴S13===13a7=130,故答案为:130.【点评】本题考查等差数列的求和公式和性质,求出数列a7是解决问题的关键,属基础题.13. 已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是.参考答案:4【考点】基本不等式在最值问题中的应用;对数的运算性质.【分析】由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.【解答】解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,又由lg2x+lg8y=lg2,则x+3y=1,进而由基本不等式的性质可得,=(x+3y)()=2+≥2+2=4,当且仅当x=3y时取等号,故答案为:4.14. 设x,y满足约束条件:则的最小值__________.参考答案:115. 数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则++…+= .参考答案:【考点】数列的求和;数列递推式.【分析】由a n+1﹣a n=a1+n,即a n+1﹣a n=1+n,采用累加法求得a n=(n∈N*),则==2(﹣),采用裂项法即可求得++…+的值.【解答】解:a n+1﹣a n=a1+n,即a n+1﹣a n=1+n,∴a2﹣a1=2,a3﹣a2=3,…,a n﹣a n﹣1=n(n≥2),上述n﹣1个式子相加得a n﹣a1=2+3+…+n,∴a n=1+2+3+…+n=,当n=1时,a1=1满足上式,∴a n=(n∈N*),因此==2(﹣),∴++…+==2(1﹣+﹣+…+﹣)=2(1﹣)=故答案为:.16. (5分)定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得=M,则称函数f(x)在I上的“均值”为M,已知f (x)=log2x,x∈,则函数f(x)=log2x在上的“均值”为.参考答案:1007【考点】:进行简单的合情推理;函数的值.【专题】:计算题;函数的性质及应用.【分析】: f(x)=log2x,x∈,是单调增函数,利用定义,即可求出函数f(x)=log2x 在上的“均值”解:f(x)=log2x,x∈,是单调增函数,∴函数f(x)=log2x在上的“均值”为M=(log21+log222014)=1007,故答案为:1007.【点评】:此题主要应用新定义的方式考查平均值不等式在函数中的应用.对于新定义的问题,需要认真分析定义内容,切记不可偏离题目.17. 某所学校计划招聘男教师x名,女教师y名,x和y须满足约束条件则该校招聘的教师人数最多是名.参考答案:7【考点】7C:简单线性规划.【分析】由题意由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件,又不等式组画出可行域,又要求该校招聘的教师人数最多令z=x+y,则题意求解在可行域内使得z取得最大.【解答】解:由于某所学校计划招聘男教师x名,女教师y名,且x和y须满足约束条件,画出可行域为:对于需要求该校招聘的教师人数最多,令z=x+y?y=﹣x+z 则题意转化为,在可行域内任意去x,y且为整数使得目标函数代表的斜率为定值﹣1,截距最大时的直线为过?(4,3)时使得目标函数取得最大值为:z=7.故答案为:7.三、解答题:本大题共5小题,共72分。
贾汪区第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .钱B .钱C .钱D .钱2. 为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位3. 设a ,b ,c ,∈R +,则“abc=1”是“”的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件4. 已知向量=(2,1),=10,|+|=,则||=( )A .B .C .5D .255. 把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x6. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形7. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)8. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( )A .[2,)+∞B .[]2,4C .(,2]-∞D .[]0,2 9. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <010.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .11.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法 12.命题“∀x ∈R ,2x 2+1>0”的否定是( )A .∀x ∈R ,2x 2+1≤0B .C .D .二、填空题13.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .14.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2.其中,所有正确结论的序号是 .15.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 16.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 17.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 18.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.三、解答题19.如图所示,在边长为的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.20.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足: ①f (x )在[m ,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.21.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?22.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.23.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.24.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.贾汪区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.2.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.3.【答案】A【解析】解:因为abc=1,所以,则==≤a+b+c.当a=3,b=2,c=1时,显然成立,但是abc=6≠1,所以设a,b,c,∈R+,则“abc=1”是“”的充分条件但不是必要条件.故选A.4.【答案】C【解析】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.5.【答案】D【解析】解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x加与减,上下平移,y的另一侧加与减.6.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.7.【答案】C【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,∵a n=﹣n+p,∴{a n}是递减数列,∵b n=2n﹣5,∴{b n}是递增数列,∵c8>c n(n≠8),∴c8是c n的最大者,则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,当n=7时,27﹣5<﹣7+p,∴p>11,n=9,10,11,…时,2n﹣5>﹣n+p总成立,当n=9时,29﹣5>﹣9+p,成立,∴p<25,而c8=a8或c8=b8,若a8≤b8,即23≥p﹣8,∴p≤16,则c8=a8=p﹣8,∴p﹣8>b7=27﹣5,∴p>12,故12<p≤16,若a8>b8,即p﹣8>28﹣5,∴p>16,∴c8=b8=23,那么c8>c9=a9,即8>p﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.8.【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.考点:二次函数图象与性质.9.【答案】B【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a>1,a0﹣b﹣1<0,即a>1,b>0,故选:B10.【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.11.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.12.【答案】C【解析】解:∵命题∀x∈R,2x2+1>0是全称命题,∴根据全称命题的否定是特称命题得命题的否定是:“”,.故选:C.【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.二、填空题13.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.14.【答案】 ②③④ .【解析】解:由题意设动点坐标为(x ,y ),则利用题意及点到直线间的距离公式的得:|x+1||y ﹣1|=k 2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x 被﹣2﹣x 代换,y 被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|≥|x+1|,|PB|≥|y ﹣1| ∴|PA|+|PB|≥2=2k ,③正确;对于④,由题意知点P 在曲线C 上,根据对称性,则四边形P 0P 1P 2P 3的面积=2|x+1|×2|y ﹣1|=4|x+1||y ﹣1|=4k 2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.15.【答案】6π,18+ 【解析】16.【答案】8217.【答案】3【解析】18.【答案】D【解析】三、解答题19.【答案】【解析】解:设圆锥的母线长为l,底面半径为r,高为h,由已知条件,解得,,,∴S=πrl+πr2=10π,∴20.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值21.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.22.【答案】【解析】解:(1)f(x)=•=2cos2x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,令﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤+kπ,函数y=f(x)的单调递增区间是[﹣+kπ,+kπ],(Ⅱ)∵f(A)=2∴2sin(2A+)+1=2,即sin(2A+)=….又∵0<A<π,∴A=.…∵a=,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7 ①…∵sinB=2sinC∴b=2c ②…由①②得c2=.…∴S△ABC=.…23.【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义【试题解析】(Ⅰ)函数定义域为,又,所求切线方程为,即(Ⅱ)函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根等价于在上恰有两个不同的实根,令则当时,,在递减;当时,,在递增.故,又.,,即24.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.。
2019年江苏省贾汪中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第1 题:来源:江西省南昌市第二中学2016-2017学年高一数学上学期期末考试试题试卷及答案已知函数,若存在实数满足,且,则的取值范围()A.(20,32) B.(9,21) C.(8,24)D.(15,25)【答案】B第 2 题:来源:广东省第二师范学院番禺附属中学2018_2019学年高一数学下学期期中试题已知顶点在单位圆上的中,角、、的对边分别为、、,且,,则的面积为().A. B. C. D.【答案】B第 3 题:来源:甘肃省会宁县2016_2017学年高一数学下学期期中试题下列平面图形中与空间的平行六面体作为类比对象较合适的是()A.三角形 B.梯形 C.平行四边形 D.矩形【答案】C.第 4 题:来源:吉林省延边市2017_2018学年高一数学上学期期中试题试卷及答案函数的零点所在的区间为A. (﹣1,0)B. (0,1)C.(1,2)D. (2,3)【答案】C第 5 题:来源:甘肃省嘉峪关市酒钢三中2016-2017学年高一数学上学期期末考试试题试卷及答案长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是()A. B.C.D.150π【答案】B第 6 题:来源:辽宁省六校协作体2019届高三数学上学期初考试试题理已知集合,则()A. B. C. D.【答案】D第 7 题:来源:山东省曲阜市2016_2017学年高一数学下学期第一次月考试题试卷及答案用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是()A.7 B.5 C.4D.3【答案】B第 8 题:来源: 2018届高考文科总复习课时跟踪检测试卷(16)任意角和弧度制试卷及答案已知角α=2kπ- (k∈Z),若角θ与角α的终边相同,则y=的值为( ) A.1 B .-1C.3 D.-3【答案】B 由α=2kπ- (k∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.第 9 题:来源:湖南省永州市双牌县第二中学2018_2019学年高一数学上学期期中试题.根据表格中的数据,可以断定方程的一个根所在的区间是()-1 0 1 2 30.37 1 2.72 7.39 20.091 2 3 4 5A.(-1,0) B.(0,1) C.(1,2) D.(2,3)【答案】C第 10 题:来源:湖南省双峰县2018届高三数学上学期第一次月考试题试卷及答案理已知集合,,则()A. B. C. D.【答案】A第 11 题:来源:山西省应县第一中学2019届高三数学9月月考试题理已知R,函数的定义域为,,则下列结论正确的是()A.B.C.D.【答案】B第 12 题:来源:河南省安阳市2017_2018学年高二数学上学期第二次月考试题试卷及答案已知不等式的解集是,则的值为()A、B、C、 D 、【答案】A第 13 题:来源:宁夏银川一中2019届高三数学第一次模拟考试试题理设集合,,则A. B. C. D.【答案】C第 14 题:来源:福建省永春县2016_2017学年高一数学3月月考试题已知,为非零不共线向量,向量与共线,则k=()A. B. C.D.8【答案】C第 15 题:来源:重庆市六校联考高一(上)期末数学试卷(含答案解析)若区间[x1,x2]的长度定义为|x2﹣x1|,函数f(x)=(m∈R,m≠0)的定义域和值域都是[a,b],则区间[a,b]的最大长度为()A. B. C. D.3【答案】A【解答】解:函数f(x)=(m∈R,m≠0)的定义域是{x|x≠0},则[m,n]是其定义域的子集,∴[m,n]⊆(﹣∞,0)或(0,+∞).f(x)==﹣在区间[a,b]上时增函数,则有:,故a,b是方程f(x)=﹣=x的同号相异的实数根,即a,b是方程(mx)2﹣(m2+m)x+1=0同号相异的实数根.那么ab=,a+b=,只需要△>0,即(m2+m)2﹣4m2>0,解得:m>1或m<﹣3.那么:n﹣m==,故b﹣a的最大值为,第 16 题:来源:安徽省六安市舒城县2017_2018学年高二数学上学期第一次统考试卷理已知非零向量满足,若,是最大值和最小值则()A. B. C. D.【答案】 A第 17 题:来源:安徽省巢湖市2016_2017学年高二数学下学期第三次月考试题理设f(x)=ax+4 ,若f′(1)=3,则a=( )A.2 B.-2 C.3 D.-3【答案】C第 18 题:来源:广东省第二师范学院番禺附属中学2018_2019学年高二数学下学期期中试题理在平面直角坐标系中,圆经过点(0,1),(0,3),且与轴正半轴相切,若圆C上存在点,使得直线与直线()关于轴对称,则的最小值为A. B. C. D.【答案】D第 19 题:来源:黑龙江省青冈2018届高三第一次模拟考试数学试卷(理)含答案已知数列为等差数列,其前项和为,,则为A. B. C. D. 不能确定【答案】B第 20 题:来源: 2017届江西省高三数学4月联考试题试卷及答案理某几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.【答案】D第 21 题:来源:贵州省仁怀市2016-2017学年高一数学下学期开学考试试题试卷及答案幂函数y=xα(α是常数)的图象( ).A.一定经过点(0,0) B.一定经过点(-1,1)C.一定经过点(1,1) D.一定经过点(1,-1)【答案】C第 22 题:来源: 2016-2017学年内蒙古集宁一中高二数学上学期期末考试试题试卷及答案理由曲线与直线围成的曲边梯形的面积为()A. B. C. D.16 【答案】 B第 23 题:来源:山东省泰安第四中学2018_2019学年高二数学下学期2月月考试题函数的图象如图所示,则导函数的图象可能是()A. B. C. D.【答案】A第 24 题:来源:河北省鸡泽县2018届高三数学上学期第三次周测试题理试卷及答案设是等比数列{an}的前n项和,,则的值为A. B. C. D.【答案】C第 25 题:来源:河北省唐山一中2016_2017学年高一数学3月月考试题理试卷及答案数列中,已知对任意自然数,则A.B.C.D.【答案】A第 26 题:来源:宁夏银川市孔德2016_2017学年高二数学下学期第一次(3月)月考试题理设,若,则()A. B. C. D.【答案】B第 27 题:来源:北京师范大学附属中学2017_2018学年高二数学上学期期中试题理某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛,该校高一年级有1,2,3,4,四个班参加了比赛,其中有两个班获奖,比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”,已知这四人中有且只有两人的说法是正确的,则这两人是A. 乙,丁B. 甲,丙C. 甲,丁D. 乙,丙【答案】 B第 28 题:来源:广东省汕头市2017_2018学年高二数学上学期期中试题文试卷及答案直线的倾斜角是()A. B. C. D.【答案】A第 29 题:来源:广东省深圳市普通高中2017_2018学年高二数学下学期4月月考试题5201805241397下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③ B.②③④C.②④⑤ D.①③⑤【答案】D第 30 题:来源:高中数学第一章导数及其应用A章末测试试卷及答案新人教A版选修2-2 已知函数f(x)的导函数为f′(x)=2x2,x∈(-1,1).如果f(x)<f(1-x),则实数x的取值范围为( )【答案】D第 31 题:来源:辽宁省辽河油田第二高级中学2019届高三数学上学期期中试题理若双曲线:的一条渐近线被圆所截得的弦长为,则的离心率为()A.2 B. C.D.【答案】D第 32 题:来源: 2016_2017学年江西省宜春市奉新县高一数学下学期期末考试试题理下列函数最小值为4的是( )A.y=x+ B.y=+(0<x<π) C.y=3+4·3 D.y=+4【答案】C第 33 题:来源: 2019高中数学第二章统计单元测试(二)新人教A版必修3甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如表所示:甲的成绩环数7 8 9 10频数 5 5 5 5乙的成绩环数7 8 9 10频数 6 4 4 6丙的成绩环数7 8 9 10频数 4 6 6 4、、分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有()A. B.C. D.【答案】B【解析】∵,∴,∴.同理,,∴,故选B.第 34 题:来源:河北省石家庄市第四中学2018_2019学年高二数学上学期期中试题连续掷两次骰子,以先后得到的点数m,n为点的坐标,那么点P在圆内部的概率是A. B. C. D.【答案】C这是一个古典概型连续掷两次骰子,构成的点的坐标有个,而满足的有,,,,,,,共有8个,,故选C.第 35 题:来源:吉林省长春市2017年高考数学三模试卷(文科)含答案解析已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2} B.{x|﹣2<x<3} C.{x|﹣1<x<3} D.{x|﹣1<x<2}【答案】D.【考点】交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.第 36 题:来源: 2017届四川省成都外国语学校高三数学上学期期末考试试题试卷及答案文已知(1+i)•z=﹣i,那么复数对应的点位于复平面内的()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B第 37 题:来源:山西省榆社县2017_2018学年高二数学10月月考试题试卷及答案下列说法错误的是()A、平面α与平面β相交,它们只有有限个公共点B、经过一条直线和这条直线外的一点,有且只有一个平面C、经过两条相交直线,有且只有一个平面D、如果两个平面有三个不共线的公共点,那么这两个平面重合【答案】A第 38 题:来源: 2016_2017学年天津市静海县高二数学3月学业能力调研试题试卷及答案理函数的极大值为6,则的值为()A.1 B.0 C.5 D.6【答案】D第 39 题:来源:四川省成都市第七中学2019届高三数学一诊模拟考试试题理(含解析)执行下边的算法程序,若输出的结果为120,则横线处应填入()A. B. C. D.【答案】C【解析】【分析】由题意知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得结果.【详解】模拟执行算法程序,可得:S=1,k=1,不满足条件,S=1,k=2,不满足条件,S=2,k=3,不满足条件,S=6,k=4,不满足条件,S=24,k=5,不满足条件,S=120,k=6,此时i满足条件,退出循环,输出S的值为120;所以横线处应填写的条件为,故选C.【点睛】本题考查了程序框图的应用问题,属于直到型循环结构,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.第 40 题:来源:辽宁省大连经济技术开发区得胜高级中学2019届高三数学上学期第二次月考试题理已知函数f(x)=x2-2x+4在区间[0,m](m>0)上的最大值为4,最小值为3,则实数m的取值范围是( )A.[1,2] B.(0,1] C.(0,2] D.[1,+∞)【答案】 A第 41 题:来源: 2016_2017学年福建省莆田市高二数学下学期第一次月考试题(B卷)已知且,则不能等于 ( ).A.B.C.D.【答案】D第 42 题:来源:广东省湛江市普通高中2018届高考数学一轮复习模拟试题试卷及答案05实数对(x,y)满足不等式组则目标函数z=kx-y当且仅当x=3,y=1时取最大值,则k的取值范围是()A. B. C. D.【答案】C第 43 题:来源:河南省信阳高级中学、商丘一高2018_2019学年高二数学1月联考试题文(含解析)用数学归纳法证明时,到时,不等式左边应添加的项为()A. B.C. D.【答案】C【解析】【分析】先列出当和时左边的式子,然后相减即可.详解】解:当时,左边=当时,左边=所以不等式左边应添加的项为故选:C.【点睛】本题主要考查数学归纳法的基本步骤,数学归纳法的第二步从到时命题增加项可能不止一项.第 44 题:来源:青海省西宁市2017_2018学年高一数学9月月考试题试卷及答案下列各组函数的图象相同的是()(A)(B)(C)(D)【答案】D第 45 题:来源:山东省济南市2017_2018学年高二数学上学期开学考试试题试卷及答案在△ABC中,,则等于A. 1B. 2C.D. 3【答案】B第 46 题:来源:广西南宁市2017_2018学年高一数学上学期期中试题试卷及答案设,则a,b,c的大小关系是()A. B.C. D.【答案】D 解析:由为减函数知,由为增函数知,所以,又由为减函数,当时,,故,又为减函数,所以,故选D。