当前位置:文档之家› 中考数学试题及答案分类汇编:圆

中考数学试题及答案分类汇编:圆

中考数学试题及答案分类汇编:圆
中考数学试题及答案分类汇编:圆

一、选择题

1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是

(A) 相交 (B) 相离 (C) 内切 (D) 外切

【答案】D 。

【考点】圆与圆位置关系的判定。

【分析】两圆半径之和3+4=7,等于两圆圆心距12O O =7,根据圆与圆位置关系的判定可知两圆外切。

2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是

A 、相交

B 、外切

C 、外离

D 、内含

【答案】B 。

【考点】两圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。

∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。故选B 。

3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的

一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,

则∠CDP 等于

A 、30°

B 、60°

C 、45°

D 、50°

【答案】

【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。

【分析】连接OC ,

∵OC=OA,,PD 平分∠APC,

∴∠CPD=∠DPA,∠CAP=∠ACO。

∵PC 为⊙O 的切线,∴OC⊥PC。

∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。故选

C 。

4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC∥AB,BC=1,

AB=AC=AD=2.则BD 的长为

A. B. C. D.

【答案】B 。

【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。

【分析】以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF 。

根据直径所对圆周角是直角的性质,得∠FDB=90°;

根据圆的轴对称性和DC∥AB,得四边形FBCD 是等腰梯形。

∴DF=CB=1,BF=2+2=4=B 。

5.(内蒙古呼伦贝尔3分)⊙O 1的半径是cm 2,⊙2的半径是cm 5,圆心距是cm 4,则两圆的位置关系为

A. 相交

B. 外切

C.外离

D. 内切

【答案】A 。

【考点】两圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。由于5-2<4<5+2,所以两圆相交。故选A 。

6.(内蒙古呼伦贝尔3分)如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值为.

A. 5

B. 4

C. .3

D. 2

【答案】C 。

【考点】垂直线段的性质,弦径定理,勾股定理。

【分析】由直线外一点到一条直线的连线中垂直线段最短的性质,知线段OM 长的最小值为点O 到弦AB 的垂直线段。如图,过点O 作OM⊥AB 于M ,连接OA 。

根据弦径定理,得AM =BM =4,在Rt△AOM 中,由AM =4, OA =5,根据勾股定理得OM =3,即线段OM 长的最小值为3。故选C 。

7.(内蒙古呼伦贝尔3分)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上 ,∠BOD=110°,

中考数学分类汇编圆pdf含解析

2008~2019 北京中考数学分类(圆) 一.解答题(共12 小题) 1.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O 到点A,B,C 的距 离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G 于点D,连接AD,CD. (1)求证:AD=CD; (2)过点D 作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF 交图形G 于点M,连接CM.若AD=CM,求直线DE 与图形G 的公共点个数. 2.如图,AB 是⊙O 的直径,过⊙O 外一点P 作⊙O 的两条切线PC,PD,切点分别为C, D,连接OP,CD. (1)求证:OP⊥CD; (2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP 的长.

3.如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC⊥OA 于点C,过点B 作⊙O 的切线交CE 的延长线于点D. (1)求证:DB=DE; (2)若AB=12,BD=5,求⊙O 的半径. 4.如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交于点D,过点D 作 ⊙O 的切线,交BA 的延长线于点E. (1)求证:AC∥DE; (2)连接CD,若OA=AE=a,写出求四边形ACDE 面积的思路. 5.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM,弦CD∥BM,交AB 于点F,且 =,连接AC,AD,延长AD 交BM 于点E. (1)求证:△ACD 是等边三角形; (2)连接OE,若DE=2,求OE 的长. 6.如图,AB 是⊙O 的直径,C 是的中点,⊙O 的切线BD 交AC 的延长线于点D,E 是

历年中考真题分类汇编(数学)

第一篇基础知识梳理 第一章数与式 §1.1实数 A组2015年全国中考题组 一、选择题 1.(2015·浙江湖州,1,3分)-5的绝对值是() A.-5 B.5 C.-1 5 D. 1 5 解析∵|-5|=5,∴-5的绝对值是5,故选B. 答案 B 2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2 解析2-3=-1,故选A. 答案 A 3.(2015·浙江绍兴,1,4分)计算(-1)×3的结果是() A.-3 B.-2 C.2 D.3 解析(-1)×3=-3,故选A. 答案 A 4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2 解析∵4的算术平方根是2,故选B. 答案 B 5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为()

A.0.6×1013元B.60×1011元 C.6×1012元D.6×1013元 解析6万亿=60 000×100 000 000=6×104×108=6×1012,故选C.答案 C 6.(2015·江苏南京,5,2分)估计5-1 2介于() A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236, ∴5-1 2≈0.618,∴ 5-1 2介于0.6与0.7之间. 答案 C 7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3 C.26×23=29D.26÷23=22 解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C. 答案 C 8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9 解析∵81<90<100,∴9<90<100.∴k=9. 答案 D 9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 () A.点A B.点B C.点C D.点D

人教版_2021年中考数学试卷分类汇编解析:圆的有关性质

圆的有关性质 一、选择题 1. (2021兰州,7,4分)如图,在⊙O中,点C 是的中点,∠A=50o,则∠BOC=()。(A)40o(B)45o(C)50o(D)60o 【答案】A 【解析】在△OAB中,OA=OB,所以∠A=∠B=50o。根据垂径定理的推论,OC 平分弦AB 所对的弧,所以OC 垂直平分弦AB,即∠BOC=90o? ∠B=40o ,所以答案选A。 【考点】垂径定理及其推论 2. (2021兰州,10,4分)如图,四边形ABCD 内接于⊙O, 四边形ABCO 是平行四边形,则∠ADC= () (A)45o(B) 50o (C) 60o (D) 75o 【答案】:C 【解析】:连接OB,则∠OAB=∠OBA, ∠OCB=∠OBC ∵四边形ABCO 是平行四边形,则∠OAB=∠OBC ∴∠ABC=∠OAB+∠OBC=∠AOC ∴∠ABC=∠AOC=120o ∴∠OAB=∠OCB=60o 连接OD,则∠OAD=∠ODC,∠OCD=∠ODC

由四边形的内角和等于360o可知, ∠ADC=360o-∠OAB-∠ABC-∠OCB-∠OAD-∠OCD ∴∠ADC=60o 【考点】:圆内接四边形 3. (2021·四川自贡)如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是() A.15°B.25°C.30°D.75° 【考点】圆周角定理;三角形的外角性质. 【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数. 【解答】解:∵∠A=45°,∠AMD=75°, ∴∠C=∠AMD﹣∠A=75°﹣45°=30°, ∴∠B=∠C=30°, 故选C. 【点评】本题主要考查了三角形的外角定理,圆周角定理,熟记圆周角定理是解题的关键4. (2021·四川成都·3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为() A.πB.πC.πD.π 【考点】弧长的计算;圆周角定理. 【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案. 【解答】解:∵∠OCA=50°,OA=OC, ∴∠A=50°,

高考文科数学试题分类汇编1:集合

高考文科数学试题分类汇编1:集合 一、选择题 1 .(2013年高考安徽(文))已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ?= ( ) A .{}2,1-- B .{}2- C .{}1,0,1- D .{}0,1 【答案】A 2 .(2013年高考北京卷(文))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B = ( ) A .{}0 B .{}1,0- C .{}0,1 D .{}1,0,1- 【答案】B 3 .(2013年上海高考数学试题(文科))设常数a ∈R ,集合()(){} |10A x x x a =--≥,{}|1B x x a =≥-. 若A B =R ,则a 的取值范围为( ) A .(),2-∞ B .(],2-∞ C .()2,+∞ D .[)2,+∞ 【答案】B 4 .(2013年高考天津卷(文))已知集合A = {x ∈R| |x|≤2}, B= {x∈R | x≤1}, 则A B ?= ( ) A .(,2]-∞ B .[1,2] C .[-2,2] D .[-2,1] 【答案】D 5 .(2013年高考四川卷(文))设集合{1,2,3}A =,集合{2,2}B =-,则A B = ( ) A .? B .{2} C .{2,2}- D .{2,1,2,3}- 【答案】B 6 .(2013年高考山东卷(文))已知集合 B A 、均为全集}4,3,2,1{=U 的子集,且 (){4}U A B = e,{1,2}B =,则U A B = e ( ) A .{3} B .{4} C .{3,4} D .? 【答案】A 7 .(2013年高考辽宁卷(文))已知集合{}{}1,2,3,4,|2,A B x x A B ==<= 则 ( ) A .{}0 B .{}0,1 C .{}0,2 D .{}0,1,2 【答案】B 8 .(2013年高考课标Ⅱ卷(文))已知集合M={x|-3

2020年北京市初三一模分类汇编(全)之圆汇编

2020年北京市初三一模分类汇编(全) 圆专项 1、海淀 0,24.如图,在R綐△A??中,∠?A?矀密矀°,点D 为??边的中点,以AD 为直径作?分别与A?,A?交于点E??,过点E作E G T??于G. (1)求证:EG 是?0 的切线; (2)若A?矀?, ?0 的半径为5,求?E 的长 2、丰台 24.在Rt△ABC 中,∠A=90?,∠B=22.5?.点P 为线段BC 上一动点,当点P 运动到某一 位置时,它到点A,B 的距离都等于a,到点P 的距离等于a 的所有点组成的图形为W,点D 为线段BC 延长线上一点,且点D 到点A 的距离也等于a. (1)求直线DA 与图形W 的公共点的个数; (2)过点A 作AE⊥BD 交图形W 于点E,EP 的延长线交AB 于点F,当a=2 时,求线段EF 的长.

3、西城 4、朝阳 23.如图,在△ABC 中,AB=3,AC=4,BC=5.在同一平面内,△ABC 内部一点O 到AB, AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a 的值; (2)连接BO 并延长,交AC 于点M,过点M 作MN⊥BC 于点N. ①求证:∠BMA=∠BMN; ②求直线MN 与图形G 的公共点个数.

5、房山 24.如图,在Rt△ABC 中,∠C=90°,以AC 为直径作⊙O 交AB 于点D,线段BC 上 有一点P. (1)当点P 在什么位置时,直线DP 与⊙O 有且 只有一个公共点,补全图形并说明理由. (2)在(1)的条件下,当BP = 求⊙O 半径. 6、密云10 ,AD=3 时,2 23.如图,AB 为⊙O 的直径,点C、点D 为⊙O 上异于A、B 的两点,连接CD,过点C 作CE⊥DB,交DB 的延长线于点E,连接AC、 AD. (1)若∠ABD=2∠BDC,求证:CE 是⊙O 的切 线. (2)若⊙O 的半径为,tan ∠BDC =1 ,求AC 的长.2 5

中考数学试题分类汇编压轴题

2010年中考数学试题分类汇编 压轴题(二) 24. (金华卷)如图,把含有30°角的三角板ABO 置入平面直角坐标系中,A ,B 两点坐标分别为(3,0)和(0, .动点P 从A 点开始沿折线AO-OB-BA 运动,点P 在AO ,OB ,BA 上运动的速度分别为1 2 (长度单位/秒)﹒一直尺的上边缘l 从x 轴的位置开始以3 3 (长度单位/秒)的速度向上平行移动(即移动过程中保持l ∥x 轴),且分别与OB ,AB 交于E ,F 两点﹒设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动. 请解答下列问题: (1)过A ,B 两点的直线解析式是 ▲ ; (2)当t ﹦4时,点P 的坐标为 ▲ ;当t ﹦ ▲ ,点P 与点E 重合; (3)① 作点P 关于直线EF 的对称点P′. 在运动过程中,若形成的四边形PEP′F 为菱形,则t 的值是多少? ② 当t ﹦2时,是否存在着点Q ,使得△FEQ ∽△BEP ?若存 在, 求出点Q 的坐标;若不存在,请说明理由. 解:(1)333+-=x y ;………4分 (2)(0,3),29= t ; (4) (3)①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G 为垂足(如图1 ∵FG OE =,FP EP =,∠=EOP ∠=FGP 90° ∴△EOP ≌△FGP ,∴PG OP =﹒ 又∵t FG OE 33 = =,∠=A 60°,∴t FG AG 3160 tan 0 == 而t AP =,∴t OP -=3,t AG AP PG 3 2 =-= 由t t 3 2 3=-得 59=t ;…………………1分 当点P 在线段OB 上时,形成的是三角形,不存在菱形; 当点P 在线段BA 上时, 过P 作PH ⊥EF ,PM ⊥OB ,H 、M 分别为垂足(如图2) ∵t OE 33= ,∴t BE 33 33-=,∴3360tan 0 t BE EF -== ∴6 921t EF EH MP -= = =, 又∵)6(2-=t BP

中考数学试题分类汇编圆

中考数学试题分类汇编 圆 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

中考数学试题及答案分类汇编圆 一、选择题 1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75° 2.如图,在⊙O中, =,∠AOB=50°,则∠ADC的度数是() A.50°B.40°C.30°D.25° 3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是() A.55°B.60°C.65°D.70° 4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是() A.∠A=∠D B. =C.∠ACB=90°D.∠COB=3∠D 5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为() A.50°B.20°C.60°D.70° 6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于() A.32°B.38°C.52°D.66° 7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50° 8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为() A.15°B.18°C.20°D.28° 9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是() A.30°B.45°C.60°D.70° 10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=() A.80°B.90°C.100°D.无法确定 11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°

文科数学高考试题分类汇编(解三角形,三角函数)

2012——2014(全国卷,新课标1卷,新课标2卷)数学高考真题分类训练(二) 班级 姓名 一、三角函数 1、若函数()sin ([0,2])3 x f x ??π+=∈是偶函数,则=?( ) (A )2π (B )3 2π (C )23π (D )35π 2、已知α为第二象限角,3sin 5 α=,则sin 2α=( ) (A )2524- (B )2512- (C )2512 (D )2524 3、当函数sin 3cos (02)y x x x π=-≤<取得最大值时,x =___________. 4、已知ω>0,0<φ<π,直线x =π4和x =5π4 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( ) (A )π4 (B )π3 (C )π2 (D )3π4 5、设函数f (x )=(x +1)2+sin x x 2+1 的最大值为M ,最小值为m ,则M+m =____ 6、已知a 是第二象限角,5sin ,cos 13 a a ==则( ) (A )1213- (B )513- (C )513 (D )1213 7、若函数()()sin 0=y x ω?ωω=+>的部分图像如图,则 (A )5 (B )4 (C )3 (D )2 (B ) 8、函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( ) 9、设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ= 10、已知sin2a 3 2=,则cos2(a+4π)=( ) (A ) (B ) (C ) (D )

11、函数)()2cos(y π?π?<≤-+=,x 的图像向右平移 2π个单位后,与函数y=sin (2x+3 π)的图像重合,则?=___________. 12、若0tan >α,则( ) A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 13、在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+ =x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 14、函数x x x f cos sin 2)sin()(??-+=的最大值为_________. 二、解三角形 1、已知锐角ABC ?的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9 (C )8 (D )5 2、已知锐角ABC ?的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =, 6c =,则b =( ) (A )10 (B )9 (C )8 (D )5 2、△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC 的面积为 (A )2+2 (B ) (C )2 (D )-1 3、如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=?,C 点的仰角45CAB ∠=?以及75MAC ∠=?;从C 点测得60MCA ∠=?.已知山高100BC m =,则山高MN =________m .

备战中考数学二模试题分类汇编——圆的综合综合及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y. (1)如图2,当AB ⊥OM 时,求证:AM=AC ; (2)求y 关于x 的函数关系式,并写出定义域; (3)当△OAC 为等腰三角形时,求x 的值. 【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 142 2 =x . 【解析】 分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出 DM ME BD AE =,进而得出AE =1 22 x (),再判断出2OA OC DM OE OD OD ==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论. 详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM , ∴AC =AM . (2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB =OM ,OD ⊥BM ,∴BD =DM . ∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =1 22x (). ∵DE ∥AB ,∴ 2OA OC DM OE OD OD ==, ∴22 DM OA y OD OE x =∴=+,02x ≤<

2019年中考数学真题分类汇编—几何题汇总

2019年中考数学真题分类汇编—几何题汇总 一、选择题 1.【2019连云港市】如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是 A.18m2B.m2C.2D2 (第1 题)(第2题)(第3题) 2.【2019宿迁】一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于( ) A.105°B.100°C.75°D.60° 3.【2019宿迁】一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( ) A.20πB.15πC.12πD.9π 4、【2019常州】下图是某几何体的三视图,该几何体是()

A. 圆柱 B. 正方体 C. 圆锥 D.球 5、【2019常州】如图,在线段PA、PB、PC、PD中,长度最小的是( ) A、线段PA B、线段PB C、线段PC D、线段PD 6.【2019镇江】一个物体如图所示,它的俯视图是( ) A.B. C.D. 7、【2019淮安】下图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是

( ) 8.【2019泰州】如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、 G 在小正方形的顶点上,则△ABC 的重心是( ) A .点D B .点E C .点F D .点G 9、【2019扬州】 已知n 是正整数,若一个三角形的三边长分别是n+2,n+8,3n ,则满足 条件的n 的值有( )A.4个 B.5个 C.6个 D.7个 10.【2019连云港市】如图,在矩形ABCD 中,AD =AB .将矩形ABCD 对折,得 到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:① △CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC = ;④BP =AB ;⑤点 F 是△CMP 外接圆的圆心.其中正确的个数为A B C E D F G ····

中考数学试题分类汇编专题

2010年中考数学试题分类汇编专题——因式分解(填空题) 姓名: 1.(2010江苏苏州)分解因式a 2-a= . 2.(2010安徽芜湖)因式分解:9x 2-y 2-4y -4=__________. 3.(2010广东广州,15,3分)因式分解:3ab 2+a 2b =_______. 4.(2010江苏南通)分解因式:2ax ax -= . 5.(2010江苏盐城)因式分解:=-a a 422 . 6.(2010浙江杭州)分解因式 m 3 – 4m = . 7.(2010浙江嘉兴)因式分解:=+-m mx mx 2422 . 8.(2010浙江绍兴)因式分解:y y x 92-=_______________. 9.(2010 浙江省温州)分解因式:m 2—2m= . 10.(2010 浙江台州市)因式分解:162-x = . 11.(2010山东聊城)分解因式:4x 2-25=_____________. 12.(2010 福建德化)分解因式:442++a a =_______________ 13.(2010 福建晋江)分解因式:26_________.x x += 14.(2010江苏宿迁)因式分解:12-a = . 15.(2010浙江金华)分解因式=-92x . 16.(2010 山东济南)分解因式2x 2-8=_____ . 17.(2010 浙江衢州) 分解因式:x 2-9= . 全品中考网 18.(2010福建福州)因式分解:x 2-1=_______. 19.(2010江苏无锡)分解因式:241a -= . 20.(2010年上海)分解因式:a 2 ─ a b = ______________. 21.(2010四川宜宾)分解因式:2a 2– 4a + 2= 22.(2010 黄冈)分解因式:x 2-x =__________. 23.(2010 山东莱芜)分解因式:=-+-x x x 232 . 24.(2010 广东珠海)分解因式22ay ax -=________________. 25.(2010福建宁德)分解因式:ax 2+2axy +ay 2=______________________. 26.2010江西)因式分解:=-822a . 27.(2010四川 巴中) 把多项式2336x x +-分解因式的结果是 28.(2010江苏常州)分解因式:22 4a b -= 。

中考数学试题分类汇编圆[1]

中考数学试题分类汇编 圆 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

中考数学试题及答案分类汇编圆 一、选择题 1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75° 2.如图,在⊙O中, =,∠AOB=50°,则∠ADC的度数是() A.50°B.40°C.30°D.25° 3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是() A.55°B.60°C.65°D.70° 4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是() A.∠A=∠D B. =C.∠ACB=90°D.∠COB=3∠D 5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为() A.50°B.20°C.60°D.70° 6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于() A.32°B.38°C.52°D.66° 7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50° 8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为() A.15°B.18°C.20°D.28° 9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是() A.30°B.45°C.60°D.70° 10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=() A.80°B.90°C.100°D.无法确定 11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°

2019年全国各地高考文科数学试题分类汇编2:函数

2019年全国各地高考文科数学试题分类汇编2:函数 一、选择题 1 .(2019年高考重庆卷(文))函数21 log (2) y x = -的定义域为 ( ) A .(,2)-∞ B .(2,)+∞ C .(2,3) (3,)+∞ D .(2,4)(4,)+∞ 【答案】C 2 .(2019年高考重庆卷(文))已知函数3 ()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则 (lg(lg 2))f = ( ) A .5- B .1- C .3 D .4 【答案】C 3 .(2019年高考大纲卷(文))函数()()()-1 21log 10=f x x f x x ? ?=+ > ??? 的反函数 ( ) A . ()1021x x >- B .()1 021 x x ≠- C .()21x x R -∈ D .()210x x -> 【答案】A 4 .(2019年高考辽宁卷(文))已知函数()) ()21ln 1931,.lg 2lg 2f x x x f f ?? =+++= ??? 则 ( ) A .1- B .0 C .1 D .2 【答案】D 5 .(2019年高考天津卷(文))设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则 ( ) A .()0()g a f b << B .()0()f b g a << C .0()()g a f b << D .()()0f b g a << 【答案】A 6 .(2019年高考陕西卷(文))设全集为R , 函数()1f x x =-M , 则C M R 为 ( ) A .(-∞,1) B .(1, + ∞) C .(,1]-∞ D .[1,)+∞ 【答案】B 7 .(2019年上海高考数学试题(文科))函数 ()()211f x x x =-≥的反函数为()1f x -,则()12f -的值是

中考数学真题汇编:整式含真题分类汇编解析

年中考数学真题汇编:整式(31题) 一、选择题 1. (四川内江)下列计算正确的是() A. B. C. D. 【答案】D 2.(2018广东深圳)下列运算正确的是( ) A. B. C. D. 【答案】B 3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③ .④ .其中做对的一道题的序号是() A. ① B. ② C. ③ D. ④ 【答案】C 4.下列运算正确的是() A. B. C. D. 【答案】A 5.下列运算正确的是()。 A. B. C. D. 【答案】C 6.下列运算:①a2?a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为() A. 1 B. 2 C. 3 D. 4 【答案】B 7.下列运算正确的是() A. B. C. D. 【答案】C 8.计算的结果是() A. B. C. D.

【答案】B 9.下列运算正确的是() A. B. C. D. 【答案】C 10.计算的结果是() A. B. C. D. 【答案】C 11.下列计算正确的是() A. B. C. D. 【答案】D 12.下列计算结果等于的是() A. B. C. D. 【答案】D 13.下列运算正确的是() A. B. C. D. 【答案】C 14.下列运算正确的是() A. B. C. D. 【答案】D 15.下列计算正确的是()。 A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6 C.x6÷x3=x2 D.=2 【答案】D

16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2, ④a3·a4=a12。其中做对的一道题的序号是() A. ① B. ② C. ③ D. ④ 【答案】C 17.下列计算正确的是() A.a3+a3=2a3 B.a3·a2=a6 C.a6÷a2=a3 D.(a3)2=a5 【答案】A 18.计算结果正确的是() A. B. C. D. 【答案】B 19.下列计算正确的是( ) A. B. C. D. 【答案】C 20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为() A.2a B.2b C.2a-2b D.-2b 【答案】B 二、填空题(共6题;共6分) 21.计算:________.

2019年中考数学试题分类汇编28:圆的基本性质

一、选择题 1. (2019滨州,6,3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的 大小为() A.60°B.50°C.40°D.20° 【答案】B 【解析】如图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B. 【知识点】圆周角定理及其推论 2. (2019聊城,8,3分)如图,BC是半圆O的直径,D,E是BC上两点,连接BD,CE并延长交于点A,连接OD,OE, 如果∠A=70°,那么∠DOE的度数为 A.35° B.38° C.40° D.42° 第8题图 【答案】C 【解析】∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°=40°,故选C. 【知识点】三角形角和定理,圆周角定理 3. (2019省潍坊市,11,3分)如图,四边形ABCD接于⊙O,AB为直径,AD=CD.过点D作DE⊥AB

于点E.连接AC交DE于点F.若sin∠CAB=3 5 ,DF=5,则BC的长为() A.8 B.10 C.12 D.16 【答案】C 【思路分析】连接BD,先证明∠DAC=∠ACD=∠ABD=∠ADE,从而可得AF=DF=5,根据sin∠CAB=3 5 ,求 得EF和AE的长度,再利用射影定理求出BE的长度从而得到直径AB,根据sin∠CAB=3 5 求得BC的长度. 【解题过程】连接BD. ∵AD=CD, ∴∠DAC=∠ACD. ∵AB为直径, ∴∠ADB=∠ACB=90°.∴∠DAB+∠ABD=90°.∵DE⊥AB, ∴∠DAB+∠ADE=90°.∴∠ADE=∠ABD. ∵∠ABD=∠ACD, ∴∠DAC=∠ADE. ∴AF=DF=5. 在Rt△AEF中, sin∠CAB= 3 5 EF AF ∴EF=3,AE=4.∴DE=3+5=8.

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

2020初三数学一模分类汇编 23.圆(含答案)

2020初三数学一模分类汇编 圆(23题) 1.(2020东城一模23题) 23. 如图,直线l 与⊙O 相离,l OA ⊥于点A ,与⊙O 相交于点P ,5=OA . C 是直线l 上一点,连接CP 并延长,交⊙O 于点B ,且AC AB =. (1)求证:AB 是⊙O 的切线; (2)若1 tan 2ACB =∠,求线段BP 的长. 23. 解:(1) 证明:如图,连结OB ,则OB OP =. ∴CPA OPB OBP ∠=∠=∠. ΘAC AB =, ABC ACB ∠=∠∴. 而l OA ⊥,即?=∠90OAC . ?=∠+∠∴90CPA ACB . 即?=∠+∠90OBP ABP . ?=∠∴90ABO , AB OB ⊥∴,故AB 是⊙O 的切线. ………………………………2分 (2)∵ 1 tan 2ACB =∠, ∴ 在Rt △ACP 中,设AP =x ,AC =2x . ∵ 5=OA , ∴ 5OP x =-. ∴ 5OB x =-. ΘAC AB =, ∴2AB x =. ∵?=∠90ABO , 由勾股定理,得222OB AB OA +=. 即 2225-)25x x +=((). 解得 2x =. ∴ AP =2. ∴3OB OP ==. ∴4AB AC ==. ∴ 5CP =

过O 作PB OD ⊥于D , 在ODP △和CAP △中, CPA OPD ∠=∠Θ,=∠=∠90CAP ODP ∴ODP △∽CAP △. =PD OP OD PA CP CA ∴=. 553=?= ∴CP PA OP PD . 55 62= =∴PD BP . ………………………………6分 2. (2020西城一模23题) 2 3. 如图,四边形OABC 中,∠OAB =90°,OA = OC ,BA = BC . 以O 为圆心,以OA 为半径 作⊙O . (1)求证:BC 是⊙O 的切线; (2)连接BO 并延长交⊙O 于点D ,延长AO 交⊙O 于点E ,与BC 的延长线交于点F , 若? ?AD AC =, ① 补全图形; ② 求证:OF =OB . 23.(1)证明:连接AC , ∵ OC = OA , ∴点C 在⊙O 上. ∵ OA = OC , BA = BC , ∴ ∠OAC =∠OCA ,∠BAC =∠BCA .

2020中考数学圆试题分类汇编

一、选择题 1、(2020最新模拟山东淄博)一个圆锥的高为33,侧面展开图是 半圆,则圆锥的侧面积是( )B (A )9π (B )18π (C )27π (D )39π 2、(2020最新模拟四川内江)如图(5),这 是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB ∠为120o ,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为( ) A .264πcm B .2112πcm C .2144πcm D .2152πcm 解:S = 212020360 π?- 21208360 π?=2112πcm 选(B )。 3、(2020最新模拟山东临沂)如图,在△ABC 中, AB =2,AC =1,以AB 为直径的圆与AC 相切,与 边 BC 交于点D ,则AD 的长为( )。A A 、55 2 B 、 554 C 、35 2 D 、354 4、(2020最新模拟浙江温州)如图,已知ACB ∠是O e 的圆周角,50ACB ∠=?,则圆心角AOB ∠是( )D A .40? B. 50? C. 80? D. 100? 5、(2020最新模拟重庆市)已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )C (A )相交 (B )内含 (C )内切 (D )外切 A C O B 图(5)

6、(2020最新模拟山东青岛)⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( ).C A .相离 B .相切 C .相交 D .内含 7、(2020最新模拟浙江金华)如图,点A B C ,,都在 O e 上,若34 C o ∠,则AOB ∠的度数为( )D A .34o B .56o C .60o D .68o 8、(2020最新模拟山东济宁)已知圆锥的底面半径为1cm ,母线长为3cm ,则其全面积为( )。C A 、π B 、3π C 、4π D 、7π 9、(2020最新模拟山东济宁)如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向 行 走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走。按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α的度数是( )。A A 、52° B 、60° C 、72° D 、76° 10、(2020最新模拟福建福州)如图2,O e 中,弦 AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则O e 的半径长 为( ) A .3cm B .4cm C .5cm D .6cm C 11、(2020最新模拟双柏县)如图,已知PA 是⊙O 的切线,A 为切点,PC 与⊙O 相交于B 、C 两点,PB =2 cm ,BC =8 cm ,则PA 的长等于( ) A .4 cm B .16 cm O C B A O B A 图2 A ·O P C B

(完整)高考文科数学试题分类汇编复数,推荐文档.doc

2009-20XX 年高考文科数学试题分类汇编 —— 复数 一、选择题 1.( 20XX 年广东卷文)下列 n 的取值中,使 i n = 1( i 是虚数单位)的是() (A ) n = 2 ( B ) n = 3 ( C ) n = 4 ( D ) n =5 2.( 2009 浙江卷文)设 z = 1+ i ( i 是虚数单位) ,则 2 + z 2 =() z (A ) 1+ i ( B )- 1+ i ( C ) 1- i ( D )- 1-i 3.( 2009 山东卷文)复数 3 - i 等于() 1- i (A ) 1+ 2i ( B )1- 2i ( C ) 2+ i ( D ) 2- i 4. ( 2009 安徽卷文) i 是虚数单位, i ( 1+ i )等于() (A ) 1+ i (B )- 1- i (C ) 1-i ( D )- 1+ i 5i 5.( 2009 天津卷文) i 是虚数单位, 2- i =() (A ) 1+ 2i ( B )- 1- 2i (C ) 1-2i ( D )- 1+ 2i 6. ( 2009 宁夏海南卷文)复数 3+ 2i 2- 3i =() (A )1 (B )- 1 (C ) i ( D )- i 1 7. ( 2009 辽宁卷文)已知复数 z = 1- 2i ,那么 z =() (A ) 5+ 2 5 5-2 5 1 2 1 2 5 5 i ( B ) 5 5 i (C ) 5 + 5 i ( D )5 - 5 i 2 8.( 2010 湖南文数 1)复数 1- i 等于() (A ) 1+ i ( B ) 1- i ( C )- 1+ i ( D )- 1- i 9.( 2010 浙江理数)对任意复数 z = x + yi ( x R , y R ), i 为虚数单位,则下列结论正确的 是() (A ) |z -- z|= 2y ( B ) z 2=x 2+ y 2 (C ) |z -- z| ≥2x ( D ) |z| ≤|x + |y| 3- i 2 =() 10.( 2010 全国卷 2 理数)复数( 1+ i ) (A )- 3- 4i ( B )- 3+ 4i ( C ) 3- 4i (D ) 3+ 4i i 11.(2010 陕西文数)复数 z = 1+ i 在复平面上对应的点位于() (A )第一象限( B )第二象限( C )第三象限( D )第四象限

相关主题
相关文档 最新文档