液体表面张力实验讲义
- 格式:docx
- 大小:270.21 KB
- 文档页数:4
《液体的表面张力》讲义在我们日常生活中,液体无处不在,从我们喝的水到厨房中的食用油,从清晨的露珠到流淌的江河湖海。
然而,你是否曾经留意过液体表面那些看似微小却又十分有趣的现象?比如,水珠总是尽量保持球形,小昆虫能在水面上行走而不会沉没。
这些现象的背后,都隐藏着一个重要的物理概念——液体的表面张力。
一、什么是液体的表面张力要理解液体的表面张力,我们首先得知道液体分子的结构和运动方式。
在液体内部,分子受到来自各个方向的其他分子的吸引力,这些吸引力相互抵消,使得分子能够在一定范围内自由移动。
但在液体表面,情况就有所不同了。
表面的分子只受到来自液体内部的吸引力,而外部没有分子对它们产生吸引力,从而导致表面分子受到一个向内的合力,就好像有一层紧绷的“薄膜”把液体表面拉紧了一样。
这种使液体表面尽量缩小的力,就是液体的表面张力。
它使得液体表面在没有外力作用时,总是趋向于最小的表面积,也就是球形。
因为在相同体积的情况下,球形的表面积是最小的。
举个简单的例子,当我们把一滴水放在光滑的平面上时,它会自动形成一个近似球形的水珠,而不是随意摊开成一片。
这就是表面张力在起作用。
二、影响液体表面张力的因素1、液体的种类不同的液体,其表面张力大小是不同的。
一般来说,极性分子组成的液体,比如水,表面张力较大;而非极性分子组成的液体,比如一些有机溶剂,表面张力相对较小。
2、温度温度对液体的表面张力有显著影响。
通常情况下,随着温度的升高,液体分子的热运动加剧,分子间的距离增大,相互作用力减弱,导致表面张力减小。
比如,我们在烧开水时可以看到,水的表面张力随着温度的升高而逐渐变小,水的沸腾就是表面张力无法维持水面平静的一种表现。
3、杂质液体中如果含有杂质,也会影响表面张力。
杂质可能会改变液体分子的排列和相互作用,从而改变表面张力的大小。
例如,在水中加入一些表面活性剂,如洗衣粉或洗洁精,会大大降低水的表面张力,这就是为什么这些物质能够帮助我们去除油污的原因之一。
研究液体表面张力的表面张力测量实验引言:液体表面张力是液体分子间相互作用引起的一种表现。
液体表面张力是由于液体分子之间的引力而存在的,在液体表面处,分子只能受到液体内部分子的引力作用,而不能从外界克服这种内部引力,所以液体分子表面相互靠拢,使得表面处分子受到一个向内微小垂直于表面的引力,这就是表面张力。
表面张力测量实验来测定液体的表面张力,是物理学中非常常见的实验之一。
在这篇文章中,我将详细介绍这个实验的准备、步骤和应用,以及从专业角度来探讨其意义和潜在发展方向。
一、实验准备:1. 实验材料:- 液体:任意容易测量的液体样品,如水、酒精或液态金属等。
- 毛细管:细长的透明毛细管,通常用玻璃或塑料制成。
- 刻度尺:用于测量毛细管的半径。
- 量筒:用于测量液体的体积。
- 秤:用于测量液体和毛细管的质量。
- 试管:用于装载液体样本。
- 其他:挡板、滴管、电子天平等实验所需设备。
2. 实验环境:- 温度和湿度:实验环境应控制在恒定的温度和湿度条件下,以确保测得的结果的准确性和可比性。
- 光照条件:实验室内的光照应恒定,并且实验操作过程中应尽量避免光线的干扰。
3. 实验步骤:- 在试管中装入液体样本,量取适量的液体。
- 将毛细管垂直放入液体中,使液体充满毛细管,并且尽量避免空气泡存在。
- 取出毛细管,用尺量取其长度,并记录下来。
- 将毛细管固定在挡板上,保持水平,并且让一端伸出挡板之外。
- 用电子天平称量毛细管和液体的总质量,记录下来。
- 将液体从毛细管的末端滴出,直至液滴不再滴下。
- 重复以上步骤多次,取平均值作为最终的测量结果。
二、实验过程:1. 表面张力的测量:表面张力测量实验基于两个定律,Young-Laplace定律和Poiseuille定律。
Young-Laplace定律描述了液滴表面张力和压强之间的关系,可以用公式表示为:ΔP = 2γ/r其中,ΔP表示液滴内外的压强差,γ表示液体的表面张力,r表示液滴的半径。
用硅压阻力敏传感器测定液体表面张力系数一.实验目的1.了解液体表面张力的性质,掌握拉托法测定液体表面张力的原理。
2.学习硅压阻力敏传感器的物理原理,测定水等液体的表面张力系数。
二.实验仪器WBM-1A型液体表面张力测定仪、游标卡尺图1 表面张力系数测定仪三.实验原理(缺两张图)表面张力是分子力的一种表现,它发生在液体和气体接触的边界部分,是由表面层的液体分子处于特殊情况决定的。
液体内部的分子和分子之间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。
在液体表面附近的分子,由于上层空间气相分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,这种收缩力称为表面张力。
表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。
如果在液体表面上任意划一条分界线MN把液面分成a、b两部分(如图2所示),f表示a部分表面层中的分子对b部分的吸引力,f´表示右部分表面层中的分子对a部分的吸引力,这两部分的力一定大小相等、方向相反。
这种表面层中任何两部分间的相互牵引力,促使了液体表面层具有收缩的趋势。
由于表面张力的作用,液体表面总是趋向于尽可能缩小,因此空气中的小液滴往往呈圆球形状。
表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。
如果液面是曲面,表面张力就在这个曲面的切面上。
表面张力是物质的特性,其大小与温度和界面的性质有关。
表面张力f 的大小跟分界线MN 的长度L 成正比,可写成f = αL (1)系数α叫做表面张力系数,它的单位是“N/m ”。
在数值上表面张力系数就等于液体表面相邻两部分间单位长度的相互牵引力,表面张力系数与液体的温度和纯度等有关,与液面大小无关。
液体温度升高,α减小,纯净的液体混入微量杂质后,α明显减小。
实验讲义-液体表⾯张⼒实验讲义-液体表⾯张⼒系数的测量许多涉及液体的物理现象都与液体的表⾯性质有关,液体表⾯的主要性质就是表⾯张⼒。
例如液体与固体接触时的浸润与不浸润现象、⽑细现象、液体泡沫的形成等,⼯业⽣产中使⽤的浮选技术,动植物体内液体的运动,⼟壤中⽔的运动等都是液体表⾯张⼒的表现。
液体表⾯在宏观上就好像⼀张绷紧的橡⽪膜,存在沿着表⾯并使表⾯趋于收缩的应⼒,这种⼒称为表⾯张⼒,⽤表⾯张⼒系数σ来描述。
因此,对液体表⾯张⼒系数的测定,可以为分析液体表⾯的分⼦分布及结构提供帮助。
液体的表⾯张⼒系数σ与液体的性质、杂质情况、温度等有关。
当液⾯与其蒸汽相接触时,表⾯张⼒仅与液体性质及温度有关。
⼀般来讲,密度⼩,易挥发液体σ⼩;温度愈⾼,σ愈⼩。
测量液体表⾯张⼒系数有多种⽅法,如拉脱法,⽑细管法,平板法,最⼤泡压法等。
本实验是⽤拉脱法和⽑细管法测定液体的表⾯张⼒系数。
【实验⽬的】1.⽤拉脱法测量室温下液体(⽔)的表⾯张⼒系数;2. ⽤⽑细管法测量室温下液体(⽔)的表⾯张⼒系数;3.学习⼒敏传感器的使⽤和定标。
【实验原理】⼀、拉脱法测量⼀个已知周长L 的⾦属⽚从待测液体表⾯脱离时需要的⼒,求得该液体表⾯张⼒系数的实验⽅法称为拉脱法.若⾦属⽚为环状吊⽚时,考虑⼀级近似,可以认为脱离⼒为表⾯张⼒系数乘上脱离表⾯的周长,即 122()F L D D σσπ=?=?+ (1)式中,F 为脱离⼒,D 1,D 2分别为圆环的外径和内径,σ为液体的表⾯张⼒系数.脱离⼒的测量应该为即将脱离液⾯测⼒计的读数F 1减去吊环本⾝的重⼒mg 。
吊环本⾝的重⼒即为脱离后测⼒计的读数F 2。
所以表⾯张⼒系数为:)()(2121211D D F F D D mg F +-=+-=ππσ (2) 硅压阻式⼒敏传感器由弹性梁和贴在梁上的传感器芯⽚组成,其中芯⽚由四个硅扩散电阻集成⼀个⾮平衡电桥,当外界压⼒作⽤于⾦属梁时,在压⼒作⽤下,电桥失去平衡,此时将有电压信号输出,输出电压⼤⼩与所加外⼒成正此,即ΔΔU K F = (3)式中,?U F 为外⼒的⼤⼩,K 为硅压阻式⼒敏传感器的灵敏度,?U 为传感器输出电压的⼤⼩。
大学物理实验液体表面张力系数测定讲义液体表面张力系数测定一、实验简介液体具有尽量缩小其表面的趋势,好象液体表面是一张拉紧了的橡皮膜一样。
把这种沿着表面的、收缩液面的力称为表面张力。
表面张力的存在能说明物质处于液态时所特有的许多现象,比如泡沫的形成、润湿和毛细现象等等。
测定液体表面张力的方法很多,常用的有焦利氏秤法(拉脱法)、毛细管法、平板法、滴重法、最大泡压法等。
本实验采用焦利氏秤法(拉脱法)。
该方法的特点是,用秤量仪器直接测量液体的表面张力,测量方法直观,概念清楚。
二、实验原理液体表面层(其厚度等于分子的作用半径)内的分子所处的环境跟液体内部的分子是不同的。
表面层内的分子合力垂直于液面并指向液体内部,所以分子有从液面挤入液体内部的倾向,并使液体表面自然收缩想象在液面上划一条直线,表面张力就表现为直线两旁的液膜以一定的拉力相互作用。
拉力F 存在于表面层,方向恒与直线垂直,大小与直线的长度l 成正比,即 F =σl式中σ称为表面张力系数,它的大小与液体的成分、纯度、浓度以及温度有关。
三、实验方法金属丝框缓慢拉出水面的过程中,金属丝框下面将带起一水膜,当水膜刚被拉断时,诸力的平衡条件是/2F mg F =+而/F l σ= 得到2F mg lσ-=焦利秤的构造如图所示,它实际上是一种用于测微小力的精细弹簧秤。
一般的弹簧秤都是弹簧秤上端固定,在下端加负载后向下伸长,而焦利秤与之相反,它是控制弹簧下端的位置保持一定,加负载后向上拉动弹簧确定伸长值。
三线对齐为了保证弹簧下端的位置是固定的,必须三线对齐,即玻璃圆筒E上的刻线、小平面镜上的刻线、E上的刻线在小平面镜中的象,三者始终重合。
在力F作用下弹簧伸长Δl,根据虎克定律可知,在弹性限度内F = kΔl,将已知重量的砝码加在砝码盘中,测出弹簧的伸长量,由上式即可计算该弹簧的k值,由k值就可测外力F四、实验内容1、确定焦利氏秤上锥形弹簧的劲度系数(1) 把锥形弹簧,带小镜子的挂钩和小砝码盘依次安装到秤框内的金属杆上。
液体表面张力系数测定实验原理一、引言液体表面张力系数是指液体表面分子间相互作用力的强度。
它是液体的一个重要性质,对于很多科学领域都具有重要意义,如物理学、化学、材料科学等。
因此,测定液体表面张力系数具有很高的实用价值。
二、实验原理1. 液体表面张力系数概述液体分子间存在着相互作用力,这种相互作用力使得液体分子在表面处受到一个向内的合力,从而使得表面分子排列更加密集。
这种现象被称为“表面张力”。
液体表面张力系数是测量一定温度下单位长度内所需施加的外界作用力以克服该液体自身分子间吸引作用所需的能量。
通常用γ表示。
2. 测定方法(1)测量降低表面张力法(垂直法)将一根平滑而细长的金属棒或玻璃棒插入被测液中,并将其缓慢地升起。
当棒从液中抬出时,在棒与液交界处会形成一个凹陷区域,这个凹陷区域的大小与液体表面张力有关。
(2)测量降低表面张力法(水平法)将一根平滑而细长的金属棒或玻璃棒插入被测液中,并将其缓慢地升起。
当棒从液中抬出时,在棒与液交界处会形成一个环状凹陷区域,这个凹陷区域的大小与液体表面张力有关。
(3)测量上升管法在一根细长的玻璃管中充满被测液体,然后将玻璃管垂直放置于水池中。
当外部施加一个向上的拉力时,由于液面弯曲,导致管内压强变化。
通过测量这个压强变化,可以计算出液体表面张力系数。
三、实验步骤1. 准备工作(1)清洗实验器材:用去离子水和无灰纸擦拭干净实验器材。
(2)准备试样:选取需要测定表面张力系数的液体,并将其倒入干燥且干净的容器中。
2. 测定降低表面张力法(垂直法)(1)将一根细长的金属棒或玻璃棒插入被测液中。
(2)将棒缓慢地升起,观察并记录液体在棒与液交界处形成的凹陷区域大小。
(3)重复上述步骤多次,取平均值作为测量结果。
3. 测定降低表面张力法(水平法)(1)将一根细长的金属棒或玻璃棒插入被测液中。
(2)将棒缓慢地升起,观察并记录液体在棒与液交界处形成的环状凹陷区域大小。
(3)重复上述步骤多次,取平均值作为测量结果。
液体表面张力系数的测量液体表面张力系数的测定表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。
液体表面层的分子有从液面挤入液内的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一张拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面张力。
作用于液面单位长度上的表面张力,称为液体的表面张力系数,测定液体表面张力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。
本实验采用拉脱法测定表面张力系数。
实验目的:1、了解液体表面性质。
2、熟悉用拉脱法测定表面张力系数的方法。
3、熟悉用焦利弹簧秤测量微小力的方法。
实验仪器:焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等实验原理:1、面张力的由来假设液体表面附近分子的密度和内部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。
由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想内部某个分子A欲向表面迁徙,它必须排开分子1、2,并克服两侧分子3、4和后面分子5对它的吸引力。
用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为dE 的激活能才能越过势垒,跑到表面去。
然而表面某个分子B 要想挤向内部,它只需排开分子''21、和克服两侧分子''43、的吸引力即可,后面没有分子拉它。
所以它所处的势阱(图(3)中右边的那个)较浅,只要较小的激活能'dE 就可越过势垒,潜入液体内部。
这样一来,由于表面分子向内扩散比内部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力加大了,这就是图(3)右边所示的情况。
此时分子B 需克服分子''43、对它的吸引力比刚才大,从而它的势阱也变深了,直到'dE 变得和dE 一样时,内外扩散达到平衡。
用硅压阻力敏传感器测定液体表面张力系数
一.实验目的
1.了解液体表面张力的性质,掌握拉托法测定液体表面张力的原理。
2.学习硅压阻力敏传感器的物理原理,测定水等液体的表面张力系数。
二.实验仪器
WBM-1A型液体表面张力测定仪、游标卡尺
图1 表面张力系数测定仪
三.实验原理(缺两张图)
表面张力是分子力的一种表现,它发生在液体和气体接触的边界部分,是由表面层的液体分子处于特殊情况决定的。
液体内部的分子和分子之间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。
在液体表面附近的分子,由于上层空间气相分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,这种收缩力称为表面张力。
表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。
如果在液体表面上任意划一条分界线MN把液面分成a、b两部分(如图2所示),f表示a部分表面层中的分子对b部分的吸引力,f´表示右部分表面层中的分子对a部分的吸引力,这两部分的力一定大小相等、方向相反。
这种表面层中任何两部分间的相互牵引力,促使了液体表面层具有收缩的趋势。
由于表面张力的作用,液体表面总是趋向于尽可能缩小,
因此空气中的小液滴往往呈圆球形状。
表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。
如果液面是曲面,表面张力就在这个曲面的切面上。
表面张力是物质的特性,其大小与温度和界面的性质有关。
表面张力f 的大小跟分界线MN 的长度L 成正比,可写成
f = αL (1)
系数α叫做表面张力系数,它的单位是“N/m ”。
在数值上表面张力系数就等于液体表面相邻两部分间单位长度的相互牵引力,表面张力系数与液体的温度和纯度等有关,与液面大小无关。
液体温度升高,α减小,纯净的液体混入微量杂质后,α明显减小。
普通物理实验中测量表面张力的常用方法
有拉脱法、毛细管法和最大泡压法等。
这里我们采用拉脱法,用硅压阻力敏传感器测量液体的表面张力。
具体测量方法是把一个表面清洁的铝合金圆环吊挂在力敏传感器的拉钩上,升高升降台使铝合金圆环垂直浸入液体中,降低升降台,液面下降,当吊环底面与液面平齐或略高时,由于液体表面张力的作用,吊环的内、外壁会带起一部分液体,如图3所示。
平衡时吊环重力mg 、向上拉力F 与液体表面张力f 满足
F =mg +f cos φ (2)
吊环临界脱离液体时,φ=0,即cos φ=1,则平衡条件近似为
f =F-m
g =α(D 1+D 2)π (3) 式中D 1、D 2分别为吊环的内径和外径,液体表面的张力系数为
α=(F-mg )/π(D 1+D 2) (4) 实验需测出F 、mg 及D 1和D 2。
利用力敏传感器测力,首先进行硅压阻力敏传感器定标,求得传感器灵敏度B (mV/N),再测出吊环在即将拉脱液面时
图2 液体表面张力示意图
图3 拉脱过程受力分析
(F=mg+f)电压表读数U1,记录拉脱后(F=mg)数字电压表的读数U2,代入式(3)得
α=(U1+U2)/Bπ(D1+D2)。
(5)四.实验步骤
1. 实验准备
开机预热15分钟,清洗玻璃器皿和吊环;用游标卡尺分别测量吊环的内外直径D1和D2。
2.硅压阻力敏传感器定标
(1)将砝码盘挂在力敏传感器的钩上,选择“200 mV”档位对传感器调零定标。
(2)每次将1 g(1个)的砝码放入砝码盘内,分别记录下数字电压表的读数,直至加到7 g为止,将数据记录于表1中(待电压表输出基本稳定后再读数)。
3.测定表面张力
在玻璃器皿内放入待测的水并安放在升降台上,将金属吊环挂在力敏传感器的钩上,吊环应保持水平,顺时针缓慢转动升降台使液面上升,当吊环下沿部分全部浸入液体内时,改为逆时针缓慢转动升降台使液面下降,观察环浸入液体中及从液体中拉起时的物理过程和现象,特别注意吊环即将拉断液面前一瞬间的数字电压表读数U1和拉断后数字电压表读数U2,并记录下这两个数值,重复上述测量过程5次,应的U1和U2记录于表2中。
五.注意事项
(1)力敏传感器使用时用力不宜大于30 g,否则损坏传感器,砝码应轻拿轻放。
(2 器皿和吊环经过洁净处理后,不能再用手接触,亦不能用手触及液体。
(3)吊环保持水平,缓慢旋转升降台,避免水晃动,准确读取U1和U2。
(4)实验结束后擦干、包好吊环。
六.实验数据
表1 力敏传感器定标
根据定标公式U=B*mg,用最小二乘法确定仪器的灵敏度B,g=9.80 m/s2。
表2 测定水的表面张力系数
七.思考题
(1)还可以采用哪些方法对力敏传感器灵敏度B的实验数据进行处理?
(2)分析吊环即将拉断液面前的一瞬间电压表读数值由大变小的原因?
(3)对实验的系统误差和随机误差进行分析,提出减小误差改进实验的方法措施?。