(完整word版)金属材料的强化方法_细晶强化_沉淀强化_固溶强化_第二相强化_形变强化
- 格式:doc
- 大小:215.50 KB
- 文档页数:3
金属材料的强化方法
金属材料的强化方法主要有以下几种:
1. 固溶强化:通过合金元素的固溶作用,改变金属原子的排列方式和力学性能,提高金属的强度和硬度。
常用的合金元素有锰、镍、铬等。
2. 相变强化:通过改变金属的晶体结构,使得金属具有不同的力学性能。
常见的相变强化方法包括质变(如奥氏体-马氏体相变)、回火(如淬火、时效回火等)等。
3. 冷变形强化:通过金属的塑性变形来提高其强度和硬度。
冷变形包括冷轧、冷拔、冷挤压等方法,可以使金属材料的晶粒细化、位错增加,从而提高金属的强度。
4. 细化晶粒强化:通过控制金属的凝固过程或者通过退火过程来使金属晶粒尺寸变小,从而提高金属的强度和硬度。
常见的方法有快速凝固、低温退火等。
5. 晶界强化:通过控制金属晶界的结构和性质,提高金属的强度和硬度。
方法包括控制晶界角度、晶界清晰化等。
6. 精细化析出物强化:通过控制金属合金中的析出物的形成和分布,使其成为有效的强化相,提高金属的强度和硬度。
这些强化方法可以单独应用,也可以组合应用,以达到最佳的强化效果。
同时,不同的金属材料和合金体系适用的强化方法也略有不同,需要根据具体情况进行选择和调整。
有色金属的强度一般较低。
例如常用的有色金属铝、铜、钛在退火状态的强度极限分别只有80100MPa 、220MPa 和450600MPa 。
因此设法提高有色金属的强度一直是有色冶金工作者的一个重要课题。
目前工业上主要采用以下几种强化有色金属的方法。
1 固溶强化纯金属由于强度低很少用作结构材料在工业上合金的应用远比纯金属广泛。
合金组元溶入基体金属的晶格形成的均匀相称为固溶体。
形成固溶体后基体金属的晶格将发生程度不等的畸变但晶体结构的基本类型不变。
固溶体按合金组元原子的位置可分为替代固溶体和间隙固溶体按溶解度可分为有限固溶体和无限固溶体按合金组元和基体金属的原子分布方式可分为有序固溶体和无序固溶体。
绝大多数固溶体都属于替代固溶体、有限固溶体和无序固溶体。
替代固溶体的溶解度取决于合金组元和基体金属的晶体结构差异、原子大小差异、电化学性差异和电子浓度因素。
间隙固溶体的溶解度则取决于基体金属的晶体结构类型、晶体间隙的大小和形状以及合金组元的原子尺寸。
纯金属一旦加入合金组元变为固溶体其强度、硬度将升高而塑性将降低这个现象称为固溶强化。
固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的故凡是可以增大位错滑移阻力的因素都将使变形抗力增大从而使材料强化。
合金组元溶入基体金属的晶格形成固溶体后不仅使晶格发生畸变同时使位错密度增加。
畸变产生的应力场与位错周围的弹性应力场交互作用使合金组元的原子聚集在位错线周围形成“气团”。
位错滑移时必须克服气团的钉扎作用带着气团一起滑移或从气团里挣脱出来使位错滑移所需的切应力增大。
此外合金组元的溶入还将改变基体金属的弹性模量、扩散系数、内聚力和晶体缺陷使位错线弯曲从而使位错滑移的阻力增大。
在合金组元的原子和位错之间还会产生电交互作用和化学交互作用也是固溶强化的原因之一。
固溶强化遵循下列规律: 第一对同一合金系固溶体浓度越大则强化效果越好。
表1 列出了几种普通黄铜的强度值它们的显微组织都是单相固溶体但含锌量不同强度有很大差异。
金属材料的强化方式,你了解多少?一、形变强化(或应变强化,加工硬化)01定义材料屈服以后,随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。
02机理随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式,可知强度与位错密度ρ的二分之一次方成正比,位错的伯氏矢量b越大,强化效果越显著。
03方法冷变形,比如冷压、滚压、喷丸等。
04例子冷拔钢丝可使其强度成倍增加。
05形变强化的实际意义(利与弊)(1)利:①形变强化是强化金属的有效方法,对一些不能用热处理强化的材料,可以用形变强化的方法提高材料的强度,可使强度成倍的增加。
②是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形。
③形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。
(2)弊:①形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,始继续变形带来困难,需要消耗更多的功率。
②为了能让材料继续变形,中间需要进行再结晶退火,使材料可以继续变形而不至开裂,增加了生产成本。
二、固溶强化01定义随溶质原子含量的增加,固溶体的强度、硬度升高,塑性、韧性下降的现象叫固溶强化。
02机理(1) 溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用。
(2) 位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力。
(3) 溶质原子在层错区的偏聚阻碍扩展位错的运动。
所有阻碍位错运动,增加位错移动阻力的因素都可使强度提高。
金属材料的强韧化机制与应用对结构材料来说,最重要的性能指标是强度和韧性。
强度是指材料抵抗变形和断裂的能力,强度可分为抗拉强度、抗压强度、抗弯强度、抗剪强度等,各种强度间常有一定的联系,使用中一般较多以抗拉强度作为最基本的强度指标;韧性指材料变形和断裂过程中吸收能量的能力。
以下介绍金属材料的主要强韧化机制。
一、金属材料的强化金属材料强化的类型主要有固溶强化、细晶强化(晶界强化)、第二相粒子强化和相变强化。
(一)固溶强化固溶强化是利用金属材料内部点缺陷(间隙原子和置换原子)对位错运动的阻力使得金属基体(溶剂金属)获得强化的一种方法。
它分为两类:间隙式固溶强化和置换式固溶强化。
1. 间隙式固溶强化:原子直径很小的元素如C、N、O、B 等,作为溶质元素溶入溶剂金属时,形成间隙式固溶体。
C、N等间隙原子在基体中与“位错”产生弹性交互作用,当进入刃型位错附近并沿位错线呈统计分布,形成“柯氏气团”。
当在螺型位错应力场作用下,C、N原子在位错线附近有规则排列就形成“S nock”气团。
这些在位错附近形成的“气团”对位错的移动起阻碍和钉扎作用,对金属基体产生强化效应。
2. 置换式固溶强化:置换式溶质原子在基体晶格中造成的畸变大都是球面对称的,固溶效能比间隙式原子小(约小两个数量级),这种强化效应称为软硬化。
形成置换式固溶体时,溶质原子在溶剂晶格中的溶解度同溶质与溶剂的原子尺寸、电化学性质等因素密切相关,当原子尺寸愈接近,周期表中位置愈相近,其电化学性质也愈接近,则溶解度也愈大。
由于溶质原子置换了溶剂晶格结点上的原子,当原子直径存在差别就会破坏溶剂晶格结点上原子引力平衡,而使其偏离原平衡位置,从而造成晶格畸变,随原子直径差别增加,造成的畸变程度愈大,由此造成的强化效果更大。
(二)细晶强化晶界分为大角度晶界(位向差大于10o)和小角度晶界(亚晶界,位向差1~2o)。
晶界两边相邻晶粒的位向和亚晶块的原子排列位向存在位向差,处于原子排列不规则的畸变状态。
金属的强化(strengthening of metals )通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。
所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。
随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等(见金属力学性能的表征);压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度(见疲劳);高温条件静态拉伸所测的持久强度(见蠕变)。
每一种强度都有其特殊的物理本质,所以金属的强化不是笼统的概念,而是具体反映到某个强度指标上。
一种手段对提高某一强度指标可能是有效的,而对另一强度指标未必有效。
影响强度的因素很多。
最重要的是材料本身的成分、组织结构和表面状态;其次是受力状态,如加力快慢、加载方式,是简单拉伸还是反复受力,都会表现出不同的强度;此外,试样几何形状和尺寸及试验介质也都有很大的影响,有时甚至是决定性的,如超高强度钢在氢气氛中的拉伸强度可能成倍地下降(见应力腐蚀断裂和氢脆)。
强化的相关名词时效强化aging strengthening:是指在固溶了合金元素以后,在常温或加温的条件下,使在高温固溶的合金元素以某种形式析出(金属间化合物之类),形成弥散分布的硬质质点,对位错切过造成阻力,使强度增加,韧性降低。
固溶强化solution strengthening:就是合金元素在基体金属晶格中存在使晶格产生畸变,位错运动阻力加大。
通常也是强度增加,韧性降低。
细晶强化(也叫晶界强化)grain refining strengthening:可以通过形变-再结晶获得较细的晶粒,使强度和韧性同时提高。
形变强化working hardening:随着塑性变形量的增加,金属流变强度也增加,这种现象称为形变强化或加工硬化。
弥散强化dispersion strengthening:材料通过基体中分布有细小弥散的第二相细粒而产生强化的方法,称为弥散强化。
金属材料的四种强化方式一.细晶强化通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化,工业上将通过细化晶粒以提高材料强度。
通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。
实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。
这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。
故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。
晶粒越细小,位错集群中位错个数(n)越小,根据τ=nτ0,应力集中越小,所以材料的强度越高;细晶强化的强化规律,晶界越多,晶粒越细,根据霍尔-配奇关系式,晶粒的平均值(d)越小,材料的屈服强度就越高。
细化晶粒的方法1,增加过冷度;2,变质处理;3,振动与搅拌;4,对于冷变形的金属可以通过控制变形度,退火温度来细化晶粒。
二.固溶强化定义:合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高的现象。
原理:融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。
这种通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。
在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。
影响因素(1)溶质原子的原子分数越高,强化作用也越大,特别是当原子分数很低时,强化作用更为显著。
(2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。
(3)间隙型溶质原子比置换原子具有较大的固溶强化效果,且由于间隙原子在体心立方晶体中的点阵畸变属非对称性的,故其强化作用大于面心立方晶体的;但间隙原子的固溶度很有限,故实际强化效果也有限。
(4)溶质原子与基体金属的价电子数目相差越大,固溶强化效果越明显,即固溶体的屈服强度随着价电子浓度的增加而提高。
名词解释合金元素:特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。
(常用Me表示)微合金元素:有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。
奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ-Fe的元素C,N,Cu,Mn,Ni,Co,W等铁素体形成元素:在α-Fe中有较大的溶解度,且能γ-Fe不稳定的元素Cr,V,Si,Al,Ti,Mo等原位析出:指在回火过程中,合金渗碳体转变为特殊碳化物。
碳化物形成元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物。
如Cr钢碳化物转变异位析出:含强碳化物形成元素的钢,在回火过程中直接从过饱和α相中析出特殊碳化物,同时伴随着渗碳体的溶解,如V,Nb,Ti。
(W和Mo既有原味析出又有异位析出)网状碳化物:热加工的钢材冷却后,沿奥氏体晶界析出的过剩碳化物(过共析钢)或铁素体(亚共析钢)形成的网状碳化物。
水韧处理:高锰钢铸态组织中沿晶界析出的网状碳化物显著降低钢的强度、韧性和抗磨性。
将高锰钢加热到单相奥氏体温度范围,使碳化物完全溶入奥氏体,然后在水中快冷,使碳化物来不及析出,从而获得获得单相奥氏体组织。
(水韧后不再回火)超高强度钢:用回火M或下B作为其使用组织,经过热处理后抗拉强度大于1400 MPa (或屈服强度大于1250MPa)的中碳钢,均可称为超高强度钢。
晶间腐蚀:沿金属晶界进行的腐蚀(已发生晶间腐蚀的金属在外形上无任何变化,但实际金属已丧失强度)n/8规律:随着Cr含量的提高,钢的的电极电呈跳跃式增高。
即当Cr的含量达到1/8,2/8,3/8,……原子比时,Fe的电极电位就跳跃式显著提高,腐蚀也跳跃式显著下降。
这个定律叫做n/8规律。
黄铜: Cu与Zn组成的铜合金青铜: Cu与Zn、Ni以外的其它元素组成的铜合金白铜: Cu与Ni组成的铜合金灰口铸铁:灰口铸铁中碳全部或大部分以片状石墨形式存在,其断口呈暗灰色。
强化金属材料的方法
强化金属材料有很多方法,包括以下几种常见的方法:
1. 冷加工强化:通过塑性变形,在低温下对金属进行压制、拉伸等加工,使晶体结构变形,增加金属的强度和硬度。
2. 固溶强化:将合金元素加入到金属中,形成金属固溶体。
这些合金元素会扩散到晶界或位错中,限制其位错移动或晶界的运动,从而提高金属的强度。
3. 粗晶界强化:通过改变金属的热处理条件,使晶界产生粗化,增加晶界的能量,从而阻碍晶界的运动,提高金属的强度。
4. 细晶界强化:通过细化金属的晶粒结构,可以增加晶界的数目和长度,提高晶界的能量。
细晶界会限制晶粒的位错运动和滑移,从而增加金属的强度。
5. 相变强化:通过控制金属的相变,改变其组织结构,从而提高金属的强度。
例如,通过固态相变使金属的晶格变得更紧密,增加金属的硬度和强度。
6. 化学强化:通过改变金属的化学组成,利用溶质元素与基体元素之间的互作用,来增加金属的强度和硬度。
这些方法可以单独应用,也可以组合应用,以达到增强金属材料的目的。
不同的
金属材料和应用需求可能需要不同的强化方法。
金属强化的四种途径以金属强化的四种途径为标题,写一篇文章:一、晶界强化晶界是金属晶体中相邻晶粒的交界面,晶界强化是通过优化晶界的结构和性质来提高金属的强度和硬度。
晶界可以被视为金属中的缺陷,因为晶界处原子的排列有一定的不规则性,容易发生位错和滑移。
通过控制晶界的数量、角度和尺寸等因素,可以增加位错的阻碍和滑移的距离,从而提高金属的抗变形能力。
此外,通过添加合适的合金元素或进行热处理等方式,还可以改善晶界的稳定性和强度,进一步增强金属的力学性能。
二、固溶强化固溶强化是通过向金属中加入其他金属元素形成固溶体来提高金属的强度和硬度。
当溶质原子添加到金属基体中时,它们会扩散到晶界、位错线和晶内空隙等缺陷处,阻碍位错的移动和滑移,从而增加金属的抗变形能力。
此外,溶质原子还可以改变金属的晶体结构,形成固溶体间的相互作用和固溶体与基体之间的互作用,进一步增强金属的力学性能。
固溶强化是一种常用且有效的金属强化方法,广泛应用于各种金属材料的制备中。
三、位错强化位错是金属晶体中的一种线状缺陷,是金属材料中最主要的塑性变形机制之一。
位错强化是通过增加位错的密度和运动阻力来提高金属的强度和硬度。
位错密度的增加可以通过冷变形、滚轧、拉伸等加工过程来实现,这些过程可以引入大量的位错,并形成位错堆积。
位错运动的阻力可以通过固溶强化、析出硬化、相变硬化等方式来增加,这些方式可以改变位错的运动路径和速度,从而提高金属的抗变形能力。
位错强化是一种有效的金属强化手段,尤其适用于高强度和高塑性要求的金属材料。
四、相变强化相变强化是通过控制金属材料的相变过程来提高其强度和硬度。
相变是金属中晶体结构的变化,可以导致晶体中的位错密度增加、晶界运动受阻和晶粒细化等效应,从而提高金属的力学性能。
常见的相变包括固溶体相变、析出相变和相变硬化等。
固溶体相变可以通过合金元素的固溶和析出来实现,析出相变可以通过热处理和时效等方式来实现,而相变硬化可以通过控制金属的冷却速率和变形温度等参数来实现。
金属的五种强化机制及实例
1 固溶强化
(1)纯金属加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低, 这个现象称为固溶强化。
(2)固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的, 故凡是可以增大位错滑移阻力的因素都将使变形抗力增大, 从而使材料强化。
合金组元溶入基体金属的晶格形成固溶体后, 不仅使晶格发生畸变, 同时使位错密度增加。
畸变产生的应力场与位错周围的弹性应力场交互作用, 使合金组元的原子聚集在位错线周围形成“气团”。
位错滑移时必须克服气团的钉扎作用, 带着气团一起滑移或从气团里挣脱出来, 使位错滑移所需的切应力增大。
(3)实例:表1 列出了几种普通黄铜的强度值, 它们的显微组织都是单相固溶体, 但含锌量不同, 强度有很大差异。
在以固溶强化作为主要强化方法时, 应选择在基体金属中溶解度较大的组元作为合金元素, 例如在铝合金中加入铜、镁; 在镁合金中加入铝、锌; 在铜合金中加入锌、铝、锡、镍; 在钛合金中加入铝、钒等。
表1 几种普通黄铜的强度(退火状态)
对同一种固溶体, 强度随浓度增加呈曲线关系升高, 见图1。
在浓度较低时, 强度升高较快, 以后渐趋平缓,大约在原子分数为50 %时达到极大值。
以普通黄铜为例: H96 的含锌量为4 % , σb 为240MPa , 与纯铜相比其强度增加911 %;H90 的含锌量为10 % , σb 为260MPa , 与H96 相比强度仅提高813 %。
2 细晶强化
(1) 晶界上原子排列紊乱, 杂质富集,晶体缺陷的密度较大, 且晶界两侧晶粒的位向也不同, 所有这些因素都对位错滑移产生很大的阻碍作用, 从而使强度升高。
晶粒越细小, 晶界总面积就越大, 强度越高, 这一现象称为细晶强化。
(2) 细晶强化机制:通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。
实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。
这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。
(3) 实例:ZG35CrMnSi钢强化工艺
工件铸造后经过完全退火,正火,再进行亚温淬火加高温回火热处理。
该工艺处理的主要好处在于提高了本工件的强度和韧性。
分析如下:亚温淬火在原奥氏体晶界上形成细小的奥氏体晶粒,奥氏体面积也变大了数倍;杂质在晶界偏析较少,可以细化晶粒和减少晶界偏析;加热温度较低,晶粒长大倾向小,实际晶粒较细;淬火时,马氏体被细化,而且细小晶粒的交界面曲折多弯,可以阻挡裂纹的扩展,两相区淬火时碳化物的析出过程及碳化物的形态不同于普通淬火,可减轻回火脆性提高冲击韧度同时亚温淬火采取水冷,冷速的提高也使晶粒得到细化。
所以亚温淬火在保持抗拉强度不变的情况下,可提高冲击韧度。
由于亚温淬火,存在一部分未溶铁素体,可以提高材料整体的塑性。
由以上分析可知,ZG35CrMnSi钢强化手段主要有细晶强化,第二相强化和位错强化。
3 形变强化
(1)随着塑性变形量的增加,金属流变强度也增加,这种现象称为形变强化。
形变强化亦称为冷变形强化、加工硬化和冷作硬化。
(2) 形变强化的机理是: 冷变形后金属内部的位错密度将大大增加, 且位错相互缠结并形成胞状结构(形变亚晶) , 它们不但阻碍位错滑移, 而且使不能滑移的位错数量剧增, 从而大大增加了位错滑移的难度并使强度提高。
(3)例如高温形变淬火钢及其经形变硬化的效果。
4 弥散强化
(1) 材料通过基体中分布有细小弥散的第二相细粒而产生强化的方法,称为弥散强化。
弥散强化亦称第二相强化或沉淀强化。
第二相是通过加入合金元素然后经过塑性加工和热处理形成,也可通过粉末冶金等方法获得。
第二相大都是硬脆、晶体结构
复杂、熔点较高的金属化合物,有时是与基体相不同的另一种固溶体。
第二相的存在一般都使合金的强度升高。
只有当第二
相强度较高时,合金才能强化。
如果第二相是难以变形的硬脆相,合金的强度主要取决于硬脆相的存在情况。
当第二相呈等轴状且细小均匀地弥散分布时,强化效果最好;当第二相粗大、沿晶界分布或呈粗大针状时,不但强化效果不好,而且合金明显变脆。
如果第二相十分细小, 并且弥散分布在基体相晶粒中, 称为弥散分布型多相合金。
经过淬火+ 时效处理的铝合金、经过
淬火+时效处理的钛合金、以及许多高温合金和粉末合金均属于这类合金。
(2) 其强化机制是: 由于第二相微粒的晶体结构与基体相不同, 当位错切过微粒时必然在其滑移面上造成原子排列错配,
增加了滑移阻力。
另外每个位错切过微粒时, 均使微粒产生宽度为位错柏氏矢量的表面台阶, 增加了微粒与基体间的界面积, 需要相应的能量。
微粒周围的弹性应力场与位错产生交互作用, 将增加位错滑移的阻力。
微粒的弹性模量与基体不同, 如果微粒的弹性模量较大, 也将使位错滑移的阻力增大。
最后, 微粒尺寸和体积分数对合金的强度也有影响, 增大微粒尺寸和体积分数, 都有利于合金强化。
(3)实例:TZM钼合金主要在温度高于1000℃的情况下使用,具有熔点高,强度大,弹性模量高和高温力学性能好等特点。
TZM钼合金是在钼中加入一定量的Ti和Zr而形成的一种高温合金。
其中除少量的Ti和Zr形成碳化物外,有90.77%以上
的Ti,94.62%以上的Zr及41.8%以上的C固溶到基体Mo中,Ti和Zr主要起固溶强化作用,另外合金中部分富集在晶界
的碳化物起一定的强化作用,因而使钼基体得到Mo-Ti固溶体的固溶强化和TiC质点的弥散强化。
5 时效强化
(1)是指在固溶了合金元素以后,在常温或加温的条件下,使在高温固溶的合金元素以某种形式析出(金属间化合物之类),形成弥散分布的硬质质点,对位错切过造成阻力,使强度增加,韧性降低。
(2)时效强化机制是: 先通过固溶淬火获得过饱和固溶体, 在随后的时效(人工时效或自然时效) 过程中将在基体上沉淀出
弥散分布的第二相(溶质原子富集区、过渡相或平衡相) , 通过沉淀强化使合金的强度升高。
在热处理前后第二相的组织形态发生了很大变化, 而这些变化均有利于合金强化。
(3)实例:许多铝合金、镁合金和铜合金都可以通过淬火、时效提高强度, 许多钛合金(主要是β型钛合金和α+ β型钛合金) 可以通过马氏体转变提高强度, 而且强度增幅很大, 有时可以通过热处理将强度提高百分之几十甚至几倍。
例如表4。
表5 反映了Al - Cu 合金在热处理前后的组织变化情况。
钛合金的热处理强化和铝合金有本质上的区别。
钛合金淬火的目的是为了获得马氏体, 在随后的时效过程中通过马氏体分解析出弥散分布的第二相, 从而起到强化作用。
马氏体强化实际上是一种综合性强化方法,它综合了细晶强化(马氏体晶粒远较母相晶粒细小) 、固溶强化(马氏体是过饱和固溶体) 、位错强化(马氏体中含有高密度位错)和第二相强化(主要是不可变形微粒的沉淀强化) 于一体, 操作亦比较简便, 是一种经济而有效的强化方法。
表6 显示了几种钛合金的热处理强化效果。
有色金属的形变热处理逐渐在工业上获得广泛应用。
形变热处理将塑性变形与热处理结合, 强化效果很好, 往往不降低韧性甚至使韧性稍有改善。
以钛合金为例, 经过形变热处理后强度极限可提高5~20 % , 屈服强度增加10~30 % , 此外塑性、疲劳强度、热强性、抗蚀性也可得到不同程度的提高。
影响形变强化效果的主要因素是合金成分、变形温度、变形量、冷却速度和热处理工艺等。