全光通信网-光传送网技术
- 格式:ppt
- 大小:1.16 MB
- 文档页数:32
什么是全光网络技术什么是全光网络技术?所谓全光网络,是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在。
因为在整个传输过程中没有电的处理,所以PDH、SDH、ATM等各种传送方式均可使用,提高了网络资源的利用率。
下面就由小编来给大家说说什么是全光网络技术吧。
什么是全光网络技术(全光网络示意图)1、首先小编要给大家介绍下什么是全光网络先。
1.1、全光网络所谓全光网络,是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在。
因为在整个传输过程中没有电的处理,所以PDH、SDH、ATM等各种传送方式均可使用,提高了网络资源的利用率。
1.2、全光网络技术全光网络的相关技术主要包括全光交换、光交叉连接、全光中继和光复用/去复用等。
全光网络技术承诺的美好前景很简单: 数据将以更快的速度传输,因为数据仅以光的形式进行编码。
“仅”是个关键字。
目前,光网络设备从光缆中接收光脉冲,将它转换为电信号进行处理,然后将电信号还原为光进行传输。
即使处理时间为零,这种转换也会增加时延。
光技术鼓吹者说,消除光电转换将使数据传输速率达到万亿位级。
一个经常引用的统计数据说光纤具有25万亿到75万亿位/秒的理论容量,并把这个数据与数据速率通常以百万位计的铜线进行比较,体现其优势。
但是,这种论点没有涉及全光网络的两个基本要求:路由和缓冲。
现在全光网络中没有路由协议这类东西。
目前,光网络设备运行在点到点或环路拓扑结构中。
点到点是指,光脉冲要么由设备A 传送到设备B,要么不传送。
如果电缆出现中断,点到点方式没有后备连接。
像SONET的自动保护交换这样的环路技术提供了略好一些的冗余性:一旦电缆出现中断,环路可以绕过去。
而任何更复杂的拓扑结构都需要路由技术。
一些光网络技术鼓吹者说,路由决策属于光网络的边缘。
的确如此,只要全光网络很小并且简单。
如果交换机制造商真正想增加销售量,他们就需要在他们的设备中提供更多的智能。
光传送网otn技术的原理与测试光传送网(OTN)技术是一种快速、高效、可靠的光通信传输技术,其原理基于光纤传输和光波分复用技术。
OTN技术可提供大容量、低时延和高可靠性的传输服务,广泛应用于全球的电信、互联网和数据中心网络等领域。
本文将详细介绍OTN技术的原理与测试方法。
首先,让我们了解一下OTN技术的原理。
OTN技术采用波分复用技术,将不同的光信号通过不同的波长进行分离和复用。
在OTN网络中,光信号由光发送机发送到光接收机,信号经过专用设备进行转换和处理。
一般来说,OTN网络由三个主要组成部分组成:光传输设备、光交叉连接设备和光复用设备。
光传输设备通常由光纤和光放大器组成,负责将光信号从源端传输到目的端。
光信号首先通过发送机进行调制和放大,然后通过光纤传输到接收机。
光放大器用于增强光信号的强度,以确保信号的稳定传输。
光交叉连接设备用于在光传输过程中实现光信号的交叉连接和路由。
光交叉连接设备能够实现灵活的光信号路由和交叉连接,以满足不同应用场景的需求。
同时,光交叉连接设备还能进行信号的转换和恢复,以保证信号质量和传输效率。
光复用设备是OTN网络中的重要组成部分,它主要用于将不同的光信号进行分离和复用。
OTN技术采用密集波分复用(DWDM)技术,通过不同的波长将多个光信号进行分离和复用。
光复用设备能够同时处理多个波长的光信号,从而提供更高的传输容量和更大的带宽。
了解了OTN技术的原理,接下来我们来介绍OTN技术的测试方法。
OTN技术的测试主要包括性能测试和功能测试两个方面。
性能测试是指对OTN设备和网络进行性能评估和测量。
性能测试主要包括以下几个方面:带宽测量、误码率测量、时延测量和抖动测量。
带宽测量用于测量OTN网络的传输容量和带宽利用率,通过向网络发送测试信号并统计传输速率来确定网络的带宽。
误码率测量用于评估光信号的传输质量,通过统计接收到的错误码来计算误码率。
时延测量用于测量光信号在传输过程中所经历的时延,包括传输时延、处理时延和排队时延。
光传输技术光传输技术是一种利用光信号进行信息传输的技术,它在现代通信领域中起着至关重要的作用。
随着科技的进步,光传输技术已经成为了现代通信网络的主流技术,它具有传输带宽大、传输速度快、传输距离远等优点。
光传输技术的基础是光纤通信技术。
光纤是一种通过光信号进行信息传输的纤维材料,它具有非常优异的光学特性。
光信号在纤芯中进行传输,通过光纤中的全反射现象使光信号能够长距离地传输。
纤芯和纤壳之间的折射率差使得光信号能够完全在纤芯中反射,而不会损耗光信号的强度。
这使得光纤通信具有非常低的信号衰减和噪音干扰,能够实现长距离高速传输。
光纤通信系统由三部分组成:光发射器、光纤传输系统和光接收器。
光发射器用于将电信号转换成光信号,并通过光纤传输系统将光信号传输到目标位置。
光接收器则将光信号转换为电信号,以便接收并解码信号。
光纤传输系统中,波分复用技术是一项重要的技术。
随着通信数据量的不断增加,单一光纤的传输带宽已经无法满足需求。
波分复用技术通过将不同波长的光信号在同一光纤中进行传输,大大提高了光纤的传输带宽。
这种技术能够同时传输多个信号,使得光纤的传输容量大大增加。
此外,光传输技术还具有传输速度快的优势。
由于光信号的传播速度非常快,几乎接近于光速,因此光传输技术可以实现高速数据传输。
这对于大数据传输、高清视频传输等应用来说非常重要。
光传输技术的应用非常广泛,不仅用于电话网络、互联网,还用于电视广播、数据中心等领域。
在电视广播领域,光传输技术可以传送高清视频信号,提供更好的观看体验。
在数据中心领域,光纤通信技术能够实现快速高效的数据交换,为云计算、大数据分析等应用提供支持。
尽管光传输技术在通信领域中占据重要地位,但它也存在一些挑战与限制。
首先,光纤的布线需要一定的成本和技术支持。
其次,在光纤传输过程中仍然会存在一定的光信号衰减和噪音干扰,因此需要使用光放大器和光纤衰减补偿器等设备来增强信号的传输能力。
此外,光纤存储技术仍然处于发展阶段,尚未完全成熟。
关于光网络传输技术介绍最近有网友想了解下光网络传输技术的知识,所以店铺就整理了相关资料分享给大家,具体内容如下.希望大家参考参考光网络传输技术介绍光传输是在发送方和接收方之间以光信号形态进行传输的技术。
技术简介同步光纤网(Synchronous Optical Network,SONET)和同步数字系列(Synchronous Digital Hierarchy,SDH):一种光纤传输体制(前者是美国标准,用于北美地区,后者是国际标准),它以同步传送模块(STM—1,155Mbps)为基本概念,其模块由信息净负荷、段开销、管理单元指针构成,其突出特点是利用虚容器方式兼容各种PDH体系。
准同步数字系列(Plesiochronous Digital Hierarchy ,PDH):SONET/SDH出现前的一种数字传输体制,非光纤传输主流设备。
主要是为语音通信设计,没有世界性统一的标准数字信号速率和帧结构,国际互连互通困难。
波分复用技术(Wavelength Division Multiplex,WDM):本质上是在光纤上实行的频分复用(Frequency Division Multiplex ,FDM),即光域上的FDM技术。
是提高光纤通信容量的有效方法。
为了充分利用单模光纤低损耗区巨大的带宽资源,根据每一个信道光波频率(或波长)的不同而将光纤的低损耗窗口划分成若干个信道的技术。
用不同的波长传送各自的信息,因此即使在同一根光纤上也不会相互干扰。
密集波分复用技术(Dense Wavelength Division Multiplex,DWDM):与传统WDM系统不同,DWDM系统的信道间隔更窄,更能充分利用带宽。
光分插复用(Optical Add/Drop Multiplex, OADM):是一种用滤光器或分用器从波分复用传输链路插入或分出光信号的设备。
OADM在WDM系统中有选择地上/下所需速率、格式和协议类型的光波长信号。
(完整)全光网技术编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)全光网技术)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)全光网技术的全部内容。
全光网络技术绪论21 世纪是人类历史上高速持续发展的新时代,信息化成为社会经济发展的火车头,信息网络的应用渗透了国民经济和社会发展的各个领域和层次,人类在步入知识经济时代的同时,也进入了网络时代.随着Internet业务和多媒体应用的快速发展,网络的业务量正在以指数级的速度迅速膨胀,这就要求网络必须具有高比特率数据传输能力和大吞吐量的交叉能力。
光纤通信技术出现以后,其近30THz的巨大潜在带宽容量给通信领域带来了蓬勃发展的机遇,特别是在提出信息高速公路以来,光技术开始渗透于整个通信网,光纤通信有向全光网推进的趋势。
所以面对因特网宽带接入需求的飞速发展,迫切需要成倍地提升通信容量,降低成本,迅速提供业务.通信网络的发展已经经历了两代,第一代是全电网络,它的容量已经远不能满足要求;第二代是用光纤取代电缆后形成的电光网络,这是目前正广泛使用的网络.光纤通信的高速率和大容量等优越性能已经使人们认识到光纤通信取代传统的电子通信的必然趋势。
但目前在光通信系统中的电子线路严重限制了光纤通信优势的发挥,即出现所谓的“电子瓶颈”问题。
全光网络即是基于克服“电子瓶颈”这一局限性的第三代网络.DWDM光传输系统无疑解决了提升通信容量的问题,但DWDM也带来了很多问题。
现在的通信网络是多种接入方式并存,语音通过网络,IP通过以太网或AIT,视频通过HFC网络,骨干网普遍采用SDH体制(包括本地,地区以及全国三级),并通过ADM和DXC连接起来,这种体制下DWDM 只用在地区以及全国网两级。