管道与储罐强度-3海底管道详解
- 格式:ppt
- 大小:651.50 KB
- 文档页数:20
海底管道强度分析与稳定性研究摘要:随着社会经济的不断发展,人类对能源的需求不断增大,海洋石油产业蓬勃发展。
海底管道作为海洋能源输送的重要方式,具有无可替代的重要作用,海底环境特殊且复杂,海底管道造价高昂和失事严重后果,海底管道一直是一个重要的研究方向。
关键字:海底管道;强度分析;稳定性;路由选择1.海底管道的介绍海底管道包括海洋油气田开发输送管道和进出口油气输送管道。
海洋油气田开发输送管道的特点是管道内输送的流体,其流速、流量、压力等变化范围大,包括油气田外输管道和油气田内部连接管道。
外输管道用于输送油气田初处理后的原油和天然气,一般较长。
进出口油气输送管道与油气田开发无关,是用来把商业油气通过海底油气管道输送到预定位置,大多用在油气的进出口输送工程中。
进出口油气输送管道的特点是:管道内输送的流体,其流速、流量、压力等变化范围小,流量大。
2.海底管道路由选择根据油气管道的用途和总体布局在海图上进行路由预选。
在路由预选时应根据尽可能得到的路由海区已有的自然环境资料、海洋开发活动及其规划资料、已建海底电缆管道资料等,综合考虑进行路由预选,在情况复杂的海域,可选择2-3个比较方案,待路由调查后确定。
对于有登陆的管道应进行登陆点现场踏勘,选择有利于管道登陆的区段作为登陆点。
路由勘察包括工程地球物理探测、工程地质取样和土工试验、海洋水文气象要素观测和推算、腐蚀环境参数测定。
3.海底管道的强度分析与设计海底油气管道强度分析与设计目前有两种法。
一是允许应力法,以DNV2013为代表的包括ASEM31.4和ASEM31.8在内的规范和作法。
二是极限状态法,以DNV OS F101和API -RP 1111规范和作法为代表。
采用允许应力法在世界范围内设计了众多的海底管道,现在仍然被工程设计单位应用,由于该方法比较成熟,国际上的工程公司和科研结构开发出大量的与之配套的计算机软件,并且这些软件已经商业化,容易购买和使用。
海底管道结构设计与稳定性分析随着海洋经济的不断发展和深入,海底管道的重要性不断凸显。
海底管道是指安装在海底的管道系统,主要使用于输送油气、深海采矿等领域。
其结构设计和稳定性分析是海底管道运营的关键,直接影响其安全性和可靠性,具有非常重要的意义。
一、海底管道结构设计海底管道结构设计是海底管道工程中的核心内容,主要包括管道材料选择、管径大小、壁厚、断面形状等各方面。
在设计过程中,需要充分考虑海洋环境因素,如海底地形、流体运动条件等,以保证管道在复杂海洋环境下的持续安全运行。
1.管道材料选择管道材料是影响海底管道结构设计的主要因素之一。
常见的管道材料有钢材、聚氨酯、复合材料等。
其中,钢材是传统的管道材料,具有良好的韧性和抗压性能,但是存在较大的腐蚀和疲劳问题。
聚氨酯材料具有轻质、耐腐蚀、维护简单等优势,但是其耐压性能较差,容易受到外力影响。
复合材料具有优异的力学性能和耐腐蚀特性,但是其制造成本较高,需要进行定制制造,因此使用较少。
2.管径大小管道的直径大小是影响其输送能力的重要因素。
一般来说,管径越大,输送能力也就越大。
但是,海底管道的设计需要根据实际需求和海洋环境因素进行综合考虑,避免管道直径过大或过小,影响其稳定性和经济性。
3.壁厚管道壁厚是影响其抗压性能和耐腐蚀性能的重要因素。
海水中的氯离子、海藻、贝壳等都会对管道产生腐蚀作用,因此需要使用耐腐蚀的材料,并且设置合适的壁厚,以确保管道的使用寿命。
4.断面形状断面形状是影响管道稳定性和流场分布的因素之一。
常见的管道形状有圆形、方形、D形等。
在海底管道结构设计中,需要根据海洋环境的特点和设计要求,选择合适的断面形状,以保证油气输送的安全稳定。
二、海底管道稳定性分析海底管道的稳定性分析是海底管道工程中的重要内容,主要包括静力学和动力学两个方面。
静力学分析主要针对管道自身重力和海水浮力作用下的稳定性问题,动力学分析则是在考虑海浪、洋流等外力作用下的管道动态响应,以保证管道的安全运行。
第四章海底管道第一节海底管道的设计要求和技术规范随着海上油田开采方式和技术的发展,海底管道已广泛应用于海上油田的开发。
正是钢制管道材料的大量使用,带动了各钢铁厂的发展,但恶劣的海上施工环境和激烈的国内外市场竞争,也对钢管的质量、规格、材质、价格、供货周期和配套的售后服务等,提出了越来越高的要求。
海上油田按油气集输外运方式可以划分为码头式、单点系泊式、登陆式等。
因此,就海底管道而言,主要有:海上油田内部的油/气集输管道和注水管道;海上油田到陆地(陆地处理厂、炼厂和储油装置)的输油/气管道;陆地到装卸油品的系泊装置间的海底管道及岛屿或与岸联结的海底管道等。
从结构上看可分为双重保温管道和单层管道。
从输送介质可分为海底输油管道、海底输气管道、海底油气混输管道和海底输水管道等。
海底管道的设计通常按照国际通用规范进行。
一般考虑的主要因素有:选用的设计条件、规范和规定,管道路由、海底状况、坐标及接口,管道设计寿命,操作数据及条件,管道尺寸,环境数据,钢管材料特性与外防腐和涂层等。
海底管道设计主要包括:管道尺寸和壁厚设计,工艺流程分析,管道稳定性计算,膨胀位移设计,铺设应力计算,弃管与回收计算,立管设计,管道自由跨度分析及管道防腐设计等。
一、海底管道的技术规范海底管道的铺设方法有浮游法、悬浮拖法、底拖法、离底拖法、铺管船法等,其中使用铺管船法铺设海底管道是最常用的铺管方式之一。
其主要优点表现在流水线作业效率高、管子变形及强度控制较好、适应较深水域、能弃管避风等。
目前国内拥有的第2代铺管船的主要原理是:依靠船的锚泊系统沿定位方向移船,利用滚轮传送系统和作业线形成运管、清洁除锈、对管、焊接、检验、接头防腐处理等流水作业,使用张紧器和托管架控制管道变形等。
据统计,我国近海用铺管船法铺设的海底管道约占铺管数量的97%以上。
通过上述数据可以看出,海底管道主要依靠铺管船铺设,工程所用管材必须满足设计和海上铺管的藏工要求才能使用。
▲管道:管子、连接件、阀门等连接而成用于输送气液体和带固体颗粒流体的装置▲强度:金属材料在外力作用下,抵抗永久变形或断裂的能力▲地面敷设的优缺点优点:不影响土壤环境,且不受地下水位影响,检修方便发现和清除事故容易。
缺点:管道直接设置在空气中,对于非常温管增加冷热能量的损失,限制了通道的高度,不美观。
●失效机理:①材料:a.塑性失稳b.断裂c.疲劳d.应力腐蚀开裂e.氢致开裂f.裂纹的动态扩展。
②结构—丧失了稳定性 a.塑性失稳:由于变形引起的截面几何尺寸的改变而导致的丧失平衡的现象。
图 b.断裂:由于裂纹的不稳定扩展造成的。
产生原因:制造—焊缝,母材缺陷、夹渣、分层等;施工—机械损伤、表面划度、凹坑;运行—介质、腐蚀环境。
c.疲劳:材料在交变应力作用下的破坏。
原因:内压变化—间歇输送、正反输送、输气;外力变化—风载荷、海底管跨的涡激振动、公路下未加套管的管道d.应力腐蚀开裂:基本条件:局部环境;敏感元件;应力条件e.氢致开S-酸性环境,腐蚀产生氢侵入钢内而产生的裂纹。
f.裂纹的动态扩展:输气裂:H2管道特有的现象●管道的结构失稳:a 轴向载荷-轴向失稳b外压-径向失稳c弯曲-径向失稳d联合载荷-径向失稳。
●弹性敷设是利用管道在外力或自重作用下产生弹性弯曲变形来改变管道的走向或适应高程的变化。
●按工艺分,弯头可以分为预制弯管、冷弯弯管、热煨弯管●永久荷载:施加在管道上不变的,其变化与平均值相比可以忽略不计,其变化是单调的并且趋于限值的荷载。
●可变载荷:施加在管道结构上由人群、物料、交通工具引起的使用或占用荷载●偶然荷载:设计使用期内偶然出现或不出现其数值很大,可持续时间很短的荷载。
●环向应力是由管道输送介质的内压产生的。
●地下管道产生轴向应力的原因是温度变化和环向应力的泊松效应。
●管道热应力:在管道中由于温度变化产生的应力.●管道出现温度变化的主要原因:管道在敷设施工时的温度由外部气温决定,而在运行过程中则由输送产品的温度决定,两者之间必然存在差别,不可避免在管道运行过程中产生应力或伸缩变形。
海底管道工程强度分析及优化设计近年来,随着全球化和市场经济的发展,海洋开发成为国家发展的战略重点。
海洋的广阔空间拥有丰富的资源,有着潜在的价值。
然而,海底环境恶劣,海底管道工程的建设难度大,海底管道会受到各种复杂的力矩的影响,如水动力、风力、海底地形变化等,加之自然环境的巨大压力和化学侵蚀,使得海底管道的强度设计与分析显得尤为重要。
海底管道的强度分析是海底管道工程设计中至关重要的一步。
强度分析的目的是确保海底管道在各种荷载作用下的安全可靠运行。
因此,海底管道的强度设计需要进行复杂的计算,针对管道的各种荷载条件、管道的参数以及环境因素等再进行优化设计,以满足海底管道的运行条件和安全性要求。
1. 海底管道的荷载条件海洋环境下,海底管道会受到多种荷载作用,主要包括自重荷载、水动力荷载、洋流荷载、大风浪荷载、海底地形变化和腐蚀等。
其中,水动力荷载和洋流荷载是海洋环境中经常出现的荷载作用,也是对海底管道强度影响最大的荷载。
2. 海底管道的强度计算方法根据不同的荷载条件和海底管道的参数,我们可以采用不同的强度计算方法。
常用的计算方法有等效应力法、有限元法等。
等效应力法是海底管道强度分析中最常用的方法之一,它可以将复杂的力学问题简化为基本的弹性理论问题。
有限元法是利用数值计算方法解决强度分析问题的一种有效技术。
有限元法具有高精度、灵活性强的特点,被广泛应用于海底管道强度优化设计中。
3. 海底管道的优化设计针对海底管道的强度计算结果,可以进行优化设计,以提高管道的可靠性和安全性。
优化设计的目的是在保证海底管道强度安全的前提下,减小管道所受的荷载,降低对海底管道系统运营的影响,并提高其使用寿命。
在优化设计中,可以采用以下的方法:(1)管道的设计参数优化。
包括管道的壁厚、直径、长度等参数,可以通过优化设计,选取合适的管道参数来减小管道所受的荷载,提高管道的强度。
(2)管道的防腐保护。
海底管道长期处于潮湿的海洋环境中,容易出现腐蚀问题。