运筹学 第七章 决策分析
- 格式:ppt
- 大小:321.50 KB
- 文档页数:13
运筹学优化问题和决策分析的方法运筹学是一门应用数学学科,旨在通过建立数学模型来解决决策问题,并运用优化算法寻找最优解。
在现代社会中,运筹学的应用已经渗透到各个领域,包括供应链管理、物流规划、生产调度等。
本文将介绍运筹学中的优化问题和决策分析的方法。
一、优化问题的基本概念在运筹学中,优化问题是指在一定的约束条件下,寻找某个指标的最优解。
优化问题可以分为线性优化问题和非线性优化问题。
线性优化问题的目标函数和约束条件都是线性的,而非线性优化问题的目标函数和约束条件涉及非线性关系。
在解决优化问题时,通常会使用数学建模的方法。
首先,将实际问题抽象为数学模型,然后建立数学模型的目标函数和约束条件。
接下来,运用优化算法求解模型,得到最优解。
二、常用的优化算法1. 线性规划线性规划是指优化问题的目标函数和约束条件都是线性的情况。
线性规划常常可以用单纯形法来求解,该方法通过迭代计算,逐步逼近最优解。
2. 非线性规划非线性规划是指优化问题的目标函数和约束条件涉及非线性关系的情况。
在求解非线性规划问题时,可以使用梯度下降法、牛顿法等方法。
3. 整数规划整数规划是指优化问题的变量需要取整数值的情况。
整数规划问题通常更加复杂,可以使用分支定界法、割平面法等算法求解。
三、决策分析的方法决策分析是指运用数学建模和分析方法来帮助决策者做出最佳决策。
决策分析的方法包括多属性决策分析、决策树分析、动态规划等。
1. 多属性决策分析多属性决策分析是指在考虑多个决策指标的情况下,综合分析各个指标的权重和价值,从而做出最佳决策。
常用的多属性决策分析方法包括层次分析法、模糊综合评判法等。
2. 决策树分析决策树分析是一种通过构建决策树来辅助决策的方法。
决策树是一种具有树状结构的决策模型,通过分析各个决策路径上的概率和收益来进行决策。
3. 动态规划动态规划是一种递推和状态转移的方法,常用于求解多阶段决策问题。
动态规划将决策问题分解为一系列子问题,并通过逐步求解子问题来求解原问题的最优解。
运筹学中的优化理论和决策分析运筹学是一种科学理论和方法论,主要研究如何制定最优决策,以实现效益最大化。
它主要通过数学模型和计算机仿真等手段,对复杂系统进行优化分析和决策支持,以达到最优化的结果。
优化理论作为运筹学的核心竞争力,是运用数学、工程等学科的方法来解决最优化问题的理论体系,旨在实现最佳决策的目的。
本文将围绕运筹学中的优化理论和决策分析展开讨论。
一、优化理论优化理论是指通过数学分析和计算机仿真等手段,对具有一定复杂性的系统进行分析,从而实现最优化的结果。
优化问题是指在一定的限制条件下,寻求某种指标或目标函数的最优值。
如何处理约束条件和目标函数之间的相互制约关系,是优化问题研究中的核心难题。
因此,优化理论主要通过建立数学模型和算法设计等手段,实现最优决策的目标。
1. 建立数学模型建立数学模型是优化理论的核心。
数学模型通常包括决策变量、目标函数、约束条件等要素。
决策变量是指决策者的选择变量,而目标函数则是指要优化的指标或目标。
约束条件则是指决策制定过程中需要考虑的各类限制因素。
通过将系统建模,可以得到系统的优化方案,并为制定最优决策提供途径。
2. 算法设计算法设计是实现最优化的核心。
常见的算法包括线性规划、非线性规划、动态规划、整数规划等。
不同种类的算法在面对不同的优化问题时,具有各自的优缺点。
因此,在实际应用中,需要根据优化问题特征选择相应的算法进行求解。
3. 求解方法求解方法是指实现算法的具体操作过程,包括求解器、迭代算法、搜索算法等。
求解方法的选择与算法种类密切相关。
通过对数学模型建立算法,并运用求解方法进行求解,可以在有限的时间内得到最优化结果。
二、决策分析决策分析是指对决策问题进行全面、系统地分析,从而为制定最优决策提供支持。
决策分析主要涵盖了决策建模、风险分析、方案评估和数据挖掘四个方面。
1. 决策建模决策建模是指对问题进行抽象、形式化的过程,将现实问题映射到数学模型中进行分析和求解。
运筹学案例七: 投资决策问题(2)一.问题的提出某投资开发公司拥有总资金100万元,今有4个项目可供选择投资.投入资金及预计收 益如下表所示:项 目 一 二 三 四 投入资金 预计收益 40 30 50 40 35 25 40 35应如何决策投资方案.二.构造数学模型一个好的投资方案应是投资少,收益大的方案.设{1,2,3,4)(i 不投资第i项目0,决定投资第i项目1,==x i数学模型:⎩⎨⎧==-≤+++++++++4,3,2,1,0)1(10040355040)35254030max()40355040(min 432143214321i x x x x x x x x x x x x x x ii改写上述模型为分式规划模型:x x x x x x x x z 432143214035504035254030max ++++++=⎩⎨⎧==-≤+++4,3,2,1,0)1(100403550404321i x x x x x x ii 令τy x jj =,得⎪⎩⎪⎨⎧=≥≤-+++=++++++==)4,3,2,1(0,001004035504014035504035254030max 4321432143211j y y y y y y y y y y y y y z j 或τττ 简化之,得⎪⎩⎪⎨⎧=≥=++++++==)4,3,2,1(0100114035504035254030max 432143211j y y y y y y y y y z jττ或三.求解针对上述特殊模型,采用隐枚举算法思想进行求解.计算表格:),,,(4321y y y y(1)→τ (2) Z 1 (0, 0, 0,τ) (0, 0,τ, 0) (0, 0,τ,τ) (0,τ, 0, 0) (0,τ, 0,τ) (0,τ,τ, 0) (0,τ,τ,τ) (τ,0, 0, 0) (τ,0, 0,τ) (τ,0,τ, 0) (τ,0,τ,τ) (τ,τ,0, 0) (τ,τ,0,τ) (τ,τ,τ,0) (τ,τ,τ,τ)1/40 √ 1/35 √ 1/75 √ 1/50 √ 1/90 √ 1/85 √ 1/125 × 1/40 √ 1/80 √ 1/75 √ 1/115 × 1/90 √ 1/130 × 1/125 × 1/165 ×0.875 0.714 0.8 0.8 0.833 0.765 0.75 0.8125 0.733 0.777X * =( 0, 0, 0, 1 )T max Z=0.875讨论:上述模型最优解对实际投资决策问题显然无法运用.分析其原因构模时缺少考虑总投资应尽量使用条件,例如,至少应把不低于总投资百分之一定比例的资金投入相应项目.本题中应追加: x 1+x 2+x 3+x 4>1 约束条件,于是,模型为:x x x x x x x x z 432143214035504035254030max ++++++=⎪⎩⎪⎨⎧==-=+++≤+++4,3,2,1,0)1(21004035504043214321i x x x x x x x x x x i i令τy x jj =,得⎪⎪⎩⎪⎪⎨⎧=≥≥=+++=++++++==)4,3,2,1(0,0)2(10012)1(14035504035254030max 4321432143211j y y y y y y y y y y y y y z j 或ττττ 计算表格),,,(4321y y y y(1)→τ (2)Z 1( 0, 0,τ,τ) ( 0,τ, 0,τ) ( 0,τ,τ, 0) (τ, 0, 0,τ) (τ,0 ,τ, 0) (τ,τ, 0, 0) 1/75 √ 1/90 √ 1/85 √ 1/80 √ 1/75 √ 1/90 √ 0.8 0.833 0.765 0.8125 0.733 0.777X * = ( 0,1,0,1 )T即公司应投资第二和第四项目,总投资金额为90万元,最大总收益为75万元.另解: 以单位投资所获收益和最大构造模型如下4,3,2,114,3,2,10)1(1004035504087755443max 43214321=-=⎪⎩⎪⎨⎧==-≤++++++=j y x j x x x x x x x x x x z j j j j 令化为标准型:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-≥++++-≥----+++=4,3,2,10)1()1(0354*******)0(075435487284175435487min 312431243124j y y y y y y y y y y y y y y f j j计算表格:),,,(3124y y y y (0) (1)满足否? f ( 0, 0, 0, 0 ) ( 1, 0, 0, 0 ) ( 1, 1, 0, 0 ) ( 1, 0, 1, 0 ) ( 1, 0, 0, 1 ) ( 0, 1, 0, 0 ) ( 0, 1, 1, 0 ) ( 0, 1, 0, 1 ) ( 0, 0, 1, 0 ) ( 0, 0, 1, 1 ) 1.4643 -65 0.5893 -25 -0.2107 -0.1607 -0.1250 0.6643 -15 -0.0857 -0.0500 0.7143 -25 0 10 × × × × × × × × × √28/41X* = ( 0,1,0,1 )T。
决策分析与运筹学一、引言决策是人们在生活中经常面临的问题,无论是个人还是组织,都要进行决策。
然而,由于信息的不对称、不确定性和复杂性,决策往往会带来巨大的风险。
因此,需要一种科学的方法来辅助我们进行决策,决策分析和运筹学应运而生。
二、决策分析决策分析是以信息、模型和计算为基础的一种决策方法。
它采用定量方法对决策进行分析和评估,从而使决策者获得更清晰的认识和更准确的预测。
常用的决策分析方法包括多属性决策分析、层次分析法和决策树等。
多属性决策分析指的是当决策对象存在多个属性时,通过对多个属性的评估,进行权重的确定,从而综合比较各选项的利弊。
它可以用于复杂的决策问题,如选址、投资决策等。
层次分析法是一种基于分级权重的决策分析方法,它通过构建决策层次结构和定量化各因素之间的重要性关系,实现了对决策对象的逐层分析和权重确定。
层次分析法常用于复杂的决策问题,如市场调研、供应链优化等。
决策树是一种决策分析的可视化方法,它通过构建一棵树形结构,使决策问题变得直观而易于理解。
决策树可以应用于分类、预测和优化等问题,如客户流失预测、电商平台推荐算法等。
三、运筹学运筹学是应用数学、统计学和计算机科学等工具和技术解决实际问题的一门学科。
它以最大化或最小化目标函数为目标,通过构建数学模型和优化算法,寻求最优解。
常用的运筹学方法包括线性规划、整数规划和蒙特卡罗模拟等。
线性规划是一种通过线性模型来寻找最优解的方法,在经济、管理和运输等领域得到广泛应用。
例如,用线性规划模型可以实现最小成本配送、最佳产量分配等。
整数规划是线性规划的扩展,它在目标函数、决策变量或限制条件上增加了整数条件。
整数规划可以用于很多特殊问题,如最佳固定资产重复购置决策、生产调度等。
蒙特卡罗模拟是一种通过模拟随机事件来获得概率分布的方法。
它可以应用于很多领域,如金融风险评估、自然灾害预测等。
四、应用案例决策分析和运筹学在实践中得到广泛的应用。
例如,智能制造领域中的生产调度问题,通过运筹学的方法,可以实现对机器和物料的优化排产,从而提高生产效率和减少成本。