金属材料基本知识
- 格式:doc
- 大小:49.00 KB
- 文档页数:9
金属材料知识概述承压设备制造是国民经济的基础产业,各种生产工艺的要求各不尽相同,如:压力从真空到高压甚至超高压、温度从低温到高温以及腐蚀性、易燃、易爆物料等,使得设备处在极其复杂的操作条件下运行。
由于不同的生产条件对设备材料有不同的要求,因此,合理的选用材料是设计承压设备的关键环节。
例如:对于高温容器,由于钢材在高温的长期作用下,材料的力学性能和金属组织都会发生明显的变化,加之承受一定的工作压力,因此在选材时必须考虑到材料的强度及高温条件下组织的稳定性。
容器内部盛装的介质大多具有一定的腐蚀性,因此需要考虑材料的耐腐蚀情况。
对于频繁开、停车的设备或可能受到冲击载荷作用的设备,还要考虑材料的疲劳等。
而低温条件下操作的设备,则需要考虑材料低温下的脆性断裂问题。
一、金属材料的分类二、金属材料的性能三、影响材料性能的因素四、特种设备对材料的要求五、特种设备常用材料标准一、金属材料分类黑色金属:铁和铁的合金均称为黑色金属纯铁:化学纯铁含碳量几乎为零,工业纯铁含碳量<0.05%。
纯铁是很软的,一般不应用到实际中。
铁碳合金:以铁为基础,以碳为主要添加元素的合金,统称为铁碳合金。
生铁:把铁矿石放到高炉中冶炼而成的,含碳量2%~4.3%(也有资料称3.5%—5.5%、2.11%-6.67%)的铁碳合金称为生铁。
生铁质硬而脆,缺乏韧性,几乎没有塑性变形能力,因此不能通过锻造、轧制、拉拔等方法加工成形,主要用来炼钢和制造铸件,如白口铁、灰口铁和球墨铸铁。
也有习惯上把炼钢生铁叫做生铁,把铸造生铁简称为铸铁。
钢:含碳量在0.04%-2.3%之间(也有资料称0.03%-1.2%)的铁碳合金称为钢。
为了保证其韧性和塑性,含碳量一般不超过1.7%。
钢的主要元素除铁、碳外,还有硅、锰、硫、磷等。
有色金属:除黑色金属外的金属和合金,如铜、锡、铅、锌、铝等。
金属材料分类(钢材)1、按化学成分分类:①碳素钢:简称碳钢。
除铁、碳外主要含有少量Si、Mn及P、S等杂质,这些总含量不超过2%,按含碳量不同分为:低碳钢——含碳量小于0.25%中碳钢——含碳量等于0.25%~0.6%高碳钢——含碳量大于0.6%②合金钢:除碳钢所含元素外,还含有其它一些合金元素:如Cr、Ni、Mo、W、V、B等,按合金元素含量不同分类:低合金钢——合金元素含量小于5%中合金钢——合金元素含量等于5%~10%高合金钢——合金元素含量大于10%金属材料分类(钢材)2、按用途分类:①建筑工程用钢或构件用钢①普通碳素结构钢②低合金结构钢③钢筋用钢等②结构钢机器零件用钢调质结构钢表面硬化结构钢:包括渗碳钢、渗氨钢、表面淬火用钢易切削结构钢冷塑性成形用钢:包括冷冲压用钢、冷镦用钢。
1、金属材料的机械性能的含义是什么?金属及合金的机械性能是指材料的力学性能,即受外力作用时所反映出来的性能。
它是衡量金属材料的重要指标。
2、金属材料的主要机械性能指标有哪些?金属材料的主要机械性能有:弹性、塑性、刚度、强度、硬度、冲击韧性、疲劳强度和断裂韧性。
3、什么是弹性和韧性?金属材料受外力作用时产生变形,当外力去掉后恢复原来的形状的性能,叫弹性;这种随着外力而消失得变形叫弹性变形,其大小与外力成正比。
金属材料在外力作用下,产生永久变形而不致引起破坏的性能,叫塑性。
外力消失时留下的这部分不可恢复得变形叫塑性变形,其大小与外力不成正比。
4、什么叫应力?什么叫应变?材料受到拉伸时单位截面上的拉力叫应力,用σ表示。
材料受到拉伸时单位长度上的伸长量叫应变,用ε表示。
5、什么叫弹性极限?材料所能承受的、不产生永久变形的最大应力叫做弹性极限,用σb表示。
6、什么叫屈服极限?金属材料开始出现明显的塑性变形的应力叫做屈服极限,用示。
有些材料屈服极限很难测定,通常规定产生0.2%塑性变形时的应力作为屈服极限,用σ0.2表示。
7、什么叫刚度?刚度用什么来衡量?金属材料在受力时抵抗弹性变形的能力叫刚度。
在弹性范围内,应力与应变的比值叫做弹性模数,弹性模数越大,刚度越大。
8、什么叫强度?强度是指金属材料在外力作用下抵抗塑性变形和断裂的能力。
9、表示材料强度的指标有哪些?表示材料强度的指标有:1)、屈服强度:金属材料发生屈服现象时的屈服极限。
σs=P s/F0 (Pa)P s—试样产生屈服现象时所承受的最大外力,N(牛顿);F0—试样原来的截面积,㎡。
2)、抗拉强度:金属材料在拉断前所承受的最大应力。
以σb表示。
σb=P b/F0 (Pa) P b—试样在断裂前的最大拉力,N(牛顿);F0—试样原来的截面积,㎡。
10、什么叫硬度?金属材料抵抗更硬的物体压入其内部的能力叫做硬度。
11、衡量材料的硬度的指标有哪些?衡量硬度的指标有:布氏硬度(HB)、洛氏硬度(HR)、维氏硬度(HV)。
金属与金属材料一.常见金属的物理特性及其应用1.金属光泽:(1)金属都具有一定的金属光泽,一般都呈银白色,而少量金属呈现特殊的颜色,如:金(Au)是黄色、铜(Cu)是红色或紫红色、铅(Pb)是灰蓝色、锌(Zn)是青白色等;(2)有些金属处于粉末状态时,就会呈现不同的颜色,如铁(Fe)和银(Ag)在通常情况下呈银白色,但是粉末状的银粉或铁粉都是呈黑色的,这主要是由于颗粒太小,光不容易反射。
(3)典型用途:利用铜的光泽,制作铜镜;黄金饰品的光泽也是选择的因素。
2.金属的导电性和导热性:(1)金属一般都是电和热的良好导体。
其中导电性的强弱次序:银(Ag)>铜(Cu)>铝(Al)(2)主要用途:用作输电线,炊具等3.金属的延展性:(1)大多数的金属有延性(抽丝)及展性(压薄片),其中金(Au)的延展性最好;也有少数金属的延展性很差,如锰(Mn)、锌(Zn)等;(2)典型用途:金属可以被扎制成各种不同的形状,将金打成金箔贴在器物上4.金属的密度:(1)大多数金属的密度都比较大,但有些金属密度也比较小,如钠(Na)、钾(K)等能浮在水面上;密度最大的金属──锇*,密度最小的金属──锂(2)典型用途:利用金属铝(Al)比较轻,工业上用来制造飞机等航天器5.金属的硬度:(1)有些金属比较硬,而有些金属比较质软,如铁(Fe)、铝(Al)、镁(Mg)等都比较质软;硬度最高的金属是铬(Cr);(2)典型用途:利用金属的硬度大,制造刀具,钢盔等。
6.金属的熔点:(1)有的金属熔点比较高,有的金属熔点比较低,熔点最低的金属是汞(Hg);熔点最高的金属是钨(W);(2)典型用途:利用金属锡(Sn)的熔点比较低,用来焊接金属例1(1)日常生活中,我们常接触到许多物质,如香烟盒上的金属是_______,保温瓶内胆上镀的是______,体温表中的液体金属是_______,保险丝是___________制成的。
(2)常见金属的下列用途各利用了金属的哪些性质?①用铁锅炒菜________________________;②将铜拉成丝做电线___________________;③古代人将铜打磨成铜镜__________________;④古代人用铁做刀、剑等武器__________________;二.金属材料在生产、生活和社会发展中的重要作用1.金属材料通常包括纯金属和各种合金。
金属材料知识大全,收藏!概述金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。
包括纯金属、合金、金属材料金属间化合物和特种金属材料等。
(注:金属氧化物(如氧化铝)不属于金属材料。
)”Vol.1意义人类文明的发展和社会的进步同金属材料关系十分密切。
继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。
现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。
Vol.2种类金属材料通常分为黑色金属、有色金属和特种金属材料。
(1)黑色金属,又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%-4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。
广义的黑色金属还包括铬、锰及其合金。
(2)有色金属,是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。
有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。
(3)特种金属材料,包括不同用途的结构金属材料和功能金属材料。
其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。
Vol.3性能一般分为工艺性能和使用性能两类。
所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。
金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。
由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。
所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。
金属材料使用性能的好坏,决定了它的使用范围与使用寿命。
在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。
金属材料的基本知识金属材料是一类重要的材料,具有良好的导电性、导热性、可塑性和可焊性等特点。
金属材料广泛应用于建筑、汽车、机械制造、航空航天等行业。
本文将介绍金属材料的基本知识,包括金属的性质、金属的组织结构、金属的加工工艺以及金属的应用等内容。
1.金属的性质金属具有良好的导电性和导热性。
这是因为金属的结构中存在自由电子,电子可以自由移动,从而导致金属对电流和热的传导性能非常好。
此外,金属还具有高硬度、耐磨性和良好的韧性,使其在工程领域得到广泛应用。
2.金属的组织结构金属的组织结构主要有晶体结构和非晶态结构两种类型。
晶体结构是由晶粒组成的,晶粒是由原子周期排列形成的。
晶体结构的类型包括立方晶系、六方晶系、四方晶系等。
非晶态结构是指金属在快速冷却过程中形成的无序结构。
晶体结构和非晶态结构对金属材料的性能有着重要影响。
3.金属的加工工艺金属材料一般需要经过加工工艺才能获得所需形状和性能。
金属的加工工艺包括塑性加工、热处理和表面处理等。
塑性加工是指通过施加力量使金属材料发生塑性变形的工艺,包括锻造、轧制、拉伸等。
热处理是指通过加热和冷却控制金属的组织结构,改变其性能的工艺。
表面处理是指对金属材料的表面进行涂覆、喷涂、电镀等方式的处理,以提高金属材料的耐腐蚀性能和外观质量。
4.金属的应用金属材料广泛应用于各个领域。
在建筑领域,金属材料用于制作结构框架、铝合金门窗和金属屋面等。
在汽车和航空航天领域,金属材料用于制造车身、发动机和航空器部件等。
在机械制造领域,金属材料用于制造机床、工具和各种零部件等。
此外,金属材料还广泛应用于电子、能源和医疗器械等领域。
综上所述,金属材料具有良好的导电性、导热性、可塑性和可焊性等特点。
金属的组织结构、加工工艺和应用也是金属材料研究的重要内容。
金属材料的广泛应用和不断创新,为工业领域的发展做出了重要贡献。
然而,随着科技的不断进步,人们对金属材料的研究和应用也在不断深入,未来金属材料的发展仍然具有巨大潜力。
金属材料知识点总结金属材料是指具有金属性的材料,具有良好的导电、导热和可塑性等特点。
在工程领域中,金属材料被广泛应用于建筑、机械、汽车、电子等行业。
本文将对金属材料的基本概念、分类、特性以及应用等方面进行总结。
一、基本概念金属材料是由原子或原子团以金属键连接在一起的固体物质。
金属材料具有晶体结构,其晶体结构可分为立方晶系、六方晶系、四方晶系等多种类型。
二、分类根据化学元素分类,金属材料可分为常见金属和稀有金属两大类。
常见金属包括铁、铜、铝、锌等,而稀有金属如钛、铌、锆等则使用较少。
根据金属的组织结构,金属材料可分为晶体和非晶体两大类。
晶体结构包括单晶体、多晶体等,非晶体即非晶金属。
根据金属材料的性能分类,金属材料可分为结构材料和功能材料。
结构材料包括钢铁、铝合金等,而功能材料如磁性材料、导电材料则具有特殊的功能。
三、特性1. 导电性:金属材料具有良好的导电性能,电流能够在金属内部迅速传播。
2. 导热性:金属材料具有较高的导热性,能够迅速传导热量。
3. 可塑性:金属材料具有很强的可塑性,即能够通过锻造、轧制等工艺加工成各种形状。
4. 良好的机械性能:金属材料的强度、硬度等机械性能较高。
5. 耐腐蚀性:一些金属材料能够在特定环境下具有较好的耐腐蚀性。
6. 密度:金属材料的密度一般较高,但与其他材料相比,其力量重量比较有优势。
7. 可再生性:金属材料大多数可以循环利用,具有较高的可再生性。
四、应用1. 机械领域:金属材料在机械领域中应用广泛,如汽车制造、飞机制造等。
2. 建筑领域:金属材料用于建筑结构,如钢铁、铝合金等。
3. 电子领域:金属材料作为电子元器件的导电材料,如铜、铝等。
4. 化学工业:金属材料在化学工业中起着重要作用,如金属催化剂等。
5. 能源领域:金属材料被应用于能源领域,如太阳能电池板等。
综上所述,金属材料具有很多独特的特性,广泛应用于各个领域。
了解金属材料的基本概念、分类、特性以及应用,对于工程领域的相关从业者具有重要的意义。
第一章 合金化原理主要内容:概念:⑴合金元素:特别添加到钢中为了保证获得所要求的组织结构、物理、化学和机械性能的化学元素。
⑵杂质:冶炼时由原材料以及冶炼方法、工艺操作而带入的化学元素。
⑶碳钢:含碳量在0.0218-2.11%范围内的铁碳合金。
⑷合金钢:在碳钢基础上加入一定量合金元素的钢。
①低合金钢:一般指合金元素总含量小于或等于5%的钢。
②中合金钢:一般指合金元素总含量在5~10%范围内的钢。
③高合金钢:一般指合金元素总含量超过10%的钢。
④微合金钢:合金元素(如V,Nb,Ti,Zr,B)含量小于或等于0.1%,而能显著影响组织和性能的钢。
1.1 碳钢概论一、碳钢中的常存杂质1.锰( Mn )和硅( Si )⑴Mn :W Mn %<0.8% ①固溶强化 ②形成高熔点MnS 夹杂物(塑性夹杂物),减少钢的热脆(高温晶界熔化,脆性↑);⑵Si :W Si %<0.5% ①固溶强化 ②形成SiO2脆性夹杂物;⑶Mn 和Si 是有益杂质,但夹杂物MnS 、SiO2将使钢的疲劳强度和塑、韧性下降。
2.硫(S )和磷(P )⑴S :在固态铁中的溶解度极小, S 和Fe 能形成FeS ,并易于形成低熔点共晶。
发生热脆 (裂)。
⑵P :可固溶于α-铁,但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。
磷可以提高钢在大气中的抗腐蚀性能。
⑶S 和P 是有害杂质,但可以改善钢的切削加工性能。
3.氮(N )、氢(H )、氧(O )⑴N :在α-铁中可溶解,含过饱和N 的钢析出氮化物—机械时效或应变时效(经变形,沉淀强化,强度↑,塑性韧性↓,使其力学性能改变)。
N 可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。
⑵H :在钢中和应力的联合作用将引起金属材料产生氢脆。
⑶O :在钢中形成硅酸盐(2MnO•SiO2、MnO•SiO2)或复合氧化物(MgO•Al2O3、碳钢中的常存杂质 碳钢的分类 碳钢的用途 1.1 碳钢概论 主要内容 1.2 钢的合金化原理: ①Me 在钢中的存在形式 ②Me 与铁和碳的相互作用 ③Me 对Fe-Fe3C 相图的影响 ④Me 对钢的热处理的影响 ⑤Me 对钢的性能的影响 1.3合金钢的分类MnO•Al2O3)。
金属知识点归纳总结一、金属的基本性质1. 导电性:金属具有良好的导电性能,可以轻易传递电子,在电路中广泛应用。
2. 热导性:金属具有良好的热导性能,能够快速传导热量,因此常被用于锅具、散热器等。
3. 延展性:金属具有很高的延展性,可以被拉伸成铜丝、铝箔等细长材料。
4. 强度:金属具有较高的抗拉强度和硬度,可以用于制造机械零件、建筑结构等。
5. 反射性:金属具有良好的光反射性,被用于制造镜子、光学部件等。
6. 密度:金属的密度较高,是坚固材料选用的首选。
二、常见金属材料1. 铁:铁是地壳中含量最丰富的金属元素,被广泛用于制造钢铁材料。
2. 铝:铝具有优良的抗腐蚀性和轻质特性,被广泛用于航空航天、汽车制造等领域。
3. 铜:铜是一种重要的导电材料,广泛用于电气设备、通讯设备等领域。
4. 锌:锌具有良好的阻隔性,被用于防腐蚀材料的涂层。
5. 镍:镍具有良好的耐磨性和抗腐蚀性,广泛用于化工设备、航空发动机等领域。
6. 钛:钛具有良好的耐高温性能和抗腐蚀能力,被广泛用于航空航天、医疗设备等高端领域。
三、金属加工1. 铸造:铸造是将金属熔化后注入模具中凝固成型的工艺,用于制造大型铸件、汽车零部件等。
2. 锻造:锻造是将金属加热后进行锻打成型的工艺,用于制造轴类零件、锻造工具等。
3. 深冲:深冲是将金属板料放入冲床中进行冲压成型的工艺,用于制造汽车车身、家用电器外壳等。
4. 焊接:焊接是将金属材料通过热能和压力进行熔接的工艺,用于制造管道、船舶结构等。
5. 长条材:长条材是将金属材料通过拉拔、挤压等工艺制成的长条状材料,用于制造线材、型材等。
四、金属应用1. 建筑领域:金属材料被广泛应用于建筑结构、屋面材料、门窗等。
2. 交通运输:金属材料被广泛应用于汽车、飞机、船舶等交通工具的制造中。
3. 电子产品:金属材料被广泛应用于手机、电脑、家电等电子产品的外壳和内部零部件中。
4. 医疗设备:金属材料被广泛应用于手术器械、人工骨骼等医疗设备中。
金属材料知识点金属材料是一类常见的材料,广泛应用于工业和日常生活中。
它们具有许多独特的性质和特点,为我们提供了各种各样的用途和功能。
本文将介绍一些与金属材料相关的主要知识点。
一、金属的基本特性金属材料的基本特性是它们具有良好的导电性和导热性。
这使得金属材料成为电器、电子设备、加热器和冷却器等领域的理想选择。
此外,金属材料还具有高强度和硬度,使其能够支撑重物和承受外力。
同时,金属材料还具有良好的塑性和可塑性,可以通过锻造、压延和拉伸等方式进行成型。
二、金属晶体结构金属材料的原子结构呈现出一种有序排列的结构,称为金属晶体结构。
最常见的金属晶体结构是面心立方(fcc)和体心立方(bcc)。
在面心立方结构中,每个原子都与周围12个原子有着最密堆积的联系;而在体心立方结构中,每个原子都与周围8个原子有着最密堆积的联系。
这种有序结构赋予金属材料优异的物理和力学性能。
三、金属材料的类型金属材料可以分为两类:纯金属和合金。
纯金属由同一种原子构成,具有较高的纯度。
合金是由两种或两种以上的金属元素组成,通过加入不同元素可以调整和改善材料的性能。
例如,将铁和碳合金化可以制造出钢材,具有更好的强度和韧性。
四、金属的热处理热处理是指通过加热和冷却的方式改变金属材料的晶体结构和性能。
常见的热处理方法包括退火、淬火和时效处理。
退火可以消除金属内部的应力和缺陷,提高材料的延展性和韧性。
淬火则用于增加金属的硬度和强度。
时效处理是将金属材料在一定温度下保持一段时间,使其硬度和强度得到优化。
五、金属的表面处理金属材料的表面处理是为了增强其耐腐蚀性和装饰性。
常见的金属表面处理方法包括电镀、喷涂和阳极氧化。
电镀可以在金属表面形成一层附着性好、抗腐蚀的保护层。
喷涂涂层可以提供美观和装饰效果,并增强金属的抗腐蚀性。
阳极氧化是将金属表面形成一层氧化膜,提高其抗氧化性和耐磨性。
六、常见的金属材料金属材料有许多种类,常见的包括铁、铜、铝、锌、镁等。
金属材料基础知识金属材料的基础知识一、金属材料的分类方法:金属材料分为两大类:即黑色金属与有色金属1、黑色金属元素:铁、锰、铬2、有色金属元素:除上述三种元素外,其余称为有色金属元素。
通常将以铁、锰、铬为基的合金称为黑色金属,以铁为基的合金称为钢,以其余金属元素为基的合金称为有色金属。
①按冶炼方法分类:工业用钢可分为平炉钢、转炉钢和电炉钢三大类,每一类还可以根据炉衬材料不同分为碱性和酸性两类;电炉钢还可以分为电弧炉钢、感应炉钢、真空感应炉钢和电渣炉钢。
②按用途分类:按钢用途可分为结构钢、工具钢和特殊钢。
结构钢可分为两类,一类是建筑及工程用钢或构件用钢,另一类是机器制造用钢。
前者主要和做钢架、桥梁、钢轨、车辆、船舶、容器等,属于这类钢的有普通碳素钢和部分普通低合金钢,这类钢很大一部分做成钢板和型钢;后者主要用做各种机器零件,包括轴承、弹簧等。
工具钢分为量具刃具钢、冷模具钢、热模具钢、耐冲击工具用钢等。
特殊性能钢分为耐热钢(包括抗氧化和热强钢),不锈耐酸钢、电工用钢等。
③按金相组织分类:A按平衡状态或退火状态的组织分类,可分为亚共析钢,共析钢,过共析钢和莱氏体钢。
B按正火组织为类,可分为珠光体、贝氏体钢、马氏体钢和奥氏体钢。
但由于正火控冷的冷却速度随钢材尺寸不同而不同,所以这类分类方法不是绝对的。
C按加热冷却时有无相变和室温时的金相组织分类:可分为:铁素体钢:加热和冷却时,始终保持铁素体组织。
奥氏体钢:加热冷却时,始终保持奥氏体组织。
马氏体钢:钢加热奥氏体化后快速冷却中,在低温(奥氏体向马氏体转变开始温度Ms线之下)连续冷却时,过冷奥氏体组织转变为马氏体组织,室温时仍保持马氏体组织。
双相钢:室温时在固溶组织中铁素体和奥氏体相约各占一半或较少相的含量在30%以上,兼有铁素体组织和奥氏体组织。
二、金属材料的表示方法。
①钢的编号方法:根据国标GB/T221-2000《钢铁产品牌号表示方法》的规定,一般采用汉语拼音字母、化学元素符号和阿拉伯数字相结合的方法表示。
常用金属材料知识介绍
一、金属材料的分类
金属材料通常按组成成分和色泽分类。
二、金属材料的机械性能
金属材料的机械性能包括强度、弹性、屈服极限、延伸率和断面收缩率以及硬度等。
注:材料强度是指材料对外力破坏的抵抗能力,具体的表现形式由材料的性质(塑性或脆性)及其所处的应力状态共同决定。
注:延伸率δ、断面收缩率φ都是塑性指标。
一般将δ≥5%的材料称为塑性材料;δ<595%的为脆性材料。
三、钢、铁和钢材
1、工业用铁
3、钢按化学成分分类(GB/T 13304-1991)
钢按化学成分分成三大类:非合金钢、低合金钢和合金钢。
四、有色金属及其合金
3、有色金属及其合金牌号表示法(1)铝及铝合金牌号表示法
(2)铜及铜合金牌号表示法
(3)镍及镍合金牌号表示法
(4)铅、锌、锡、钛及其合金牌号表示法。
金属材料基本知识1、什么是变形?变形有几种形式?构件在外力作用下,发生尺寸和形状改变的现象。
变形的基本形式:有弹性变形、永久变形(塑性变形)和断裂变形三种。
构件在外力作用下发生变形,外力去除后能恢复原来形状和尺寸,材料的这一特性称为弹性。
这种在外力去除后能消失的变形称为弹性变形。
若外力去除后,只能部分的恢复原状,还残留一部分不能消失的变形,材料的这一特性称为塑性。
外力去除后不能消失而永远残留的变形,称为塑性变形或残余变形,也称永久变形。
工程上,一般要求构件在正常工作时,只能发生少量弹性变形,而不能出现永久变形。
但对材料进行某种加工(如弯曲、压延、锻打)时,则希望它产生永久变形。
3、什么是强度?什么是刚度?什么是韧性?材料或构件承受外力时,抵抗塑性变形或破坏的能力称强度。
钢材在较大外力作用下可能不被破坏,木材在较小外力作用下而可能会断裂,我们说钢材的强度比木材高。
材料或构件承受外力时抵抗变形的能力称为刚度。
刚度不仅与材料种类有关,还与构件的结构形式、尺寸等有关。
比如管式空气预热器管箱与钢管省煤器组件相比,前者抗变形能力要比后者好,我们称前者的刚度强(好),后者的刚度弱(差)。
刚度好的构件,在外力作用下的稳定性也好。
材料抵抗冲击载荷的能力称为韧性或冲击韧性,即材料承受冲击载荷时迅速产生塑性变形的性能。
锅炉承压部件所使用的材料应具有较好的韧性。
4、什么是塑性材料?什么是脆性材料?在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。
在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。
材料的塑性和韧性的重要性并不亚于强度。
塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏。
这种破坏往往滑事故前兆,其危险性也就更大。
脆性材料抵抗冲击载荷的能力更差。
5、什么是应力、应变和弹性模量?材料或构件在单位截面上所承受的垂直作用力称为应力。
外力为拉力时,所产生的应力为拉应力;外力为压缩力时,产生的应力为压应力。
在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。
在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。
对于一定的材料,弹性模量是常数,弹性模量越大,在一定应力下,产生的弹性变形量越小。
弹性模量随温度升高而降低。
转动机械的轴与叶轮,要求在转动过程中产生较小的变形,就需要选用弹性模量较大的材料。
6、什么叫应力集中?应力集中:由于构件截面尺寸突然变化而引起应力局部增大的现象,称为应力集中。
在等截面构件中,应力是均匀分布的。
若构件上有孔、沟槽、凸肩、阶梯等,使截面尺寸发生突然变化时,在截面发生变化的部位,应力不再是均匀分布,在附近小范围内,应力将局部增大。
应力集中的程度,可用应力集中系数来表示。
应力集中系数的大小,只与构件形状和尺寸有关,与材料无关。
工程上常用典型构件的应力集中系数,已通过试验确定。
应力集中处的局部应力值,有时可能很大,会影响部件使用奉命,是部件损坏的重要原因之一。
为防止和减小这种不利影响,应尽可能避免截面尺寸发生突然变化,构件的外形轮廓应平缓光滑,必要的孔、槽最好配置在低应力区。
另外,金属材料内部或焊缝有气孔、夹渣、裂纹以及“焊不透”、“咬边”等缺陷,也会引起应力集中。
7、什么是强度极限(抗拉强度)与屈服极限?强度极限与屈服极限是通过试验确定的。
在拉伸试验过程中,应力达到某一数值后,虽然不再增加甚至略有下降,试件的应变还在继续增加,并产生明显的塑性变形,好像材料暂时失去抵抗变形的能力,这种现象称为材料的屈服。
发生屈服现象时的应力,称为材料的屈服极限。
当试验拉力继续升高,试件达到破坏时的应力,称为材料的强度极限或抗拉强度。
屈服极限和强度极限越大,分别表明材料抵抗破坏和抵抗塑性变形的能力高,即材料强度好。
对于一定材料来说,强度极限和屈服极限是随着工作温度的升高而降低的。
8、什么是蠕变与蠕变极限?什么是持久强度与持久塑性?金属在一定温度和一定应力作用下,随着时间的推移缓慢地发生塑性变形的现象称蠕变。
材料发生蠕变的温度与其性质有关,碳钢在300—350℃时,合金钢在350—450℃时,在应力作用下,就会出现蠕变。
温度越高,应力越大,蠕变速度就越快。
材料抗蠕变的性能用蠕变极限来衡量,它表示在一定温度下,于规定时间内,钢材发生一定量总变形的最大应力值。
持久强度是在高温条件下,经过规定时间发生蠕变破裂时的最大应力。
持久塑性是指处于蠕变状态的材料,在发生破裂时的相对塑性变形量。
高温材料特别是发电厂使用的管材,应具有良好的持久塑性,希望不低于3%—5%。
过低的持久塑性,会使材料发生脆性破坏,降低其使用奉命。
材料的蠕变极限、持久强度、持久塑性都是通过试验方法求得的。
9、什么是金属材料的疲劳与疲劳极限?构件在长期交变应力作用下,虽然它承受的应力远小于材料的屈服极限,在没有明显塑性变形的情况下,发生断裂的现象称为金属的疲劳。
因金属疲劳发生的破坏称为疲劳破坏出现疲劳破坏的原因,是经过应力多次交替变化后,在应力最大或有缺陷部位会产生微细的裂纹,裂纹尖端出现严重的应力集中,随着交变应力循环次数的增加,裂纹逐渐扩大,最后导致破裂。
材料经受无限次变载荷而不发生断裂时的最大应力,称为材的疲劳极限。
工程上常根据机件的使用寿命要求,规定交变应力循环N次时的应力为有限疲劳极限或条件疲劳限。
如汽轮机叶片交变应力循环次数N锅炉的每一次启动和停止,工质运行参数的每一次波动,承压部件都要经受一次交变应力及应变的循环,这都将会影响承压部件的寿命。
为了提高钢材抵抗疲劳破坏的能力,应在保持材料一定强度的基础上尽可能提高钢材的塑性及韧性。
10、什么是许用应力与安全系统?构件实际工作时,所允许产生的最大应力称许用应力。
对锅炉承压元件不定来说,许用应力是指在工作条件下所允许的最小壁厚及最大压力时的应力。
构件工作时,其内部产生的应力既不能达到屈服极限,更不能达到强度极限,必须远小于它们才能保证安全。
通常把和称危险应力。
危险应力与许用应力的比值n称为安全系数。
N值的大小,不仅反映构件的安全程度。
N值大,许用应力小,比较安全,但消耗材料多,构件也笨重;n值许用应力大,能节约材料,但安全程度就差。
因此,在确定安全系数时,应在满足安全的前提下,充分考虑经济性的要求。
11、什么是热应力?构件因温度化不能自由伸缩而产生的应力,或部件本身温度不均匀使伸缩受制约而产生的应力,称为热应力。
由于热应力是温度变化而产生的,所以也称温度应力或温差应力。
部件工作时,它的尺寸将因温度变化而伸缩。
若部件的伸缩不受任何限制,温度变化只能使其变形,而不致产生应力。
若部件不能自由伸缩,将会在其内部产生应力。
部件在受热或冷却时,若各部分温度不一致,变形将受制约。
温度高的部分要膨胀伸长,温度低的部分则限制它的膨胀,结果在高温部位产生压应力。
低温部位产生拉应力。
锅炉在启、停过程中,出现的汽包内外壁温差,将会在汽包壁内产生热应力。
12、什么是金属的应力松弛现象?钢材在高温和应力作用下,在应变量维持不变,应力随着时间的延长逐渐降低的现象,称为应力松弛。
金属材料在高温下发生应力松弛,是有一部分在初应力作用下产生的弹性变形逐渐地转化为塑性变形的结果。
松弛现象与蠕变现象有着内在的联系,都是在高温和应力作用下的不断性变形过程,两者的区别仅在于蠕变时应力基本恒定不变,松弛时应力则不断在降低。
应力松驰发生在高温下工作的紧固件上,如锅炉、汽轮机上的螺栓、螺母、压紧弹簧等。
这些零件在长期高温和应力作用下,塑性变形增加,应力下降,当松弛到一定程度后,就会引起汽缸和阀门漏汽,安全门提前起座,影响机组正常运行,甚至发生危险。
为了防止上述现象发生,一般要求经过2×104h(两次大修间隔)运行后,螺栓最小应力不低于最小密封应力,这个密封应力通常为150MPa(15.3kgf/mm2)。
为了达到这一要求,可以采取如下措施:一是选择松弛性能高的钢材;一是提高螺栓的初紧应力。
13.什么是钢材的热疲劳与热脆性?当金属材料在工作过程中存在温差时,因部分的胀、缩相互制约而产生附加热应力。
如果温差是周期变化的,热应力也将随之变化,同时伴随着弹、塑性变形的循环,塑性变形逐渐积累引起损伤,最后导致破裂。
这种因经受多次周期性热应力作用而遭到的破坏称为热疲劳破坏。
热疲劳裂纹一般发生在金属零件的表面,为龟裂状。
锅炉的过热器、再热器、汽包、汽轮机的汽缸、隔板,都有出现热疲劳的可能性。
钢材在某一高温区间(如400—550℃)和应力作用下长期工作,会使冲击韧性明显下降的现象称为热脆性。
影响热脆性的主要因素是金属的化学成分。
含有铬、锰、镍等元素的钢材,热脆性倾向较大。
加入钼、钨、钒等元素,可降低钢材的热脆性倾向。
14、什么是钢材的高温氧化?锅炉某些高温元件(如过热器、再热器管及其支吊架等)与高温烟气中的氧气发生的氧化反应,称高温氧化。
氧化生成的氧化膜如果不能紧紧地包覆在钢材表面而发生脱落,则氧化过程会不断发展,层层剥落,最后导致破坏。
高温氧化可生成三种氧化物:FeO,Fe2O3,Fe3O4。
当壁温在570℃以下时,氧化膜由Fe2O3,Fe3O4组成;当温度高于570℃时,氧化膜由FeO,Fe2O3,Fe3O4组成。
Fe2O3,Fe3O4具有致密的结构,能保护金属表面,有较好的抗氧化化。
而FeO的抗氧化能力很差,因此,在温度高于500℃时,高温氧化过程就有加快的趋势。
钢材工作温度高于570℃,就需要考虑抗氧化性问题。
在钢中加入铬元素,生成的氧化膜具有良好的保护作用,是提高钢材抗高温氧化性能的主要手段。
15.在高温下金属组织可能发生哪些变化?有何危害?常温下钢材的金相组织是稳定的,不随时间而改变。
但若在高温下长期工作,其金相组织则会不断发生变化,使其性能变差,严重时会导致破裂损坏。
(1)珠光体球化钢材中片状渗碳体逐渐转化为球状,并积聚长大的现象称珠光体球化。
珠光体球化使钢材高温性能下降,加速蠕变过程,严重球化时,常引起爆管事故。
影响球化过程的因素是温度、时间和化学万分,在钢中加入铬、钼、钒等合金元素,能降低球化过程的速度。
(2)石墨化石墨化是钢中渗碳体在长期高温下工作自行分解的一种现象,即Fe3C→3Fe+C(石墨)石墨化主要发生在低碳钢和低碳钼钢,能使钢材常温下和高温机械性能(强度、塑性)均下降,特别使冲击韧性显著降低,导致钢材的脆性破坏。
(3)合金元素的重新分配钢材在高温下和应力长期作用下,会发生合金元素在固溶体和碳化物之间的重新分配,使强度极限和持久强度均下降,不利于高温部件的安全运行。
合金元素重新分配过程,随温度的升高和时间的推移而加剧,特别是运行温度接近或超过钢材许用温度的上限时,合金元素的迁移速度将更快。