工程流体力学水力学第二版--禹华谦-章习题解答
- 格式:doc
- 大小:2.89 MB
- 文档页数:32
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章绪论1-1.20℃的水2.5m3,当温度升至80℃时,其体积增加多少?[解] 温度变化前后质量守恒,即又20℃时,水的密度80℃时,水的密度则增加的体积为1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)?[解]此时动力粘度增加了3。
5%1-3.有一矩形断面的宽渠道,其水流速度分布为,式中、分别为水的密度和动力粘度,为水深。
试求时渠底(y=0)处的切应力。
[解]当=0.5m,y=0时1-4.一底面积为45×50cm2,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm,斜坡角22.620(见图示),求油的粘度.[解]木块重量沿斜坡分力F与切力T平衡时,等速下滑1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律,定性绘出切应力沿y方向的分布图。
[解]1—6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0。
9mm,长度20mm,涂料的粘度=0。
02Pa.s。
若导线以速率50m/s拉过模具,试求所需牵拉力。
(1。
O1N)[解]1—7.两平行平板相距0。
5mm,其间充满流体,下板固定,上板在2Pa的压强作用下以0.25m/s匀速移动,求该流体的动力粘度。
[解]根据牛顿内摩擦定律,得1-8.一圆锥体绕其中心轴作等角速度旋转。
锥体与固定壁面间的距离=1mm,用的润滑油充满间隙.锥体半径R=0.3m,高H=0。
5m.求作用于圆锥体的阻力矩.(39.6N·m)[解]取微元体如图所示微元面积:切应力:阻力:阻力矩:1—9.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干?[解] 在地球上静止时:自由下落时:第二章流体静力学2-1.一密闭盛水容器如图所示,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强.[解]2—2.密闭水箱,压力表测得压强为4900Pa。
《工程流体力学(水力学)》第二版禹华谦课后习题答案西南交通大学出版社欢迎光临阳光大学生网, 提供最全面的大学生课后习题答案和复习试题免费下载,////0>.阳光大学生网我们希望呵护您的眼睛,关注您的成长,给您一片绿色的环境,欢迎加入我们,一起分享大学里的学习和生活感悟,免费提供:大学生课后答案 ,大学考试题及答案 ,大学生励志书籍。
《水力学》李炜徐孝平主编 2000 年 6 月武汉水利电力大学出版社共 12 章全部习题的解答第一章1-1 解:3 3 3ρ 1.03g cm 1030kg m , 比重s 1.03, γ 10.094kN m1-2 解:2γ9789N /m3ρ 998.88kg m ,g 9.8?3 2μ gμ9.8 ×1.002 ×10 N ?S /m?6 2ν 1.003 ×10 m /sργ 9789?4γ11.82 × 0.15 ×10?5 2以上为水,以下为空气μρνν 1.089 ×10 N ?S /m g 9.81-3 解:d ν9 7dp ?K ?2.19 ×10 × ?1% 2.19 ×10 Pav1-4 解:3 3γ G v 0.678 /10 678kgf /m①用工程单位制:2 4ργ g 678 / 9.8 69.18kgfs /mγγ ×9.8N kgf 6644.4N m②用国单位制: (SI 制) :3ργ g 678kg m1-5 解:du u 1.531流速梯度 3.75 ×10 3sdy δ 0.4 ×10u3 2切应力τμ 0.1 ×3.75 ×10 3.75 ×10 Paδ2活塞所受的摩擦阻力 F τ A τπdl 3.75 ×10 ×3.14 ×0.14 ×0.16 26.38N1-6 解:作用在侧壁上粘性切力产生的力矩du r 0.2M A μr 2 πr h μω+1 2 ×3.14 × 0.2 × 0.4 × μ×101 + 68.3 μdy δ 0.003M 4.905∴μ 0.072Pa ?S68.3 68.31-7 解:2设u Ay +By +c; ①根据实际流体的无滑移现象,当 y0 时 u0∴C 0 (第三个常数项为零); ②∵y0.04m 时,u1m/sdu2则有 1A ×0.04 +B ×0.04; ③E 点的流体切应力为零,有 2Ay +B 0 , dy10.0016A + 0.04B 1 A ?625?则由联立方程求得解得:0.08A +B 0 B 50?du du-3?6τμυρ 1.0 ×10 ×1000 × 2 Ay+B )1 ×10 (-1250y+50 )dy dy-2当y0 处,τ 5 ×10 Pa-2当y0.02 处,τ 2.5 ×10 Pa当 y0.04 处,τ0 Pa由此可见均匀流横断面上切应力是呈直线分布的。
第一章 绪论1—1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3。
5%1—3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深.试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0。
5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1—5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第四章 管路,孔口和管嘴的水力计算4-1(自编)根据造成液体能量损失的流道几何边界的差异,可以将液体机械能的损失分为哪两大类? 各自的定义是什麽? 发生在哪里?答:可分为沿程损失和局部损失两大类。
沿程损失指均匀分布在流程中单位重量液体的机械能损失,一般发生在工程中常用的等截面管道和渠道中。
局部损失指单位重量液体在流道几何形状发生急剧变化的局部区域中损失的机械能,如在管道的入口、弯头和装阀门处。
4-2粘性流体的两种流动状态是什么?其各自的定义是什么?答:粘性流体的流动分为层流及紊乱两种状态。
层流状态指的是粘性流体的所有流体质点处于作定向有规则的运动状态,紊流状态指的是粘性流体的所有流体质点处于作不定向无规则的混杂的运动状态。
4-3流态的判断标准是什么?解:流态的判断标准是雷诺数Re 。
由于实际有扰动存在,故一般以下临界雷诺数Re c 作为层紊流流态的判断标准,即Re<2320, 管中流态为层流,Re>2320,管中流态为紊流.。
4-4某管道直径d=50mm ,通过温度为10℃的中等燃料油,其运动粘度s m 261006.5-⨯=ν。
试求:保持层流状态的最大流量Q 。
解:由Re =νdv 有v =dνRe =(2320×5.06×610-)/0.05=0.235m/s ,故有Q=A v=π×0.05×0.05×0.235/4=s m 34106.4-⨯。
4-5(自编) 一等径圆管内径d=100mm ,流通运动粘度ν=1.306×10-6m 2/s 的水,求管中保持层流流态的最大流量Q 。
解:由νvd=Re ,有 s m d v /03.01.0232010306.1Re6=⨯⨯==-ν此即圆管中能保持层流状态的最大平均速度,对应的最大流量Q 为s m vA Q /1036.24/1.003.0342-⨯===π4-6利用毛细管测定油液粘度,已知毛细管直径d=4.0mm ,长度L=0.5m ,流量Q=1.0cm 3/s 时,测压管落差h=15cm 。
第二章 流体静力学 2-1 作用于流体的外力有哪两种?答: 作用于流体的外力有质量力与表面力. 2-2 流体块表面上的压强有哪两项特性? 答: 流体块表面上的压强有以下两项特性1.法向应力的方向沿讨论流体块表面上某点的内法线方向,即压强沿垂直方向从外部指向表面。
2.静止流体中任一点处的压强大小与它所作用的表面方位无关。
2-3 什麽是绝对压强, 相对压强及真空度?答: 以绝对真空状态为基准计算的压强值叫绝对压强。
相对压强用于绝对压强大于大气压的场合,即一点处的相对压强指这点处的绝对压强高于大气压的部分.真空度用于绝对压强低于大气压的场合,即出现了真空的状态。
一点处的真空度指这点绝对压强小于大气压的那一部分.2-4 容器A 被部分抽成真空,容器下端接一玻璃管与水槽相通,玻管中水上升h=2m ,水的39800/N m γ=,求容器中心处的绝对压强p 和真空度v P ,当时当地大气压298000/a P N m =。
解:由a p h p =+γ,有2/784009800298000m N h p p a =⨯-=-=γ2/196007840098000m N p p p a v =-=-=2-5 以U 型管测量A 处水压强,h 1=0.15m ,h 2=0.3m ,水银的γ=N 3/m ,当时当地大气压强298000/a P N m =,求A 处绝对压强p 。
a解:由γ+p 水γ+1h 水银a p h =2,有-=a p p γ水-1h γ水银22/565463.013328015.0980098000m N h =⨯-⨯-=2-6 图中压差计上部有空气,h 1=0.6m ,h=0.45m ,h 2=1.8m ,求A 、B 两点压强差,工作介质水的39800/N m γ=。
解:设空气绝对压强为a p ,A ,B 两处绝对压强分别为B p p A ,,这里γ1h p p a A +=,γ)(2h h p p a b ++=,从而212/161709800)6.08.145.0()(m N h h h p p A B =-+=-+=-γ2-7 如图为一复式水银测压计,用以测量水箱中水的表面相对压强。
第一章 绪论1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
[解] gh p p a ρ+=0kPa gh p p p a e 7.145.1807.910000=⨯⨯==-=∴ρ2-2.密闭水箱,压力表测得压强为4900Pa 。
压力表中心比A 点高0.5m ,A 点在液面下1.5m 。
求液面的绝对压强和相对压强。
[解] g p p A ρ5.0+=表Pa g p g p p A 49008.9100049005.10-=⨯-=-=-=ρρ表 Pa p p p a 9310098000490000=+-=+=' 2-3.多管水银测压计用来测水箱中的表面压强。
图中高程的单位为m 。
试求水面的绝对压强p abs 。
第一章 绪论1-1.20℃的水2。
5m3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度增加了3.5%1—3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中、分别为水的密度和动力粘度,为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当=0.5m,y=0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1—4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm ,斜坡角22。
620(见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1—5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==Θ原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμΘ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
第一章绪论1—1.20℃的水2.5m3,当温度升至80℃时,其体积增加多少?[解]温度变化前后质量守恒,即又20℃时,水的密度80℃时,水的密度则增加的体积为1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)?[解]此时动力粘度增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为,式中、分别为水的密度和动力粘度,为水深。
试求时渠底(y=0)处的切应力.[解]当=0.5m,y=0时1—4.一底面积为45×50cm2,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm,斜坡角22。
620 (见图示),求油的粘度。
[解]木块重量沿斜坡分力F与切力T平衡时,等速下滑1—5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律,定性绘出切应力沿y方向的分布图。
[解]1—6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过.已知导线直径0。
9mm,长度20mm,涂料的粘度=0.02Pa.s。
若导线以速率50m/s拉过模具,试求所需牵拉力。
(1.O1N)[解]1—7.两平行平板相距0。
5mm,其间充满流体,下板固定,上板在2Pa的压强作用下以0.25m/s匀速移动,求该流体的动力粘度。
[解]根据牛顿内摩擦定律,得1-8.一圆锥体绕其中心轴作等角速度旋转。
锥体与固定壁面间的距离=1mm,用的润滑油充满间隙.锥体半径R=0。
3m,高H=0。
5m.求作用于圆锥体的阻力矩。
(39。
6N·m)[解]取微元体如图所示微元面积:切应力:阻力:阻力矩:1—9.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干?[解] 在地球上静止时:自由下落时:第二章流体静力学2-1.一密闭盛水容器如图所示,U形测压计液面高于容器内液面h=1。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少 [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数) [解] 原原ρννρμ)1.01()15.01(-+==Θ原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμΘ此时动力粘度μ增加了%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρμτ 当h =,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg dd sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
《工程流体力学(水力学)》第二版(禹华谦)课后答案《工程流体力学(水力学)》第二版(禹华谦)内容介绍目录绪言1 流体及其主要物理性质1.1 流体的概念1.2 流体的密度和重度1.3 流体的压缩性和膨胀性1.4 流体的粘性1.5 液体的表面性质1.6 汽化压强1.7 思考题1.8 习题2 流体静力学2.1 作用在流体上的力2.2 流体静压强及其特性2.3 流体平衡微分方程2.4 流体静力学基本方程2.5 流体静压强的度量与测量2.6 流体静压强的传递和分布2.7 流体的相对平衡2.8 静止流体作用在平面上的总压力2.9 静止流体作用在曲面上的总压力2.10 思考题2.11 习题3 流体动力学基础3.1 描述流体流动的方法3.2 流体流动的基本概念3.3 连续性方程3.4 理想流体的运动微分方程(欧拉运动微分方程) 3.5 伯努利方程3.6 伯努利方程的应用3.7 动量方程3.8 动量矩方程3.9 思考题3.10 习题4 相似原理与量纲分析4.1 流动相似的基本概念4.2 相似准则4.3 近似相似4.4 量纲分析的基本概念4.5 量纲分析法4.6 思考题4.7 习题5 流动阻力与水头损失5.1 流动阻力产生的.原因及分类5.2 粘性流体的两种流动状态5.3 均匀流沿程水头损失与切应力的关系 5.4 粘性流体的层流流动5.5 粘性流体的紊流流动5.6 紊流沿程阻力系数的计算5.7 局部水头损失5.8 思考题5.9 习题6 管路水力计算6.1 概述6.2 简单管路6.3 管路水力计算的三类问题6.4 自流管路6.5 串联管路6.6 并联管路6.7 分支管路6.8 沿程均匀泄流及装卸油鹤管6.9 有压管路中的水击6.10 思考题6.11 习题附录附录I 常见流体的密度和粘度附录Ⅱ Dg80~Dg300的管路内水力坡度i值表附录Ⅲ国际单位与工程单位对照表附录Ⅳ压强单位的换算参考文献《工程流体力学(水力学)》第二版(禹华谦)作品目录内容提要本书在论述工程流体力学基本理论的基础上,针对油料管理工作的实际需要,详细介绍了管路水力计算的常用方法并编写了相应的计算机语言程序。
第一章绪论1-1. 20℃的水 2.5m 3,当温度升至80℃时,其体积增加多少?[ 解 ] 温度变化前后质量守恒,即1V12V2又20℃时,水的密度80℃时,水的密度1998.23kg / m3 2971.83kg / m3V2 1V1 2.5679m3 2则增加的体积为V V2 V1 0.0679 m31-2.当空气温度从0℃增加至 20℃时,运动粘度增加15%,重度减少 10% ,问此时动力粘度增加多少(百分数)?[ 解 ] (1 0.15) 原 (1 0.1) 原1.035 原原 1.035 原原 1.035 原原0.035原原此时动力粘度增加了 3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为u 0.002 g( hy 0.5y2 ) /,式中、分别为水的密度和动力粘度,h 为水深。
试求h 0.5m 时渠底(y=0)处的切应力。
[ 解 ] du0.002 g (h y) /dydu0.002 g(h y)dy当h =0.5m,y=0时0.002 1000 9.807(0.50)9.807Pa1-4.一底面积为 45× 50cm2,高为 1cm 的木块,质量为 5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度 u=1m/s,油层厚 1cm,斜坡角 22.620(见图示),求油的粘度。
u[ 解 ] 木块重量沿斜坡分力 F 与切力 T 平衡时,等速下滑mg sinTA dudymg sin 5 9.8 sin 22.62 Au0. 4 0.4510.0010.1047 Pa s1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律du ,定性绘出切应力dy沿 y 方向的分布图。
yyyuuuuuu[ 解 ]y y y= 0 =1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径 0.9mm ,长度 20mm ,涂料 的粘度 =0.02Pa . s 。