高效液相色谱柱发展史
- 格式:ppt
- 大小:4.32 MB
- 文档页数:82
高效液相色谱(high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。
是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。
它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。
又因分析速度快而称为高速液相色谱。
高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。
HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。
HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。
使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。
高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。
高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。
发展历史:1960年代,由于气相色谱对高沸点有机物分析的局限性,为了分离蛋白质、核酸等不易气化的大分子物质,气相色谱的理论和方法被重新引入经典液相色谱。
1960年代末科克兰(Kirkland)、哈伯、荷瓦斯(Horvath)、莆黑斯、里普斯克等人开发了世界上第一台高效液相色谱仪,开启了高效液相色谱的时代。
高效液相色谱法的发展在所有色谱技术中,液相色谱法(liquid chromatography,LC)是最早(1903年)发明的,但其初期发展比较慢,在液相色谱普及之前,纸色谱法、气相色谱法和薄层色谱法是色谱分析法的主流。
到了20世纪60年代后期,将已经发展得比较成熟的气相色谱的理论与技术应用到液相色谱上来,使液相色谱得到了迅速的发展。
特别是填料制备技术、检测技术和高压输液泵性能的不断改进,使液相色谱分析实现了高效化和高速化。
具有这些优良性能的液相色谱仪于1969年商品化。
从此,这种分离效率高、分析速度快的液相色谱就被称为高效液相色谱法(high performance liquid chromatography,HPLC),也称高压液相色谱法或高速液相色谱法。
气相色谱只适合分析较易挥发、且化学性质稳定的有机化合物,而HPLC则适合于分析那些用气相色谱难以分析的物质,如挥发性差、极性强、具有生物活性、热稳定性差的物质。
现在,HPLC的应用范围已经远远超过气相色谱,位居色谱法之首。
高效液相色谱的类型广义地讲,固定相为平面状的纸色谱法和薄层色谱法也是以液体为流动相,也应归于液相色谱法。
不过通常所说的液相色谱法仅指所用固定相为柱型的柱液相色谱法。
通常将液相色谱法按分离机理分成吸附色谱法、分配色谱法、离子色谱法和凝胶色谱法四大类。
其实,有些液相色谱方法并不能简单地归于这四类。
表8-1列举了一些液相色谱方法。
按分离机理,有的相同或部分重叠。
但这些方法或是在应用对象上有独特之处,或是在分离过程上有所不同,通常被赋予了比较固定的名称。
表8-1 HPLC按分离机理的分类现在的液相色谱仪一般都做成一个个单元组件,然后根据分析要求将各所需单元组件组合起来。
最基本的组件是高压输液泵、进样器、色谱柱、检测器和数据系统(记录仪、积分仪或色谱工作站)。
此外,还可根据需要配置流动相在线脱气装置、梯度洗脱装置、自动进样系统、柱后反应系统和全自动控制系统等。
液相色谱仪填料的发展史高效液相色谱(HPLC)不仅是一种有效的分析分离手段,也是一种重要的高效制备分离技术。
色谱柱是HPLC系统的核心,不同性能的填料是HPLC广泛应用的基础。
液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。
正相柱:多以硅胶为柱填料。
根据外型可分为无定型和球型两种,其颗粒直径在3—10 µm的范围内。
另一类正相填料是硅胶表面键合—CN,-NH2等官能团即所谓的键合相硅胶。
反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。
也有无定型和球型之分。
常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3—10 µm之间。
1960年代,由于气相色谱对高沸点有机物分析的局限性,为了分离蛋白质、核酸等不易气化的大分子物质,气相色谱的理论和方法被重新引入经典液相色谱。
1960年代末科克兰(Kirkland)、哈伯、荷瓦斯(Horvath)、莆黑斯、里普斯克等人开发了世界上第一台高效液相色谱仪,开启了高效液相色谱的时代。
高效液相色谱使用粒径更细的固定相填充色谱柱,提高色谱柱的塔板数,以高压驱动流动相,使得经典液相色谱需要数日乃至数月完成的分离工作得以在几个小时甚至几十分钟内完成。
1971年科克兰等人出版了《液相色谱的现代实践》一书,标志着高效液相色谱法(HPLC)正式建立。
在此后的时间里,高效液相色谱成为最为常用的分离和检测手段,在医`学教育网搜集整理有机化学、生物化学、医学、药物开发与检测、化工、食品科学、环境监测、商检和法检等方面都有广泛的应用。
高效液相色谱同时还极大的刺激了固定相材料、检测技术、数据处理技术以及色谱理论的发展。
1960年代前,使用的填充粒大于100μm,提高柱效面临着困境,后来的研究人员便采用微粒固定相来突破着一瓶颈。
科克兰、荷瓦斯制备成功薄壳型固定相,这种在固定相在玻璃微球表面具有多孔薄壳,实现了高速传质,为高效液相色谱技术的发展奠定了稳固的基础。
高效液相色谱柱高效液相色谱柱是一种在分析化学领域中广泛使用的技术。
它的原理是通过溶液在色谱柱中的流动过程中,对溶质进行分离和纯化。
高效液相色谱柱的优点是分析速度快、分离效果好、操作简便等。
本文将介绍高效液相色谱柱的原理、种类、应用以及未来的发展趋势等内容。
高效液相色谱柱的原理主要包括固定相和移动相两个基本要素。
固定相负责分离溶质,常用的固定相有疏水相、离子相、亲合相等。
移动相则是将溶质带动在柱子中流动的溶剂,通常是有机溶剂和水的混合物。
这样,在溶液在色谱柱中流动过程中,不同溶质会在固定相的作用下发生分离,从而实现对混合物的分析和纯化。
高效液相色谱柱根据固定相的不同可以分为几种不同的类型。
例如,疏水相色谱柱广泛应用于有机物的分离和分析,它的固定相表面通常具有疏水性,可以对有机物进行选择性的吸附和分离。
离子相色谱柱则适用于进行离子化合物的分离和分析,例如酸和碱等。
亲合相色谱柱主要是基于生物大分子与其他化合物之间的生物亲和性进行分析。
高效液相色谱柱在实际应用中有着广泛的用途。
在生命科学研究领域,高效液相色谱柱可以用于对蛋白质、核酸等生物大分子的分离和纯化。
在药物分析领域,高效液相色谱柱经常被用于药物的纯化和质量控制。
在环境监测方面,高效液相色谱柱可以用于对环境污染物的检测和分析。
此外,高效液相色谱柱还被广泛应用于食品安全、农药残留检测、天然产物分析等领域。
随着科学技术的不断进步,高效液相色谱柱也在不断发展和完善。
目前,研究人员正在努力提高高效液相色谱柱的分离效率和分离速度,使其更加适用于复杂物质的分离和分析。
同时,也在研发新的固定相和移动相,以满足不同类型化合物的分析需求。
此外,一些新的检测技术和装置也被引入到高效液相色谱柱中,提高对溶质的灵敏度和准确性。
总之,高效液相色谱柱是一种重要的分析技术,具有广泛的应用前景和发展空间。
它在生命科学、药物分析、环境监测等领域都有着重要的作用。
随着科学技术的不断进步,相信高效液相色谱柱在未来会发展出更多的新技术和新应用,为我们的科研和生产提供更多的支持和帮助。
色谱的发展史色谱的发展史可以追溯到20世纪初。
以下是色谱发展的里程碑事件:1.气相色谱(GC):在1952年,A.J.P. Martin和R.L.M. Synge发明了气相色谱(GC)技术,这是一种以气体为载体的色谱方法。
GC通过将混合物分离成其组成部分,并根据其在固定相中的相互作用来分析样品。
2.液相色谱(LC):在1906年,Mikhail Semyonovich Tsvet发明了液相色谱(LC)技术。
这是一种以液体为载体的色谱方法,样品溶解在流动相中通过固定相进行分离。
3.纸层析:在1944年,Archer John Porter Martin和Richard Laurence Millington Synge开发了纸层析技术,这是一种使用纸作为固定相的液相色谱方法。
纸层析是一种简单、便宜且易于使用的色谱方法,广泛应用于初级分析。
4.薄层色谱(TLC):在1956年,Egon Stahl和Erwin Halpaap 发明了薄层色谱(TLC)技术。
TLC是在平板上进行的一种液相色谱方法,样品溶解在流动相中,通过薄层固定相进行分离分析。
5.高效液相色谱(HPLC):在1970年代初,Ivar G. Horváth、Janos J. Sólyom和Csaba Horváth等人开发了高效液相色谱(HPLC)技术。
HPLC是一种在较高压力下使用液相分离方法,通过高压泵将样品溶解在移动相中,并通过固定相进行分离。
6.毛细管电泳(CE):在1981年,Allen J. Bard和Mark S. Wrighton等人发明了毛细管电泳(CE)技术。
CE是一种使用带电粒子在电场中进行分离的色谱方法,也被认为是一种电动色谱技术。
随着科学技术的不断发展,色谱方法得到了不断改进和创新,包括新的柱填充材料、检测器和分析软件的引入,使得色谱技术在分析化学中得到了广泛的应用。
毕业论文文献综述应用化学高效液相色谱的发展及现状1. 色谱技术的发展历程色谱技术的研究起步于20世纪初,俄国植物学家M.S.Tswett发表了题为“一种新型吸附现象在生化分析上的应用”的研究论文中提到了一种用吸附原理分离植物的方法,并将其命名为色谱法。
但由于这种色谱分离技术速度慢且效率低,没有受到科学界重视。
1938年获得诺贝尔化学奖的德国化学家Kuhn采用Tswett色谱分离技术,在维生素和胡萝卜素的分离和结构的分析中取得了重大成果,色谱法因此得到各国科学家的关注[1]。
可以预想到,在接下来的几十年中,色谱技术更是飞速发展。
随着1940年Martin 和Synge提出液液分配色谱法后,1952年James和Martin发明了气相色谱因此获得1952年诺贝尔化学奖[2]。
紧接着,通过各国科学家的努力,还分别开创了毛细管气相色谱法、毛细管超临界色谱、毛细管电泳和电色谱等分析分离技术,使色谱技术的应用日益广泛。
高效液相色谱出现于20世纪60年代末,由高压泵和键合固定相应用于液相色谱,导致了高效液相色谱的出现。
直至今日,高效液相色谱技术不断发展,并广泛应用在各个领域,成为分析、分离技术中不可或缺的一种尖端科技。
2.高效液相色谱的构成高效液相色谱是近几十年来分析化学中最活跃的领域之一。
这种将分离手段及检测系统相连接的分析分离技术,逐步成为在生化药物、精细化工产品、环境保护等各个领域中主要的物质分析分离方法[3]。
2.1输液系统——泵由于色谱柱很细,填充剂粒度小,因此阻力很大,为达到快速、高效的分离效果,必须要提高柱前压力,以获得高速的液流,使分析、分离更加有效率的进行。
泵为液相提供了流动相流动所必须的压力。
2.2进样系统一般高效液相色谱对于进样系统多采用六通阀进样[4]。
先由注射器将样品常压下注入样品环[5]。
然后切换阀门到进样位置,由高压泵输送的流动相将样品送人色谱柱。
样品环的容积是固定的,因此进样重复性好。
高效液相色谱发展历史的文献
高效液相色谱(HPLC)是一种分离和分析化合物的技术,它的发展历史可以追溯到20世纪60年代。
HPLC的发展历史可以从技术的发明和早期应用开始,到不断的改进和扩展,直至今天成为化学分析中不可或缺的技术。
HPLC技术最初的雏形可以追溯到20世纪60年代初,当时美国的科学家们开始尝试使用液相色谱技术进行化合物的分离和分析。
随着对色谱技术的深入研究,液相色谱的分离效率和分辨率得到了显著提高,从而奠定了HPLC技术的基础。
在接下来的几十年里,HPLC技术经历了多次重大的技术革新和突破。
1970年代,随着高效柱和检测器的改进,HPLC技术开始在药物分析、环境监测和生物化学等领域得到广泛应用。
1980年代,随着色谱柱材料和填料技术的进步,HPLC的分离效率和分辨率得到了进一步提高,使得更多复杂样品的分析成为可能。
1990年代以后,随着液相色谱仪器和软件的不断改进,HPLC技术在食品安全、药物研发和生物医学研究等领域发挥了越来越重要的作用。
在当今,HPLC已经成为化学分析中不可或缺的技术之一,它在
药物分析、环境监测、食品安全、生物医学研究等领域发挥着重要作用。
随着科学技术的不断发展,HPLC技术也在不断创新和完善,为人类的健康和生活质量提供着重要支持。
总的来说,HPLC技术的发展历史可以追溯到20世纪60年代,经过几十年的不断改进和突破,HPLC已经成为一种成熟的分离和分析技术,在各个领域都发挥着重要作用。
高效液相色谱分析技术的发展和应用作为化学分析的一种重要技术手段,色谱分析技术在现代化学领域发挥着不可替代的作用。
其中,高效液相色谱分析技术是一种比较新的领域,具有快速、灵敏、准确等优点,因此在分析化学领域得到了广泛的应用。
这篇文章将介绍高效液相色谱分析技术的发展历程、基本原理和应用领域等方面的内容。
一、高效液相色谱分析技术的发展高效液相色谱(High Performance Liquid Chromatography,HPLC)分析技术是指在固定相中,以流动相为介质,通过对生物样品、化学品等成分分离、检测和定量分析的过程。
它是在气相色谱分析技术迅速发展之后逐渐兴起的。
HPLC技术起源于20世纪60年代初期,当时主要是采用传统的柱层析法。
随着科学技术的不断发展,HPLC技术逐渐往高效化、自动化和信息化方向发展。
其中,随着毛细管电泳和质谱联用技术的兴起,该技术的分析速度不断加快,并且对于微量化、高灵敏度和分析精度等方面的要求也不断提高。
二、高效液相色谱分析技术的基本原理1. 色谱柱高效液相色谱分析必不可少的就是色谱柱。
色谱柱的选择决定了整个分析过程中的分离和检测效果。
2. 固定相借助色谱柱内填充的固定相,样品被分离出来的原理实质上是基于样品中成分在固定相上吸附、分配和扩散等不同作用力的平衡。
因此,固定相的选择对分析结果也有着不可忽视的影响。
3. 流动相流动相是指在样品分离过程中,以流体为载体进行的移动相。
不同的样品需要不同的流动相,并且流动相的选择也对分析精度有一定的影响。
与气相色谱不同,高效液相色谱其中一种重要特点在于它的流动相可以是液体。
4. 检测器检测器是分离出来的组分检测和定量的重要工具,不同的检测器都有着自己的优缺点。
例如,紫外检测器能够测出大部分有色、近紫外和紫外区的物质,而荧光检测器可以通过脱羧机制测定不含色团的化合物等。
三、高效液相色谱分析技术的应用领域高效液相色谱分析技术逐渐走向提高灵敏度和分辨率方向,因此在有机化学、医药化学、农药检测等众多领域都得到了广泛的应用。
高效液相色谱发展史高效液相色谱(High Performance Liquid Chromatography, HPLC)是一种重要的色谱技术,其发展史可以追溯到上世纪50年代。
随着化学、医药等领域的不断发展,高效液相色谱的应用范围也不断扩大,成为现代分析化学不可或缺的分离和检测技术之一。
1. HPLC的诞生HPLC最早的萌芽可以追溯到上世纪50年代初,当时荷兰科学家Martin Tswett使用硅胶柱分离了不同的植物色素,并提出了色谱法的基本原理。
20世纪60年代初,日本、美国、英国等国家的科学家陆续开始从事色谱技术的研究工作,并取得了一系列重要的成果。
其中,美国的A.J.Martin教授是HPLC领域的重要奠基人,他在1963年发表的一篇论文中提出了一种新型的液相色谱技术,即高效液相色谱(HPLC)。
HPLC相对传统的液相色谱(TLC)和气相色谱(GC)来说,具有分离效率高、分离能力强、适用范围广、检测灵敏度高、样品处理简单等优点,成为了分析化学研究领域中不可或缺的工具。
2. HPLC的进步在1960年代后半期,HPLC的技术水平有了显著的提高。
随着液相色谱柱材的改进和分离研究的深入,HPLC分离出的目标物质越来越多,对分离效率的要求也越来越高。
同时,总体上HPLC的动态范围、分离效率、灵敏度、分辨率和稳定性等方面也得到了不断改进和提高。
20世纪70年代,随着高速液相色谱技术的发展,HPLC的效率得到了进一步提高。
高速液相色谱使用的分离柱内径小于1mm,需要使用高于常温的温度以及高压驱动,达到快速分离的效果。
随着分析化学领域的发展,HPLC应用的范围也越来越广泛。
例如,HPLC可以用于生物分析、食品检测、环境监测、制药等各个领域。
3. HPLC技术引入中国HPLC技术的引入和应用在中国比较晚,最早可以追溯到20世纪80年代初期。
随着中国经济的发展和科学技术的进步,HPLC技术得到了快速发展。