是平行.
A.1
B.2
C.3 D.4
2 如图,所示,D是AB上一点,过 点D分别画BC,AC的平行线.
解:如图所示,DF与BC
平行,DE与AC平行.
3.下面推理正确的是 ( C)
A.因为a∥b,b∥c,所以c∥d B.因为a∥c,b∥d,所以c∥d C.因为a∥b,a∥c,所以b∥c D.因为a∥b,c∥d,所以a∥c
(1)经过点C能画出几条直线? 无数条 (2)与直线AB平行的直线有几条?无数条 (3)经过点C能画出几条直线与直线AB
·C
a
· · A
B
·D
b
平行?
1条
过直线外一点有且只有一条直线与这条直线平行.
试一试:
画一条直线 a,按如图所示的方法, 画一条直线b与直线 a平行,再向上推三 角尺,画另一条直线 c,也与直线 a平行.
即如果直线a∥c,b∥c,那么a∥b.
.
例2 直线 a,b,c中, a∥b,b∥c,
则直线 a与直线 c的关系
a∥是c
.
[解析] 平行于 同一直线的两条
直线平行.
随堂演练
1 下列结论正确的个数是( B )
(1)两条直线平行,常用符号“∥ ”表示;(2)两条不相交的
直线叫平行线;(3)同一平面内不相交的两条线段是平行线;
(4)同一平面内,两条直线(不重合)的位置关系不是相交就
课堂小结
知识点一 平行线的概念
概念:在同一平面内 不相交 的两条直线叫做平行线. 在同一平面内,两条不重合的直线的位置关系只有两种:相交或 平行 .
知识点二 平行线的基本事实及推论 平行线的基本事实(平行线的存在性和唯一性):过直线外一 点 有且只有 一条直线与这条直线平行. 推论(平行线的传递性):如果两条直线都和第三条直线平行,那么这两 条直线也 互相平行 .