最新22 材料的热电性质汇总
- 格式:ppt
- 大小:307.50 KB
- 文档页数:18
1.热容:热容是使材料温度升高1K所需的热量。
公式为C=ΔQ/ΔT=dQ/dT (J/K);它反映材料从周围环境中吸收热量的能力,与材料的质量、组成、过程、温度有关。
在加热过程中过程不同分为定容热容和定压热容。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下升高1K所需的热量称为比热容每个物质中有两种比热容,其中c p>c v,c v不能直接测得。
3.摩尔热容:1mol的物质在没有相变或化学反应条件下升高1K所需的能量称为摩尔热容,用Cm表示,单位为J/(mol·K)4.热容的微观物理本质:材料的各种性能(包括热容)的物理本质均与晶格热振动有关。
5.热容的实验规律:1.对于金属:2.对于无机材料(了解)1.符合德拜热容理论,但是德拜温度不同,它取决于键的强度、材料的弹性模量、熔点等。
2.对于绝大多数氧化物,碳化物,摩尔热容都是从低温时一个最低值增到到1273K左右近似于3R,温度进一步升高,摩尔热容基本没有任何变化。
3.相变时会发生摩尔热容的突变4.固体材料单位体积热容与气孔率有关,多孔材料质量越小,热容越小。
因此提高轻质隔热砖的温度所需要的热量远低于致密度的耐火砖所需的热量。
6.经典理论传统理论不能解决低温下Cv的变化,低温下热容随温度的下降而降低而下降,当温度接近0K时热容趋向于07.量子理论1.爱因斯坦模型三个假设:1.谐振子能量量子化2.每个原子是一个独立的谐振子3.所有原子都以相同的频率振动。
爱因斯坦温度:爱因斯坦模型在T >> θE 时,Cv,m=3R,与实验相符合,在低温下,T当T << θE时Cv,m比实验更快趋于0,在T趋于0时,Cv,m也趋于零。
爱因斯坦模型不足之处在于:爱因斯坦模型假定原子振动不相关,且以相同频率振动,而实际晶体中,各原子的振动不是彼此独立地以同样的频率振动,而是原子间有耦合作用,点阵波的频率也有差异。
温度低尤为明显2.德拜模型德拜在爱因斯坦的基础上,考虑了晶体间的相互作用力,原子间的作用力遵从胡克定律,固体热容应是原子的各种频率振动贡献的总和。
块体热电材料的界面性质——对于胶体与界面科学当前观点的综述摘要:我们在块体热电材料界面理解的基础上回顾了当前这方面的进展。
随后我们简单的讨论了界面能够增强电子和热传导性能的机制,并且专注于新兴的方法来设计块体热电材料的纳米级晶粒和界面结构。
我们重点强调(i)晶体纹理的控制,(ii)降低晶粒尺寸到纳米尺度,和 (iii)纳米复合材料结构的形成。
虽然这些方法都开始产生可观的性能改进,但是进一步的发展需要对热电界面的成型、稳定性和性能有本质上的理解。
关键词:热电材料、界面、晶界、晶体质感、纳米结构目录:1.简介2. 提高热电输运性质的界面机制3. 块体热电材料中的界面控制3.1.晶体质感的控制3.2.晶粒尺寸减小3.2.1. 随机纳米晶材料的热导率降低3.2.2.孪晶和域边界3.2.3.提高电子性能3.3.界面纳米涂层3.4.嵌入式的纳米夹杂3.5.层状/多层结构4. 总结1.简介:热电材料在热能转换成电能和固态冷却方面都有很多应用[1-2]。
虽然热电装置由于其高可靠性、移动部件的需要和能够缩放到小尺寸的能力在特殊领域的应用使得其在当前发展技术中有关键性的优势,但是这些装置的能量转换效率仍然普遍较差。
如果想要将热电材料在更广泛的领域上应用尤其在影响全球能量方面,那么这些材料和装置的效率需要显著改善。
对热电材料界面性质的控制可以在应对这一挑战中发挥关键作用。
在一般情况下,材料转换效率的提高需要增大Seebeck 系数α,平衡低电阻率ρ和低热导率κ之间的关系。
界面间相互影响这些属性,并且对于典型纳米材料的高密度可以产生很大的影响。
对于材料能量转换效率特别有用的公式是热电公式:ρκαT zT 2= 过去十年的结果显示,我们是能够在纳米级系统中提高zT 值,通过使用界面处的声子散射来降低热导率和量子限域还有载流子散射效应来以提高功率因子α 2 /ρ的值。
热电性能方面的改善已经在外延、多层的薄膜的几何形状和个别纳米结构(如纳米线)中有了应用。