最新22 材料的热电性质汇总
- 格式:ppt
- 大小:307.50 KB
- 文档页数:18
1.热容:热容是使材料温度升高1K所需的热量。
公式为C=ΔQ/ΔT=dQ/dT (J/K);它反映材料从周围环境中吸收热量的能力,与材料的质量、组成、过程、温度有关。
在加热过程中过程不同分为定容热容和定压热容。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下升高1K所需的热量称为比热容每个物质中有两种比热容,其中c p>c v,c v不能直接测得。
3.摩尔热容:1mol的物质在没有相变或化学反应条件下升高1K所需的能量称为摩尔热容,用Cm表示,单位为J/(mol·K)4.热容的微观物理本质:材料的各种性能(包括热容)的物理本质均与晶格热振动有关。
5.热容的实验规律:1.对于金属:2.对于无机材料(了解)1.符合德拜热容理论,但是德拜温度不同,它取决于键的强度、材料的弹性模量、熔点等。
2.对于绝大多数氧化物,碳化物,摩尔热容都是从低温时一个最低值增到到1273K左右近似于3R,温度进一步升高,摩尔热容基本没有任何变化。
3.相变时会发生摩尔热容的突变4.固体材料单位体积热容与气孔率有关,多孔材料质量越小,热容越小。
因此提高轻质隔热砖的温度所需要的热量远低于致密度的耐火砖所需的热量。
6.经典理论传统理论不能解决低温下Cv的变化,低温下热容随温度的下降而降低而下降,当温度接近0K时热容趋向于07.量子理论1.爱因斯坦模型三个假设:1.谐振子能量量子化2.每个原子是一个独立的谐振子3.所有原子都以相同的频率振动。
爱因斯坦温度:爱因斯坦模型在T >> θE 时,Cv,m=3R,与实验相符合,在低温下,T当T << θE时Cv,m比实验更快趋于0,在T趋于0时,Cv,m也趋于零。
爱因斯坦模型不足之处在于:爱因斯坦模型假定原子振动不相关,且以相同频率振动,而实际晶体中,各原子的振动不是彼此独立地以同样的频率振动,而是原子间有耦合作用,点阵波的频率也有差异。
温度低尤为明显2.德拜模型德拜在爱因斯坦的基础上,考虑了晶体间的相互作用力,原子间的作用力遵从胡克定律,固体热容应是原子的各种频率振动贡献的总和。
块体热电材料的界面性质——对于胶体与界面科学当前观点的综述摘要:我们在块体热电材料界面理解的基础上回顾了当前这方面的进展。
随后我们简单的讨论了界面能够增强电子和热传导性能的机制,并且专注于新兴的方法来设计块体热电材料的纳米级晶粒和界面结构。
我们重点强调(i)晶体纹理的控制,(ii)降低晶粒尺寸到纳米尺度,和 (iii)纳米复合材料结构的形成。
虽然这些方法都开始产生可观的性能改进,但是进一步的发展需要对热电界面的成型、稳定性和性能有本质上的理解。
关键词:热电材料、界面、晶界、晶体质感、纳米结构目录:1.简介2. 提高热电输运性质的界面机制3. 块体热电材料中的界面控制3.1.晶体质感的控制3.2.晶粒尺寸减小3.2.1. 随机纳米晶材料的热导率降低3.2.2.孪晶和域边界3.2.3.提高电子性能3.3.界面纳米涂层3.4.嵌入式的纳米夹杂3.5.层状/多层结构4. 总结1.简介:热电材料在热能转换成电能和固态冷却方面都有很多应用[1-2]。
虽然热电装置由于其高可靠性、移动部件的需要和能够缩放到小尺寸的能力在特殊领域的应用使得其在当前发展技术中有关键性的优势,但是这些装置的能量转换效率仍然普遍较差。
如果想要将热电材料在更广泛的领域上应用尤其在影响全球能量方面,那么这些材料和装置的效率需要显著改善。
对热电材料界面性质的控制可以在应对这一挑战中发挥关键作用。
在一般情况下,材料转换效率的提高需要增大Seebeck 系数α,平衡低电阻率ρ和低热导率κ之间的关系。
界面间相互影响这些属性,并且对于典型纳米材料的高密度可以产生很大的影响。
对于材料能量转换效率特别有用的公式是热电公式:ρκαT zT 2= 过去十年的结果显示,我们是能够在纳米级系统中提高zT 值,通过使用界面处的声子散射来降低热导率和量子限域还有载流子散射效应来以提高功率因子α 2 /ρ的值。
热电性能方面的改善已经在外延、多层的薄膜的几何形状和个别纳米结构(如纳米线)中有了应用。
铁酸铋基半导体陶瓷材料的电阻率与热电性能的研究赵琨2006级物理学基地班20061001179(山东大学物理学院,山东济南,250100)摘要:采用传统固相烧结法分别制备了纯铁酸铋、10%铋过量的铁酸铋半导体陶瓷材料和不同元素掺杂改性的铁酸铋基杂质半导体陶瓷材料,研究了不同的掺杂改性对铁酸铋基陶瓷材料在常温下的直流电阻的影响。
实验结果表明,少量钙的掺杂取代最大程度的减小了铁酸铋基陶瓷材料的直流电阻率。
同时可以看出,少量钙的掺杂并没有使晶格发生畸变,没有改变陶瓷的微观结构,并且对晶界势垒、电导激活能的影响较小,但是却可以使其直流电阻率大大减小,从而极大的改善了铁酸铋基陶瓷材料的热电性能。
为进一步探究其热电性能,选择(Bi0.96Ca0.04)FeO3陶瓷,研究了其物相结构、直流电阻率及热电参数随温度的变化规律,并获得了最佳的热电性能。
实验结果表明,(Bi0.96Ca0.04)FeO3陶瓷的Seebeck系数在一定的温度范围内变化很小,保持在530 μV K-1左右。
在510 ℃时,(Bi0.96Ca0.04)FeO3陶瓷的电阻率达到最小,同时功率因子达到最大值,为14.2 μW m-1K-2。
本论文中首次报道了铁酸铋基陶瓷材料的热电性能,其最佳适用温度为510 ℃,最佳的热电性能为功率因子达到14.2 μW m-1 K-2。
为进一步认识铁酸铋基陶瓷材料做出了一定的探索,填补了该领域研究的一项空白,可进一步研究扩大其应用领域,提高应用价值。
关键词:铁酸铋,半导体陶瓷,电阻率,热电性能中图分类号:O482.6Research on electrical resistivity and thermoelectric properties of bismuth ferric based semiconductiveceramic materialsZhao Kun(School of Physics, Shandong University, Jinan 250100, China) Abstract: Pure bismuth ferric, 10% excess of bismuth of the bismuth ferric semiconductor ceramic materials and different elements of the doped bismuth ferric based impurity semiconductor ceramic materials were prepared by the traditional solid-phase sintering. The effects on DC resistance at room temperature of different doping modification of the doped bismuth ferric based impurity semiconductor ceramic materials were studied. The Experimental results show that a small amount of calcium doping reduced the DC resistance at room temperature of different doping modification of the doped bismuth ferric based impurity semiconductor ceramic materials to the utmost extent. At the same time, we can see that a small amount of calcium doping does not cause the crystal lattice to have the distortion, no change in the ceramic micro-structure, and has no influence on the grain boundary barrier and the conductance activation energy, but it can substantially reduce the rateof DC resistance, which may greatly improve the thermoelectric properties of the doped bismuth ferric based impurity semiconductor ceramic materials. In order to further explore its thermoelectric properties, (Bi0.96Ca0.04)FeO3 ceramics was selected, the phase of their structure, the rule of change of resistivity and thermoelectric properties with the temperature were studied and the best thermal performance were obtained. The results show that, (Bi0.96Ca0.04)FeO3 ceramics has a Seebeck coefficient, whose change is very small of a certain range of temperature, remain at 530 μV K-1or so. At 510 ℃,the rate of resistance is the smallest, while the power factor achieves the maximum value at the same time, for 14.2 μW m-1. This paper reported in the thermoelectric properties of the bismuth ferric based semiconductor ceramic materials for the first time, the application of the best temperature is 510 ℃, the best performance of thermoelectric power factor reaches 14.2 μW m-1. This paper made a certain amount of exploration, which can be made to fill a gap in the study in this area, in order to further understand the bismuth ferric based semiconductor ceramic materials. Further study may be made in order to expand its applications and to enhance the value.Key words:bismuth ferric, semiconductive ceramics, electrical resistivity, thermoelectric properties1.引言1.1 热电材料热电材料也称为温差电材料,是一种能够实现热能和电能之间直接相互转换的功能材料。
本词条缺少概述、名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!中文名热电材料解释将热能和电能相互转换的功能材料理论依据帕尔帖效应特点体积小,重量轻,坚固且无噪音目录1应用意义2特点与热电优值3材料分类4提高优势5未来展望6历史沿革7新型材料8力学性能1应用意义编辑热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。
随着空间探索兴趣的增加、医用物理学的进展以及在地球难于日益增加的资源考察与探索活动,需要开发一类能够自身供能且无需照看的电源系统,热电发电对这些应用尤其合适。
对于遥远的太空探测器来说,放射性同位素供热的热电发电器是唯一的供电系统。
已被成功的应用于美国宇航局发射的“旅行者一号”和“伽利略火星探测器”等宇航器上。
利用自然界温差和工业废热均可用于热电发电,它能利用自然界存在的非污染能源,具有良好的综合社会效益。
利用帕尔帖效应制成的热电制冷机具有机械压缩制冷机难以媲美的优点:尺寸小、质量轻、无任何机械转动部分,工作无噪声,无液态或气态介质,因此不存在污染环境的问题,可实现精确控温,响应速度快,器件使用寿命长。
还可为超导材料的使用提供低温环境。
另外利用热电材料制备的微型元件用于制备微型电源、微区冷却、光通信激光二极管和红外线传感器的调温系统,大大拓展了热电材料的应用领域。
因此,热电材料是一种有着广泛应用前景的材料,在环境污染和能源危机日益严重的今天,进行新型热电材料的研究具有很强的现实意义。
2特点与热电优值编辑特点制造热电发电机或热电致冷器的材料称为热电材料,是一种能实现电能与热能交互转变的材料。
其优点如下:(1)体积小,重量轻,坚固,且工作中无噪音;(2)温度控制可在±0.1℃之内;(3)不必使用CFC(CFC氯氟碳类物质,氟里昂。
被认为会破坏臭气层),不会造成任何环境污染;(4)可回收热源并转变成电能(节约能源),使用寿命长,易于控制。
第十讲热电效应半导体的热电效应与金属材料的热电效应一样,主要有: 塞贝克效应(德国物理学家,1821年发现)珀耳贴效应(法国物理学家,1834年发现)汤姆逊效应(英国物理学家,1856年发现)式中 α 为塞贝克系数,单位为V/K ,也称为温差电动势率。
利用塞贝克效应,可制成热电偶,用来测量温度。
只要选用适当的金属材料,可测量到从 -180℃到2800℃范围的温度。
一、塞贝克效应S V Tα=∆1821年,德国物理学家塞贝克发现,在两种不同的金属组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,这就是热电效应,也称作“塞贝克效应”。
温差电动势的表达式为:托马斯·约翰·塞贝克(1770~1831)图1 塞贝克效应电子浓度 n 随温度的上升按指数规律增大,在半导体中产生了电子的浓度梯度,电子由高温端向低温端扩散,在低温端积累了负电荷,产生了由高温端指向低温端的自建电场。
在自建电场的作用下,电子做漂移运动,电子漂移的方向与扩散方向相反,当漂移和扩散达到动态平衡时,在半导体两端产生一电动势,即温差电动势。
温差电动势的方向:n 型半导体的高温端为“+”,低温端为“-”;而p 型半导体的高温端为“-”,低温端为“+”。
图2 半导体的塞贝克效应以 n 型半导体为例,其结构如图 2 所示, n型半导体的两端与金属以欧姆接触相连接,并保持有温度差△T ,在半导体内部形成温度梯度。
图3 塞贝克效应应用影响塞贝克效应的另一个因素是“声子曳引效应”。
当样品中存在温度梯度时,声子也将从高温端向低温端扩散,并在扩散过程中与载流子碰撞把能量传递给载流子,从而加速了载流子的扩散运动,即声子曳引作用。
增强了塞贝克效应。
可以用温差电动势的方向来判断半导体的导电类型,如图 3 所示。
n 型半导体和p 型半导体中塞贝克效应的温差电动势率分别为:C F 00n C 33ln 22E E k k n qT q q N α⎛⎫⎛⎫-=-+=-- ⎪ ⎪⎝⎭⎝⎭0F V 0p V 33ln 222k E E k p q T q N α-=+=-1834年法国物理学家帕耳帖发现,当电流通过不同金属的结点时,在结点处有吸、放热现象。