第五章Bezier曲面与B样条曲面
- 格式:ppt
- 大小:1013.00 KB
- 文档页数:75
(4条消息)曲线曲面基本理论(二)一、Bezier曲线的生成生成一条Bezier 曲线实际上就是要求出曲线上的点。
下面介绍两种曲线生成的方法:1、根据定义直接生成 Bezier 曲线绘制Bezier曲线主要有以下步骤:2、Bezier 曲线的递推 (de Casteljau)算法根据 Bezier 曲线的定义确定的参数方程绘制 Bezier 曲线,因其计算量过大,不太适合在工程上使用。
de Casteljau 提出的递推算法则要简单得多。
Bezier 曲线上的任一个点(t),都是其它相邻线段的同等比例( t ) 点处的连线,再取同等比例( t ) 的点再连线,一直取到最后那条线段的同等比例 ( t )处,该点就是Beizer曲线上的点( t ) 。
以二次 Bezier 曲线为例,求曲线上t=1/3的点:当t 从0变到1时,它表示了由三顶点P0、P1、P2三点定义的一条二次Bezier曲线。
二次Bezier曲线P02可以定义为分别由前两个顶点(P0,P1)和后两个顶点(P1,P2)决定的一次Bezier曲线的线性组合。
由(n+1)个控制点Pi(i=0,1,...,n)定义的n次Bezier曲线P0n可被定义为分别由前、后n个控制点定义的两条(n-1)次Bezier曲线P0n-1与P1n-1的线性组合:这便是著名的de Casteljau算法。
用这一递推公式,在给定参数下,求Bezier曲线上一点P(t)非常有效。
de Casteljau算法稳定可靠,直观简便,可以编出十分简捷的程序,是计算Bezier曲线的基本算法和标准算法。
这一算法可用简单的几何作图来实现。
3、Bezier曲线的拼接几何设计中,一条Bezier曲线往往难以描述复杂的曲线形状。
这是由于增加特征多边形的顶点数,会引起Bezier曲线次数的提高,而高次多项式又会带来计算上的困难。
采用分段设计,然后将各段曲线相互连接起来,并在接合处保持一定的连续条件。
Bezier曲线、B样条曲线和NURBS曲线0.概述1. 贝塞尔曲线(Bezier Curve):贝塞尔曲线由一组控制点和控制点上的权重组成。
贝塞尔曲线的阶数由控制点的数量决定,阶数为n的贝塞尔曲线需要n+1个控制点。
贝塞尔曲线具有局部控制的特性,即曲线上的一段由相邻的几个控制点决定,不受其他控制点的影响。
贝塞尔曲线的计算相对简单,但在变形过程中可能会出现形状扭曲的问题。
2. B样条(B-Spline): B样条曲线是一种基于分段多项式的曲线表示方法。
与贝塞尔曲线不同,B样条曲线的每个控制点都有一个关联的基函数。
这些基函数决定了曲线上每一点的形状。
B样条曲线的阶数可以是任意的,较高阶的B样条曲线能够更灵活地描述复杂的曲线形状。
B样条曲线具有良好的局部控制性和平滑性,可以很好地避免贝塞尔曲线的形状扭曲问题。
3. NURBS曲线(Non-Uniform Rational B-Spline Curve):NURBS曲线是对B样条曲线的扩展,它引入了有理权重的概念。
NURBS曲线的每个控制点都有一个关联的权重,这些权重可以调节曲线上各个点的影响程度。
NURBS曲线能够表示更复杂的曲线形状,如圆弧和椭圆等。
总的来说Bezier曲线中的每个控制点都会影响整个曲线的形状,而B样条中的控制点只会影响整个曲线的一部分,显然B样条提供了更多的灵活性;Bezier和B样条都是多项式参数曲线,不能表示一些基本的曲线,比如圆,所以引入了NURBS,即非均匀有理B样条来解决这个问题;贝塞尔曲线适用于简单的曲线形状设计,B样条曲线具有更好的局部控制和平滑性,适用于复杂曲线的建模而NURBS曲线在B样条的基础上引入了有理权重,可以更准确地描述各种曲线形状Bezier曲线是B样条的一个特例,而B样条又是NURBS的一个特例1.Bezier曲线1.1 贝塞尔曲线的历史:贝塞尔曲线于 1962 年,由法国工程师皮埃尔·贝济埃(PierreBézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计,贝塞尔曲线最初由保尔·德·卡斯特里奥于1959年运用德卡斯特里奥算法开发,以稳定数值的方法求出贝塞尔曲线。
第一章曲面设计概要1、曲面造型的数学概念:(1)、贝塞尔(Bezier)曲线与曲面:法国雷诺的Bezier在1962年提出的,是三次曲线的形成原理。
这是由四个位置矢量Q0、Q1、Q2、Q3定义的曲线。
通常将Q0,Q1,…,Qn组成的多边形折线称为Bezier控制多边形,多边形的第一条折线与最后一条折线代表曲线起点和终点的切线方向,其他折线用于定义曲线的阶次与形状。
(2)、B样条曲线与曲面:与Bezier曲线不同的是权函数不采用伯恩斯坦基函数,而采用B样条基函数。
(3)、非均匀有利B样条(NURBS)曲线与曲面:NURBS是Non-Uniform Rational B-Splines的缩写。
Non-Uniform(非统一)指一个控制顶点的影响力的范围能够改变。
当创建一个不规则曲面的时候,这一点非常有用。
同样,统一的曲线和曲面在透视投影下也不是无变化的,对于交互的3D建模来说,这是一个严重的缺陷。
Rational(有理)指每个NURBS物体都可以用数学表达式来定义。
B-Spline(B样条)指用路线来构建一条曲线,在一个或更多的点之间以内差值替换。
(4)NURBS曲面的特性及曲面连续性定义:NURBS曲面的特性:NURBS用数学方法来描述形体,采用解析几何图形,曲线或曲面上任何一点都有其对应的坐标(x,y,z),据有高度的精确性。
曲面G1与G2连续性定义:Gn表示两个几何对象间的实际连续程度。
●G0:两个对象相连或两个对象的位置是连续的。
●G1:两个对象光滑连接,一阶微分连续,或者是相切连续的。
●G2:两个对象光滑连接,二阶微分连续,或者两个对象的曲率是连续的。
●G3:两个对象光滑连接,三阶微分连续。
●Gn的连续性是独立于表示(参数化)的。
2、检查曲面光滑的方法:①、对构造的曲面进行渲染处理,可通过透视、透明度和多重光源等处理手段产生高清晰度的、逼真的彩色图像,再根据处理后的图像光亮度的分布规律来判断出曲面的光滑度。
实验四 Hermite Bezier B样条三种曲线的绘制一、实验目的了解和学习Hermite、Bezier、B样条三种曲线算法掌握基于 Win32、Visual C++环境MFC绘制图形配置过程制过程编程实现Hermite、Bezier、B样条三种曲线的绘制二、实验原理三次参数曲线1.曲线段可以用端点、切向量和曲线段之间的连续性等约束条件来定义2.两个端点和两端点处的切向量定义Hermite曲线;3.两个端点和另外两个控制端点切向量的点定义的Bezier曲线;4.由四个控制顶点定义的样条曲线。
三、实验关键代码void CDrawYTQXView::Hermite() //绘制Hermite三次插值样条{int a[4][4] ={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};//Mh 矩阵系数int b[4][2];//边界点for(int i=0;i<4;i++){b[0][0]=p1[i][0];b[0][1]=p1[i][1];//起点的坐标b[1][0]=p1[i+1][0];b[1][1]=p1[i+1][1];//终点的坐标b[2][0]=p2[i][0];b[2][1]=p2[i][1];//起点的导数b[3][0]=p2[i+1][0];b[3][1]=p2[i+1][1];//终点的导数Caculate(a,b);CClientDC dc(this);CPen MyPen,*pOldPen;MyPen.CreatePen(PS_SOLID,1,RGB(0,0,255));pOldPen=dc.SelectObject(&MyPen);dc.MoveTo(p1[i][0],p1[i][1]);for(double t=0.0;t<=1;t+=1.0/400){int x=ROUND(pow(t,3)*result[0][0]+pow(t,2)*result[1][0]+ t*result[2][0]+result[3][0]);int y=ROUND(pow(t,3)*result[0][1]+pow(t,2)*result[1][1]+ t*result[2][1]+result[3][1]);dc.LineTo(x,y);}dc.SelectObject(pOldPen);MyPen.DeleteObject();}}void CDrawYTQXView::Caculate(int a[4][4],int b[4][2])//矩阵相乘{int i,j,k;for(i=0;i<4;i++)for(j=0;j<2;j++)result[i][j]=0; //矩阵清零for(i=0;i<2;i++)for(j=0;j<4;j++)for(k=0;k<4;k++)result[j][i]+=a[j][k]*b[k][i];}void CDrawYTQXView::DrawBezier()//绘制Bezier曲线{CClientDC dc(this);double x,y;int rate=400,n;n=CtrlPoint-1;for(double t=0;t<=1;t+=1.0/rate){x=0;y=0;for(int i=0;i<=n;i++){x+=pt[i].x*Cnk(n,i)*pow(t,i)*pow(1-t,n-i);y+=pt[i].y*Cnk(n,i)*pow(t,i)*pow(1-t,n-i);}dc.SetPixel(ROUND(x),ROUND(y),RGB(0,0,255)); //曲线颜色}}double CDrawYTQXView::Cnk(const int &n, const int &i)//Bernstein 第一项{return double(Factorial(n)/(Factorial(i)*Factorial(n-i)));}int CDrawYTQXView::Factorial(int m)//阶乘函数{int f=1;for(int i=1;i<=m;i++)f*=i;return f;}void CDrawYTQXView::DrawB3_curves() //绘制B样条曲线{CClientDC dc(this);int i,rate=10,m;long lx,ly;m=CtrlPoint-(3+1);double F03,F13,F23,F33;lx=ROUND((pt[0].x+4.0*pt[1].x+pt[2].x)/6.0); //t=0的起点x坐标ly=ROUND((pt[0].y+4.0*pt[1].y+pt[2].y)/6.0);//t=0的起点y坐标dc.MoveTo(lx,ly);CPen MyPen2,*pOldPen2;MyPen2.CreatePen(PS_SOLID,2,RGB(0,0,255)); //颜色设置pOldPen2=dc.SelectObject(&MyPen2);for(i=1;i<m+2;i++) //m+1段三次样条曲线{for(double t=0;t<=1;t+=1.0/rate){F03=(-t*t*t+3*t*t-3*t+1)/6;//计算F0,3(t)F13=(3*t*t*t-6*t*t+4)/6;//计算F1,3(t)F23=(-3*t*t*t+3*t*t+3*t+1)/6;//计算F2,3(t)F33=t*t*t/6;//计算B3,3(t)lx=ROUND(pt[i-1].x*F03+pt[i].x*F13+pt[i+1].x*F23+pt[i+2].x*F33 );ly=ROUND(pt[i-1].y*F03+pt[i].y*F13+pt[i+1].y*F23+pt[i+2].y*F33 );dc.LineTo(lx,ly);}}dc.SelectObject(pOldPen2);MyPen2.DeleteObject();}void CDrawYTQXView::DrawCharPolygon()//绘制控制多边形{CClientDC dc(this);CPen MyPen,*pOldPen;MyPen.CreatePen(PS_SOLID,2,RGB(0,0,0)); //控制多边形pOldPen=dc.SelectObject(&MyPen);for(int i=0;i<CtrlPoint;i++){if(i==0){dc.MoveTo(pt[i]);dc.Ellipse(pt[i].x-2,pt[i].y-2,pt[i].x+2,pt[i].y+2);}else{dc.LineTo(pt[i]);dc.Ellipse(pt[i].x-2,pt[i].y-2,pt[i].x+2,pt[i].y+2);}}dc.SelectObject(pOldPen);MyPen.DeleteObject();}void CDrawYTQXView::OnLButtonDown(UINT nFlags, CPoint point)//获得屏幕控制点坐标{// TODO: Add your message handler code here and/or call default CView::OnLButtonDown(nFlags, point);if(Flag){pt[CtrlPoint].x=point.x;pt[CtrlPoint].y=point.y;if(CtrlPoint<N_MAX_POINT)CtrlPoint++;elseFlag=false;DrawCharPolygon();}else DrawCharPolygon1();}void CDrawYTQXView::OnRButtonDown(UINT nFlags, CPoint point)//调用绘制函数{// TODO: Add your message handler code here and/or call default Flag=false;if(Sign==0)Hermite();if(Sign==1)DrawBezier();if(Sign==2)DrawB3_curves();CView::OnRButtonDown(nFlags, point);}四、实验结果1、绘制Hermite曲线2、绘制Bezier曲线3. 绘制B样条曲线五、心得体会通过实验进一步学习和了解MFC的菜单的实现及其响应函数的实现,并设置鼠标的左键激活绘制多边形,右键激活绘制Hermite、Bezier、B样条三种曲线。
第八讲第5章Bézier曲线和曲面张汉茹航宇学院本章内容提要5.1 Bézier曲线的定义5.2 Bézier曲线的几何性质5.3 Bézier曲线的几何作图法5.4 Bézier曲线的改进和使用5.5 Bézier曲线的合成5.6 Bézier曲面是伯恩斯坦基函数和控制顶点的位置矢量的线性组合,是采用逼近的方式来构造曲线的。
∑()() (01)ni i ,n i=0r u =P B u u≤≤P 0P P 2P 3讨论——上次课的延续和本次课的引言1.Bézier 曲线,()(1),0,1,...,i in ii n nB uC u u i n-=-=1) 曲线的起点和终点通过控制多边形的首末顶点;2) 曲线在起点和终点处分别同特征多边形的第一和最后一条边相切;3) 曲线在端点处的二阶导数只与相临的3个顶点有关。
P02. Bézier曲线端点性质有:5.3 Bézier 曲线的几何作图法1ii i+1()= (1-)+i =0,1,2,,n -1P u u P uP 110010010()= (1-)+()= +(-)i =0P u u P uP P u P u P P 则当i =0时有:当特征多边形顶点(P i , i=0,1,2, …,n)给定时,为求出曲线上的任意一点,Bézier 给出了一种几何作图方法。
这种作图法给Bézier 曲线的生成提供了一个形象的几何解释。
对于u ∈[0,1],给定参数值u ,在特征多边形的每条边上找一个分割点,使分割后的两段线段的比值为u :(1-u ),对于以P i 和P i+1为端点的第i+1条边,分点P i 1(u)的位置矢量为P 0P 1P 2P 3P 00P 10P 20P 30P 01P 11P 21P 02P 12分割过程:分割递推算法:P i j =(1-u )P i j-1+u P i+1j-1 P i 0=P ij=1,2, …,n; i=0,1, …,n -jP 0P 2P 1P 3P 11P 01P 21P 03=r (1/3)P 02P 12u =1/3下图为当u=1/3时,对应的曲线上的点的几何作图法:r(1/3)r(0)r(1)5次Bézier曲线的分割过程:Bézier曲线的离散生成Bézier曲线的收敛性:对控制多边形的分割产生的多边形序列一致收敛于r≤≤()(01)u uBézier 曲线是采用逼近而不是插值的方式来构造曲线,不用考虑切矢和扭矢。
贝塞尔曲线(Bezier Curve)和B样条(B-Spline)是计算机图形学中常用的两种曲线生成方法,它们在图形设计、动画制作、CAD软件等领域被广泛应用。
本文将从贝塞尔曲线和B样条的生成原理入手,深入探讨它们的内在机制和应用。
一、贝塞尔曲线的生成原理贝塞尔曲线是一种由法国工程师皮埃尔·贝塞尔(Pierre Bézier)于1962年在汽车工业中首次引入的曲线生成方法。
其生成原理基于一组控制点来描述曲线的形状,这组控制点通过线性插值的方式来确定曲线的路径。
贝塞尔曲线的生成过程可以简要描述如下:1. 定义控制点:从给定的控制点集合中选择若干个点作为曲线的控制点。
2. 插值计算:根据控制点的位置和权重,通过插值计算得到曲线上的点。
3. 曲线绘制:利用插值计算得到的曲线上的点,进行绘制来呈现出贝塞尔曲线的形状。
在具体应用中,贝塞尔曲线的生成可以通过线性插值、二次插值和三次插值等不同插值方式来实现,其中三次插值的贝塞尔曲线应用最为广泛,其生成原理更为复杂,但也更为灵活。
二、B样条的生成原理B样条(B-Spline)是另一种常用的曲线生成方法,在实际应用中具有一定的优势。
B样条的生成原理与贝塞尔曲线不同,它是基于多项式函数的分段插值来描述曲线的形状。
B样条的生成过程可以简要描述如下:1. 定义控制点和节点向量:B样条需要定义一组控制点和一组节点向量(Knot Vector)来描述曲线的形状。
2. 基函数计算:根据节点向量和控制点,计算出关联的基函数(Basis Function)。
3. 曲线计算:利用基函数和控制点的权重,通过计算得到曲线上的点。
相比于贝塞尔曲线,B样条更为灵活,可以更精细地描述曲线的形状,并且能够进行局部编辑,使得曲线的变形更加方便。
三、应用比较与总结贝塞尔曲线和B样条是两种常用的曲线生成方法,它们各自具有一些优势和劣势,在实际应用中需要根据具体情况做出选择。
1. 灵活性比较:B样条相对于贝塞尔曲线更加灵活,能够更精细地描述曲线的形状,并且能够进行局部编辑,使得曲线的变形更加方便。
B样条曲面的算法生成及研究本文由天空乐园大学生旅游网整理分享摘要本文主要介绍B样条曲面的性质、算法、以及应用,让我们对B样条曲面有一个全面的了解。
B样条曲面不仅在保留了Bézier曲面的优点的同时克服了由于整体表示带来的不具有局部性质的特点,而且成功地解决了样条函数的局部控制问题,轻而易举地在参数连续性上解决了贝奇尔方法的连接问题,是最广泛流行的形状数学描述的主流方法之一。
B样条曲面中均匀双三次B样条曲面又是各种B 样条曲面中应用最多的一种之一,它避免了B 样条递推定义的繁琐算法,只要给出的空间型值点大致均匀,即可生成空间任何形状的曲面。
而非均匀有理B样条曲面( NU RBS ) 是曲面构造的常用工具, 是目前工业界曲面曲线表示的数学标准。
B-样条曲面是一种特殊NU RBS , 在实际应用中是首选形式。
在本文中我们主要介绍了均匀双三次B样条曲面。
关键词:B样条曲面非均匀B样条曲面双三次均匀B样条曲面 B样条基函数1 引言计算机运用技术的不断发展使得CAD/CAM技术日益提高和完善,为实现工业生产过程自动化展示了光明的前景。
目前,利用程序系统对某一产品实现机辅设计和数控加工的自动化过程已经开始。
然而在实际生产中,数控机床的使用还很不普遍,大部分数控机床仍靠手工编程来实现单一加工。
这除了数控设备价格昂贵之外,控制程序系统的设计难度较大也是重要原因之一。
譬如,对数控铣削加工控制程序系统的设计,尤其是在数控铣床上加工任意形状曲面的程序系统设计,目前还处于探讨摸索之中。
随着汽车、船舶、航空工业的发展,对于工业产品的形状描述也就提出了越来越高的要求。
工业产品的形状大致可以分为两类:一类是仅有初等解析曲面,例如平面、圆柱面、圆锥面、球面以及它们组合而成的规则曲面;另一类是不能由任何解析表达的自由型曲面。
汽车、船舶、飞机的外部零件基本上都是自由曲面。
而自由曲面不能由画法几何与机械制图表达清楚,成为摆在工程师面前首要解决的问题。
§4.3 贝塞尔曲线和B 样条曲线在前面讨论的抛物样条和三次参数样条曲线,他们的共同特点是:生成的曲线通过所有给定的型值点。
我们称之为“点点通过”。
但在实际工作中,往往给出的型值点并不是十分精确,有的点仅仅是出于外观上的考虑。
在这样的前提下,用精确的插值方法去一点点地插值运算就很不合算;另外,局部修改某些型值点,希望涉及到曲线的范围越小越好,这也是评价一种拟合方法好坏的指标之一。
针对以上要求,法国人Bezier 提出了一种参数曲线表示方法,称之为贝塞尔曲线。
后来又经Gorgon, Riesenfeld 和Forrest 等人加以发展成为B 样条曲线。
一、贝塞尔曲线贝塞尔曲线是通过一组多边折线的各顶点来定义。
在各顶点中,曲线经过第一点和最后一点,其余各点则定义曲线的导数、阶次和形状。
第一条和最后一条则表示曲线起点和终点的切线方向。
1.数学表达式n+1个顶点定义一个n 次贝塞尔曲线,其表达式为:)()(0,t B p t p ni n i i ∑== 10≤≤t),...,2,1,0(n i p i =为各顶点的位置向量,)(,t B n i 为伯恩斯坦基函数i n i n i t t n i n t B ---=)1()!1(!!)(,2.二次贝塞尔曲线需要3个顶点,即210,,p p p ,将其代入曲线表达式:2,222,112,00)(B p B p B p t p ++=220202,021)1()1()!02(!0!2t t t t t B +-=-=--=-21212,122)1(2)1()!12(!1!2t t t t t t B -=-=--=-22222,2)1()!22(!2!2t t t B =--=-221202)22()21()(p t p t t p t t t p +-++-=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21020010221211p p p t t 10≤≤t 2102)21(2)1(2)(tp p t p t t p +-+-=')(222)0(0110p p p p p -=+-=' 0)0(p p =)(222)1(1221p p p p p -=+-=' 2)1(p p =当21=t 时: 21021041214141)412212()412121(21p p p p p p p ++=+⋅-⋅++⋅-=⎪⎭⎫⎝⎛)](21[21201p p p ++= 02210212)2121(2)121(221p p p p p p -=⋅+⋅-+-=⎪⎭⎫⎝⎛'3.三次贝塞尔曲线三次贝塞尔曲线需要4个点,即0p 、1p 、2p 、3p 。
四、B 样条曲线与曲面Bezier 曲线具有很多优越性,但有二点不足:1)特征多边形顶点数决定了它的阶次数,当n 较大时,不仅计算量增大,稳定性降低,且控制顶点对曲线的形状控制减弱;2)不具有局部性,即修改一控制点对曲线产生全局性影响。
1972年Gordon 等用B 样条基代替Bernstein 基函数,从而改进上述缺点。
B样条曲线的数学表达式为:∑=+⋅=nk n k ki n i u N Pu P 0,,)()(在上式中,0 ≤ u ≤ 1; i= 0, 1, 2, …, m 所以可以看出:B样条曲线是分段定义的。
如果给定 m+n+1 个顶点 Pi ( i=0, 1, 2,…, m+n),则可定义 m+1 段 n 次的参数曲线。
在以上表达式中:N k,n (u) 为 n 次B 样条基函数,也称B样条分段混合函数。
其表达式为:∑-=+--+⋅⋅-=kn j nj n j n k j k n u C n u N 01,)()1(!1)(式中:0 ≤ u ≤1k = 0, 1, 2, …, n1.均匀B 样条曲线1一次均匀B 样条曲线的矩阵表示空间n+1个顶点i P (i = 0,1,…,n )定义n 段一次(k =0,1,n=1)均匀B 样条曲线,即每相邻两个点可构造一曲线段P i (u ),其定义表达为:[]10 ;,...,1 0111 1)(1≤≤=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-u n i u u P i i i P P=(1-u )P i -1 + u P i= N 0,1(u )P i -1 + N 1,1(u )P i第i 段曲线端点位置矢量:i i i i P P P P ==-)1(,)0(1,且一次均匀B 样条曲线就是控制多边形。
2二次均匀B 样条曲线的空间n+1个顶点的位置矢量i P (i=0,1,…,n )定义n -1段二次(k =0,1,2, n=2)均匀B 样条曲线,每相邻三个点可构造一曲线段P i (u )(i=1,…,n -1),其定义表达为:[]10 ;1,...,1 011022121 121)(112≤≤-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-u n i u u u P i i i i P P P= !21(1 - 2 u + u 2)P i -1 + !21(1 + 2 u - 2u 2)P i + !21u 2 P i +1= N 0,2(u )P i -1 + N 1,2(u )P i + N 2,2(u )P i +1 端点位置矢量:)(5.0)0(1i i i P P P +=-,)(5.0)1(1++=i i i P P P ,即曲线的起点和终点分别位于控制多边形P i-1P i 和P i P i+1的中点。