湍流模型简述
- 格式:ppt
- 大小:1.44 MB
- 文档页数:44
9个湍流模型介绍
好的,为你介绍9个湍流模型:
1. Reynolds平均的NS方程(Reynolds-Averaged Navier-Stokes,RANS):Reynolds 提出了平均法,将“瞬时值=平均值+脉动值”带入不可压缩流体控制方程中,得到了一个更复杂的方程。
对于可压缩流体,假设瞬时密度的变化对流动影响不大,忽略其影响。
2. Reynolds应力模型(RSM):模仿控制方程的样子,搞出一个针对Reynolds应力的输运方程。
3. 代数应力模型(ASM):简化Reynolds应力方程的对流项和扩散项。
此外,还有一些其他湍流模型,如Spalart-Allmaras模型、k-双方程模型等。
这些模型都有各自的特点和适用范围,可根据具体问题选择合适的湍流模型进行计算。
由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。
这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。
基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。
另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。
大涡模拟(large eddy simulation, LES)大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。
大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。
大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。
这些对涡旋的认识基础就导致了大涡模拟方法的产生。
Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。
大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。
LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。
应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。
标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。
本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。
1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。
在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。
2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。
它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。
k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。
3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。
与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。
4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。
在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。
5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。
在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。
总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。
从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。
湍流模型介绍
湍流模型是数学模型的一种,用于描述液体或气体中的湍流运动。
湍流是一种不规律的、难以预测的流体运动,通常是由于速度、密度或温度的不规则分布引起的。
湍流模型通过使用一系列方程,描述流体的速度、压力和密度等参数之间的相互作用,以预测和模拟流体的复杂运动行为。
湍流模型主要分为两类:基于雷诺平均的模型(如k-ε模型、k-ω模型)和直接数值模拟(DNS)。
每种模型都有其适用的范围和局限性,需要根据具体问题的特性选择合适的模型。
湍流模型在气象、水文、工程、航空航天等领域中得到了广泛应用。
湍流模型介绍因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。
在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。
FLUENT 中采用的湍流模拟方法包括Spalart-Allmaras模型、standard(标准)k −ε模型、RNG(重整化群)k −ε模型、Realizable(现实)k −ε模型、v2 −f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。
7.2.1 雷诺平均与大涡模拟的对比因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。
这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。
雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。
湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。
在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。
根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。
FLUENT 中使用的三种k −ε模型、Spalart-Allmaras 模型、k −ω模型及雷诺应力模型RSM)等都属于湍流模式理论。
大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。
流体的湍流模型和湍流模拟流体力学是研究流体的运动规律和性质的学科,其中湍流模型和湍流模拟是其中非常重要的研究方向。
湍流是流体力学中一种复杂而普遍存在的现象,它具有不规则、无序和随机性等特点。
湍流模型和湍流模拟的发展,对于理解和预测真实世界中的湍流现象,以及涉及湍流的工程设计和应用具有重要意义。
一、湍流模型湍流模型是描述湍流现象的数学模型,在流体力学中起着扮演着非常重要的作用。
根据流体力学理论,湍流是由于流体中微小尺度的速度涡旋突然出现和消失所导致的现象。
由于湍流涡旋的尺度范围很广,从而难以直接模拟和计算。
因此,使用湍流模型来近似描述湍流现象,成为了一种常用的方法。
常见的湍流模型包括雷诺平均湍流模型(Reynolds-averaged Navier-Stokes equations, RANS)和大涡模拟(large eddy simulation, LES)等。
雷诺平均湍流模型是基于平均流场的统计性质,通过求解雷诺平均速度和湍流应力来评估湍流效应。
而大涡模拟是将湍流现象分解为不同尺度的涡旋,并通过直接模拟大涡旋来研究湍流运动。
二、湍流模拟湍流模拟是利用计算机来模拟湍流现象的方法,通常基于数值方法对流体力学方程进行求解。
湍流模拟分为直接数值模拟(direct numerical simulation, DNS)、雷诺平均湍流模拟和大涡模拟等。
直接数值模拟是将流场划分为网格,并通过离散化流体力学方程和湍流模型来求解湍流流场的详细信息。
由于该方法需要计算微小尺度的细节,计算量非常大,限制了其在实际工程中的应用。
因此,直接数值模拟主要用于湍流现象的基础研究和理论验证。
相比之下,雷诺平均湍流模拟和大涡模拟能够更有效地模拟湍流现象。
雷诺平均湍流模拟通过对湍流参数进行求解,来描述平均的湍流效应。
而大涡模拟则将湍流现象分为大涡旋和小涡旋,通过模拟大涡旋来捕获湍流流场的主要特征。
三、湍流模型与湍流模拟的应用湍流模型和湍流模拟在工程设计和应用中有着广泛的应用。
K-e湍流模型资料讲解
K-e湍流模型
精品资料
K是紊流脉动动能(J),ε 是紊流脉动动能的耗散率(%)
K越大表明湍流脉动长度和时间尺度越大,ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大,
至于k是怎么设定see fluent manual "turbulence modelling"
作一个简单的平板间充分发展的湍流流动,
基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!
k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;
在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?
Mepsilon=Cu*k*k/Vt%
这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!
仅供学习与交流,如有侵权请联系网站删除谢谢2。
由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
流体力学中的湍流模型与数值方法研究在流体力学研究中,湍流是一种普遍存在的现象,广泛应用于工程领域。
湍流的复杂性使得其数值模拟变得非常困难。
因此,研究建立可靠的湍流模型与数值方法,成为流体力学领域的热门课题之一。
一、湍流模型的基本原理湍流模型是描述湍流流动的数学模型。
根据湍流的不同特性和流动情况,主要有两种常用的湍流模型,一种是雷诺平均湍流模型(RANS),另一种是大涡模拟(LES)。
1. 雷诺平均湍流模型(RANS)雷诺平均湍流模型是基于雷诺平均的假设,将湍流流动分解为平均流场和涨落流场,并对平均流场施加雷诺应力平衡方程。
其中,最常用的湍流模型是k-ε模型和k-ω模型。
- k-ε模型是最早提出的一种湍流模型,基于湍流能量方程和湍流耗散率方程,通过求解k和ε两个涡量的方程来计算湍流应力和雷诺应力。
- k-ω模型是基于湍流能量方程和湍流湍流耗散率方程,通过求解k和ω两个涡量的方程来计算湍流应力和雷诺应力。
2. 大涡模拟(LES)大涡模拟是一种直接模拟湍流中的大尺度结构,对小尺度结构进行模型化处理。
在大涡模拟中,流场被分为大尺度结构和小尺度结构,其中大尺度结构可以直接计算,小尺度结构通过湍流模型间接计算。
大涡模拟可以提供更详细的湍流信息,但计算量大,适用于高性能计算。
二、湍流模型的应用领域湍流模型在工程领域有广泛的应用,以下是一些常见的领域:1. 空气动力学湍流模型在飞行器、汽车等流体力学分析中具有重要作用。
通过模拟流场的湍流特性,可以准确预测阻力和升力等空气动力学性能。
2. 水力学在河流、水库等水力学分析中,湍流模型可以用来预测水体的流速分布、流速剖面和局部流动特性,对水工建筑物的设计具有指导作用。
3. 燃烧工程在燃烧系统中,湍流模型可以用来模拟燃烧反应和燃烧产物的输运过程。
通过研究湍流在燃烧系统中的特性,可以提高燃烧效率和减少污染物产生。
三、湍流模型的数值方法湍流模型的数值求解是湍流模拟的关键。
通常采用的数值方法包括有限差分法、有限元法和谱方法等。
湍流模型构建一、湍流模型概述湍流是指流体在运动过程中出现的不规则、无序的运动状态。
由于湍流的不稳定性和复杂性,使得研究湍流问题成为流体力学中的难点之一。
为了描述湍流运动,需要建立适当的数学模型,即湍流模型。
目前常用的湍流模型主要有直接数值模拟(DNS)、大涡模拟(LES)和雷诺平均Navier-Stokes方程(RANS)三种。
二、雷诺平均Navier-Stokes方程1.基本原理雷诺平均Navier-Stokes方程是一种基于统计平均方法来描述湍流运动的数学模型。
该模型假设了在一个足够长时间内,湍流中各个位置上的速度和压力都会发生变化,并且这些变化都是随机性的。
因此,可以通过对时间进行平均来消除这种随机性,并得到一个稳定的平均场。
2.方程形式雷诺平均Navier-Stokes方程包含了连续性方程、动量守恒方程和能量守恒方程三个部分。
其中,连续性方程描述了质量守恒;动量守恒方程描述了动量守恒;能量守恒方程描述了能量守恒。
这三个方程的具体形式如下:连续性方程:$$\frac{\partial \rho}{\partial t}+\nabla \cdot (\rho u)=0$$动量守恒方程:$$\rho \frac{\partial u}{\partial t}+\rho u \cdot \nabla u=-\nabla p+\mu\nabla^2u+\rho g$$能量守恒方程:$$\rho c_p(\frac{\partial T}{\partial t}+u \cdot \nablaT)=\nabla\cdot(k\nabla T)+Q$$其中,$\rho$为流体密度,$u$为流速,$p$为压力,$\mu$为粘性系数,$g$为重力加速度,$c_p$为比热容,$T$为温度,$k$为热导率,$Q$为单位时间内的热源或热汇。
3.湍流模型雷诺平均Navier-Stokes方程中包含了湍流运动的统计平均过程。
第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。
即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量(笛卡尔坐标系)表示,即有:ij i j j i t j i k x u x u u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 ij δ为DELT 函数,一般i=j 时为1,否则为0.模型的任务就是给出计算湍流粘性系数t μ的方法。
根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。
(模拟大空间建筑空气流动)μt=0.038 74ρvl (模拟通风空调室内的空气流动)比例系数由直接数值模拟的结果拟合而得,其中:v 为当地时均速度,l 为当地距壁面最近的距离。
第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。
第三类是大涡模拟。
前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。
大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。
实际求解中,选用什么模型要根据具体问题的特点来决定。
选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。
参见:湍流模型的选择资料。
FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。
湍流模型种类示意图大涡模拟启动需要用命令:(rpsetvar 'les-2d? #t)Direct Numerical Simulation包含更多物理机理 每次迭代计算量增加 提的模型选RANS-based models第二节 平均量输运方程输运过程的粘滞系数、扩散系数和热传导率,故称为输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。