起动机构造与工作原理
- 格式:doc
- 大小:1.16 MB
- 文档页数:25
一、实训目的本次实训旨在使学生掌握起动机的拆装、检修与调试方法,了解起动机的结构与工作原理,提高学生的动手能力和实际操作技能。
通过实训,使学生能够独立完成起动机的拆装、检修与调试,为今后从事汽车维修工作打下坚实基础。
二、实训内容1. 起动机的结构与工作原理起动机是汽车启动系统的重要组成部分,其作用是驱动发动机曲轴旋转,使发动机启动。
起动机主要由以下几部分组成:永磁直流电动机、电磁开关、电刷、电枢、起动机壳体等。
起动机的工作原理:当钥匙插入点火开关并转动时,电流通过电磁开关线圈,产生磁场。
在磁场的作用下,电磁开关的触点闭合,电流通过电刷进入电枢线圈,产生磁场。
在磁场的作用下,电枢线圈受到力的作用,驱动起动机旋转,从而带动发动机曲轴旋转。
2. 起动机的拆装(1)起动机的拆卸① 拆卸起动机外壳:先拆下起动机固定螺栓,然后用手或专用工具将起动机外壳拆下。
② 拆卸起动机内部零件:将起动机内部零件依次拆下,包括电刷、电枢、电磁开关、永磁直流电动机等。
(2)起动机的组装① 组装起动机内部零件:按照拆卸的相反顺序将起动机内部零件依次组装。
② 组装起动机外壳:将起动机外壳装回,并拧紧固定螺栓。
3. 起动机的检修与调试(1)起动机的检修① 检查电刷:检查电刷的磨损程度,若磨损超过规定值,则更换电刷。
② 检查电枢:检查电枢线圈是否有短路、断路现象,如有,则进行修复或更换。
③ 检查电磁开关:检查电磁开关触点是否磨损、氧化,如有,则进行打磨或更换。
④ 检查永磁直流电动机:检查永磁直流电动机的磁极是否有磨损、损坏,如有,则进行修复或更换。
(2)起动机的调试① 调试起动机的转速:调整起动机的转速,使其达到规定值。
② 调试起动机的扭矩:调整起动机的扭矩,使其达到规定值。
三、实训步骤1. 准备实训场地和工具2. 了解起动机的结构与工作原理3. 拆卸起动机外壳4. 拆卸起动机内部零件5. 组装起动机内部零件6. 组装起动机外壳7. 检查起动机的各个部件8. 调试起动机的转速和扭矩9. 完成实训报告四、实训总结通过本次起动机拆装检修实训,我们掌握了起动机的拆装、检修与调试方法,了解了起动机的结构与工作原理。
起动机传动机构的工作原理
起动机传动机构是汽车发动机启动和停止的关键组成部分,其工作原理主要包括起动机工作原理、传动机构构造、工作过程等方面。
起动机工作原理
起动机是汽车发动机起动的装置,工作原理主要依靠电动机的转动带动曲柄轮使发动机转动,从而使其实现启动。
在启动机工作之前,先从电瓶取得电力,通过启动电瓶开关将电能转化成机械能,从而启动汽车发动机。
由于发动机启动时需要较大的扭矩,所以起动机需要具有较大的启动能力。
传动机构构造
起动机传动机构主要由电动机、电磁开关、过载保护器、曲柄轮、传动齿轮、变速齿轮等构成。
电动机是起动机的核心部件,通过转动带动其他机构实现汽车发动机的启动。
电磁开关主要起到断开和闭合电路的作用,过载保护器则用于保护起动机不会因为负载过大而受损。
曲柄轮、传动齿轮和变速齿轮则是起动机转动发动机的关键部分,通过它们的配合实现了发动机的启动。
工作过程
在汽车启动过程中,首先通过钥匙或按钮启动汽车,电瓶输出电能到起动电瓶开关,电磁开关闭合电路,电动机转动,通过传动机构带动曲柄轮转动,从而驱动发动机实现启动。
整个起动机传动机构的工作过程是一个连续的动力传递过程,经过电能到机械能的转化,最终实现了汽车发动机的启动。
总结
起动机传动机构通过电动机带动传动部件的转动,将电能转化成机械能,实现了汽车发动机的启动。
起动机传动机构在汽车启动和停止过程中发挥了关键作用,其工作原理的实现依赖于多个部件的协同配合,形成了一个高效的动力传递系统。
汽车起动机的构造和工作原理汽车起动机是汽车发动机启动的关键组件之一,它的作用是通过转动发动机曲轴,使发动机能够正常工作。
本文将详细介绍汽车起动机的构造和工作原理。
一、汽车起动机的构造汽车起动机由电机、齿轮组和电磁开关组成。
电机是起动机的动力来源,它由定子和转子组成,定子上布置了一组电磁铁线圈,转子则是一个带有几个电刷的电枢。
齿轮组由一对主动齿轮和被动齿轮组成,主动齿轮与转子相连,被动齿轮则与发动机曲轴相连。
电磁开关控制起动机的开关和断开。
二、汽车起动机的工作原理当驾驶员转动钥匙或按下启动按钮时,电磁开关会闭合,电流通过电磁铁线圈,产生磁场。
磁场作用下,电枢开始旋转,同时带动主动齿轮转动。
主动齿轮与被动齿轮咬合,使曲轴开始转动,从而带动发动机的运转。
在起动机工作过程中,电磁开关起到了关键作用。
当电磁开关闭合时,电流通过电磁铁线圈,产生的磁场使得电枢开始旋转。
同时,电磁开关断开了电枢与电池的连接,避免了电枢持续供电,从而保证了起动机不会过热损坏。
三、汽车起动机的工作过程1. 驾驶员转动钥匙或按下启动按钮,电磁开关闭合,电流通过电磁铁线圈,产生磁场。
2. 磁场作用下,电枢开始旋转。
同时,电磁开关断开了电枢与电池的连接。
3. 电枢转动带动主动齿轮旋转,主动齿轮与被动齿轮咬合。
4. 被动齿轮带动曲轴开始转动,发动机启动。
5. 当发动机启动后,驾驶员松开钥匙或启动按钮,电磁开关断开,电流停止供应。
6. 起动机停止工作,发动机继续独立运转。
四、汽车起动机的特点和优势1. 快速启动:汽车起动机能够迅速转动发动机,使其快速启动,减少起动时间,提高效率。
2. 自动控制:起动机的工作过程由电磁开关自动控制,无需驾驶员进行复杂操作,简化了操作流程。
3. 可靠性高:汽车起动机采用优质材料制造,具有耐用性和抗腐蚀性,能够在恶劣环境下正常工作。
4. 能效高:起动机的电机采用高效能转子和节能型电磁线圈,能够提高能效,降低能耗。
起动机的构造及工作原理起动机是现代汽车的重要组成部分之一,它是引擎启动的关键部件。
起动机具有复杂的构造和工作机制,下面我们来仔细了解一下。
一、起动机的构造
起动机由电动机、减速器和传动机构三部分组成。
1.电动机:是起动机的核心部件之一,它通常是由电磁铁和电枢两部分组成。
电磁铁是起动机的驱动部分,当电磁铁受到电压作用时,它会产生磁场,引起电枢与电磁铁之间的相互作用,从而使电动机运转。
2.减速器:主要作用是减小电动机转动的速度,同时增大扭矩,使得电动机能够输出足够的动力来启动发动机。
3.传动机构:它主要是将电动机输出的转速和扭矩转化为发动机所需的输出功率,从而帮助发动机成功启动并保持正常的运转。
二、起动机的工作原理
起动机的工作原理是基于其构造原理之上,当我们向车钥匙上的启动钥匙开关通电时,电磁线圈就会产生一个强磁场,这个磁场会吸引电枢与电动机左侧主机壳之间的驱动齿轮向右移动,从而将其与其他齿轮同步连接。
一般情况下,起动机的旋转方向是逆时针方向,这个方向与发动机传动轴的方向是相反的。
启动钥匙被插入时,电磁铁产生磁场。
磁场引起电枢上的齿轮转动,齿轮带动发动机开始转动,并且在发动机正常运转之后就会自动停止运转。
当起动机转动过程中发出非常大的噪声时,这表明起动机已经接触到压缩气体,发动机已经成功启动了。
总体来说,汽车起动机的构造和工作原理非常复杂,需要精细的设计和制造工艺才能够顺利运作。
它是现代车辆中不可或缺的重要组成部分之一,其原理和构造必须被了解和掌握。
起动机的主要部件和工作原理起动机是内燃机车辆中至关重要的一个部件,它的主要作用是在发动机启动时提供必要的起动力,使发动机能够正常运转。
起动机包含了多个主要部件,每个部件都发挥着重要的作用。
下面我们来详细介绍起动机的主要部件和工作原理。
一、主要部件1. 电动机起动机的核心部件是电动机,它的作用是通过电能转化为机械能,产生足够的转动力来带动曲轴,从而启动发动机。
电动机通常由定子、转子、绕组、电刷和电磁铁等部件组成。
2. 飞轮飞轮是起动机连接的转动部件,它通常位于发动机曲轴的端部。
当电动机工作时,飞轮会受到转动力的驱动,从而带动曲轴转动,启动发动机。
3. 驱动装置驱动装置包括了齿轮、链条或传动带等部件,它们的作用是将电动机产生的旋转力传递给飞轮,进而启动发动机。
驱动装置需要具有足够的强度和稳定性,以确保起动机能够顺利工作。
4. 电路系统电路系统包括了电源、控制开关、继电器等部件,它们的作用是为电动机提供必要的电能,并通过控制开关和继电器来启动和停止起动机。
电路系统还包括了各种保护装置,以确保起动机和电路的安全运行。
5. 机械连接件机械连接件包括了螺栓、支架、安装座等部件,它们的作用是将起动机牢固地连接在发动机上,并确保各个部件之间的协调配合。
以上就是起动机的主要部件,每个部件都起着不可替代的作用。
接下来我们将详细介绍起动机的工作原理。
二、工作原理1. 电能转换起动机的工作过程首先是电能转换成机械能的过程。
当驾驶员启动发动机时,通过拧动钥匙或按下按钮,电路系统将电能传递给起动机的电动机。
电动机接收电能后,通过电磁感应产生磁场,使得转子受到力的作用开始旋转,通过转子转动带动飞轮。
2. 起动发动机飞轮是连接在发动机曲轴上的旋转部件,当飞轮开始转动时,曲轴也随之开始转动。
曲轴的转动能够带动汽缸活塞上下运动,进而启动发动机。
3. 自启动器开关在发动机启动后,自启动器开关会感应到发动机已经启动,自动切断电动机的电源。
汽车起动机的结构与工作原理前言在工作过程中就曾接触到汽车起动机,了解车辆对发动机起动机的工作要求,但是对汽车起动机的结构和工作原理并不清楚,借谭老师布置作业的这个机会,最近比较系统的查阅了汽车起动机的相关课件和参考书,了解了汽车起动机的结构及工作原理。
汽车起动机由直流电机、传动装置和控制装置组成,直流电机没有特殊之处,比较容易理解,传动装置和控制装置结构较为特殊,本文重点整理了所查阅的汽车起动机的传动装置和控制装置的相关资料。
要使发动机由静止状态过渡到工作状态,必须用外力转动发动机的曲轴,使气缸内吸入(或形成)可燃混合气并燃烧膨胀,工作循环才能自动进行。
汽车发动机常用的起动方式是用电动机作为机械动力,当将电动机轴上的齿轮与发动机飞轮周缘的齿圈啮合时,动力就传到飞轮和曲轴,使之旋转。
电动机本身又用蓄电池作为能源。
目前绝大多数汽车发动机都采用电动机起动。
起动机一般由直流电动机、传动机构、控制装置三部分组成。
图1 起动机1.直流电动机直流电动机在直流电压的作用下,产生旋转力矩。
直流电动机主要由电枢、磁极、电刷、电刷架及壳体等部件组成。
1.1 电枢电枢是直流电动机的转子部分,用来将电能转变为机械能,即在起动机通电时,与磁场相互作用而产生电磁转矩。
1.2 磁极磁极是直流电动机的定子部分,用来产生电动机运转所必须的磁场,它由磁极铁心、安装在铁心上的励磁绕组及机壳组成。
1.3 电刷与电刷架电刷用铜和石墨粉压制而成,一般含铜80%~90%,石墨10%~20%,以减小电刷电阻并增加其耐磨性。
一般起动机电刷个数等于磁极个数,也有的大功率起动机电刷个数等于磁极个数的2倍,以便减小电刷上的电流密度。
2.传动装置普通起动机传动装置中的主要组成部件是单向离合器,单向离合器的作用是起动时将电枢的电磁转矩传递给发动机飞轮,而在发动机起动后,就立即打滑,以防止发动机飞轮带动起动机电枢高速旋转而损坏起动机。
起动机单向离合器常见的有滚柱式、摩擦片式、扭簧式等几种形式。
起动机的构造、工作原理起动机是一种在车辆启动时为发动机提供启动能量的设备。
它由电动机、行星齿轮、离合器、电磁铁、电刷等部件组成。
起动机是车辆启动过程中不可或缺的部件之一。
构造起动机构造主要由以下部分组成:电动机起动机的核心部分是电动机,它是由串联绕组和电刷组成的。
电动机的转子是可以旋转的,它通过行星齿轮与发动机曲轴相连。
起动机通过电池为电动机提供所需电能。
行星齿轮行星齿轮是起动机的传动系统之一,它由外行星齿轮、内行星齿轮和星形架构成。
外行星齿轮与起动机壳体相连,内行星齿轮与电动机的转子相连,因此,当电动机旋转时,行星齿轮会带着发动机相同地旋转。
离合器离合器是起动机的控制部分,它由离合器螺母、离合器盘片和螺旋弹簧组成,用于启动和停止发动机。
当发动机运转时,离合器打开,使电动机不转动;在启动发动机时,离合器闭合,使电动机旋转。
电磁铁电磁铁是启动机的触发器,它是一个装有线圈的铁芯,在电磁铁吸合时,可以连接电动机和行星齿轮,以将启动扭矩传递到发动机。
当启动机停止时,电磁铁会释放。
电刷电刷是起动机的电气部分,它由碳和铜组成,用于保持电能传递的连续性。
在电动机转速过程中,电刷的接触点需要时刻保持良好的连接以保证电流稳定传递。
工作原理起动机的工作原理非常简单,它的启动是以电动机为核心的。
当电池为电动机供电时,通过强大的马达将转子旋转,用它提供的能量转动星轮,进而带动发动机曲轴转动。
这样,发动机就能够启动。
当发动机启动后,离合器自动分离,同时,电磁铁会释放,起动机的工作就完成了。
在发动机正常运行时,起动机的电动机和发动机是分离的,它们之间不产生任何联系。
总的来说,起动机的作用是提供起动能量,把发动机启动起来。
起动机在车辆启动时扮演者举足轻重的角色,是车辆能否快速启动的关键部件。
项目二起动系统单元一——起动机的构造与工作原理教学目的要求:通过教学掌握起动机的组成、分类、型号识别、起动性能、工作过程和工作原理。
熟悉直流电动机中的通用型和减速型起动机结构特点及工作过程。
教学重点、难点:起动机结构、工作原理主要教学内容:1、起动机的组成、分类和型号2、起动机的起动性能和工作特性3、通用型起动机的构造4、直流电动机5、传动机构6、控制装置7、减速型起动机复习旧课:交流发电机和调节器的使用和维护:1、安装2、使用注意事项3、检查4、零部件检修5、常见故障及修理6、电路分析导入新课:发动机最初的动力来源?一、起动机的组成分类和型号1、组成:直流电动机--产生电磁转矩传动装置(啮合机构)--起动时,啮合传动;起动后,打滑脱开控制装置(电磁开关)--接通、切断电动机与蓄电池之间的电路2、分类(1)按控制装置分为:直接操纵式电磁操纵式(2)按传动机构的啮合方式分为:惯性啮合式--已淘汰强制啮合式--工作可靠、操纵方便、广泛应用电枢移动式--结构较复杂,大功率柴油车齿轮移动式--电磁开关推动啮合杆减速式--质量体积小,结构工艺复杂3、型号(1)产品代号:QD--表示起动机QDJ--表示减速起动机QDY--表示永磁起动机(2)电压等级:1-12V;2-24V(3)功率等级:1-0~1KW;2-1~2KW ;9-8~KW(4)设计序号(5)变型代号:拼音大写字母表示,多表示电气参数的变化QD1225--12V,1~2KW,第25次设计,普通式起动机二、发动机的起动性能和工作特性1、发动机的起动性能评价指标有:(1)起动转矩(2)最低起动转速(3)起动功率(4)起动极限温度1、起动转矩起动机要有足够大的转矩来克服发动机初始转动时的各种阻力。
起动阻力包括:(1)摩擦阻力矩(2)压缩阻力矩(3)惯性阻力矩2、最低起动转速(1)在一定温度下,发动机能够起动的最低曲轴转速。
汽油机一般约为50~70r/min,最好70~100 r/min以上。
(2)起动机传给发动机的转速要大于发动机的最低转速:若低于这个转速,汽油泵供油不足,气流速度过低,可燃混合气形成不充分,还会使压缩行程的散热损失和漏气损失增加,导致发动机不能起动。
3、起动功率起动机所具有的功率应和发动机起动所必需的起动功率相匹配。
而蓄电池的容量与起动机的容量应成正比P=(450~600)P/U4、起动极限温度当环境温度低于起动极限温度时,应采取起动辅助措施:(1)加大蓄电池容量(2)进气加热(3)电喷车低温补偿2、起动机的工作特性1、起动机工作特性图2、分析当I=0时,M=0,所以,P=0,转速n达到最大,n=nmax(起动机空载);当I=Imax时,n=0,所以,P=0,输出转矩达到最大M=Mmax(起动机制动)。
空载和制动的工作情况,常用来检验起动机的故障:空载时转速低于规定值,同时电流大,说明有机械故障;制动实验时,电源电压和电流正常,转矩下降,有电路故障3、影响起动机工作特性的因素(1)蓄电池的容量和充电情况容量大,充电充足,内阻小,供给起动机电流大,起动机的功率、转速、制动力矩都大。
(2)起动电路的电阻影响起动机内部电阻和起动线路电阻越大,起动机得输出功率、转速、制动力矩均会降低。
(3)环境温度的影响环境温度低时,起动性能不好。
三、通用型起动机的构造四、直流电动机1、概述在现代汽车中,普遍采用电力起动,它以蓄电池为电源,以直流电动机为动力,通过传动装置和控制机构进行工作。
它在工作时有两个显著特点:一是扭矩大;二是工作时间短。
2、直流串励式电动机结构(1)作用--产生转矩。
(2)要求--零件的机械强度高,电路电阻小。
(3)组成:1、电枢产生电磁转矩电枢线圈是用扁铜线绕成,较粗且匝数少;电枢轴中部位置制有螺旋齿槽,用以装置啮合器,有些起动机除两端装有衬套外,中间还装有支承衬套。
为了防止轴向窜动,轴的前端制有槽,用于装置锁板机构,轴的后端制有槽,用于装置止动挡圈及弹性档圈。
2、磁极由外壳、磁极、磁场线圈等部分组成。
外壳内壁装有四个磁极(有些是二个磁极),在其上面装有磁场线圈,相对的是同极,相邻的是异极。
磁场线圈用扁而粗的铜线(或小铜线并联的方法)绕成。
磁场线圈采用串联或并联,一端与外壳上的绝缘接柱(即磁场接柱)相连,另一端与正电刷相连,线路连接如图所示。
由磁极、磁场绕组和机壳组成。
磁场与磁路见图。
3、电刷组件用铜粉和碳粉(或石墨)压制而成。
一般有四个,相对的电刷为同极。
两个负电刷搭铁,两个正电刷接磁场线圈,它们在压簧的作用下紧密地与换向器接触。
4、换向器和电刷三、直流电动机的工作原理将通电导线放入磁场中,导线会在磁场力的作用下做有规律的运动(其运动方向可以用电动机左手定则来判断),这是直流电动机能够转动的基本道理。
直流电动机工作原理:上图是最简单的直流电动机,它由磁场、电枢线圈、换向器和电刷等机件组成。
当线圈在垂直位置时,如图(a),电刷不与换向器接触,线圈中没有电流通过,因此电枢线圈不转动。
如将电枢线圈稍向顺时针方向转过一些,如图(b),换向器片分别与两电刷接触,线圈中有电流通过,其方向是从线圈I边流入,从Ⅱ边流出。
根据左手定则可以判定,线圈I边向下运动,Ⅱ边向上运动,电枢线圈向顺时针方向转动。
当线圈转到如图(c)的位置时,换向器片不与电刷接触,线圈中无电流通过,此时,电枢线圈在惯性作用下转过这个位置。
当线圈转过垂直位置时,换向器片又与两电刷接触,如图(d)所示。
但此时换向器片已经调换了位置。
因此电流从线圈Ⅱ边流入,从I边流出。
根据左手定则可以判定,线圈I边向上运动,Ⅱ边向下运动,电枢线圈仍向顺时针方向转动。
这样,使电流不断地通入线圈,线圈便按一定方向继续不停地转动。
一个线圈的电动机,虽能旋转,但转动力量小,转速也不稳定,而且在图(a,c)的位置时不能转动。
所以,实际使用的起动电动机都是由较多的线圈和配有相应换向片构成,同时采用多对电磁铁来产生较强的磁场。
但其工作原理还是一样的。
四、电动机转矩自动调节特性电动机的电磁转矩M取决于磁通φ、电枢电流Ia的乘积,即M= CmφIa其中Cm-电机结构常数1、反电动势直流电动机拖动负载,当负载发生变化时,电动机的电枢转速、电枢电流、电磁转矩均会自动的作相应的变化,以满足不同负载的需要。
其原理如下:通电的线圈在磁场中受力而转动,运动的线圈切割磁力线产生电动势,电动势的方向和线圈电流方向相反,电动势的大小为:E反=Ceφn其中,Ce--电机结构常数;φ--磁极磁通;n--电枢转速。
2、电动机工作时,电压平衡方程式为:Ub=E反+IaRa该公式称为电动机发电机一体公式即电动机在一定条件下可以变成发电机,用于电机制动和储能3、转矩自动调节过程电枢电流为:Ia=(Ub- E反)/Ra分析:当负载↓→轴上阻力矩↓→电枢转速↑→E反↑→Ia↓→电磁转矩↓→直至电磁转矩减至与阻转矩相等→电机拖动负载以较高转速平稳运转;当负载↑→轴上阻力矩↑→电枢转速↓→E反↓→Ia↑→电磁转矩↑→直至电磁转矩增至与阻转矩相等→电机拖动负载以较低转速平稳运转。
五、传动装置(啮合机构--离合器)发动机起动时,使起动机的驱动齿轮和发动机飞轮齿环啮合,将电动机的转矩传给飞轮;发动机起动后,自动切断动力传递,防止电动机被发动机带动,超速旋转而破坏。
起动机驱动齿轮与曲轴飞轮齿环之间的传动比很大,在传动机构中设置了单向离合器,起动时传递断联系。
外形见下图。
啮合器(离合器)啮合器有多种型式,通常汽车起动机上普遍采用超越式啮合器。
啮合器的构造如下图所示,主要由起动齿轮(小齿轮),单向滑轮,传动导管、推入弹簧和套筒等部分组成。
超越式啮合器单向滑轮单向滑轮的构造如下图所示,图形外座圈2与传动导管1的一端固装在一起,外座圈内部制成“+”字形空腔。
起动齿轮7的尾部成圆柱形,伸在外座圈的空腔内,使四周形成四个楔形的小腔室,内装有滚柱。
在楔形腔室较宽的一边的座圈孔内,还装有弹簧4和压帽5,平时弹簧经压帽将滚柱压向楔形室较窄的一面。
滑轮外包铁壳6,起密封和保护作用。
为增加承载能力,现单向滑轮内常制有五个腔室,采用扁形弹簧,不需钻孔和压帽。
滚柱式单向离合器1-驱动齿轮;2-外壳;3-十字块;4-滚柱;5-压帽弹簧;6-垫圈;7-护盖;8-花键套筒;9-弹簧座;10-啮合2-弹簧;11-拨环;12-卡簧单向滑轮的工作1、飞轮2、起动齿轮3、外座圈4、起动齿轮尾部5、滚柱6、压帽7、弹簧离合器的作用是:①在起动发动机时,将起动机产生的动力传给飞轮,以带动发动机起动;②当发动机起动后,迅速将发动机与起动机间的动力切断,避免起动机超速旋转而损坏。
离合器的工作情况如下:当传动叉拨动套筒,推动单向离合器向后移动而使起动齿轮和飞轮环齿啮合时,起动机开关便把电路接通,电枢开始旋转,它带动单向滑轮的外座圈转动。
在外座圈内壁的摩擦力作用下,滚柱向楔形腔室窄的一边滚动,紧紧地卡在外座圈和起动齿轮尾部之间,从而起动齿轮同起动机一起旋转,驱动飞轮当发动机起动后,起动齿轮被飞轮带着超速旋转。
它的转速高于电枢转速,此时,起动齿轮尾部带动滚柱克服弹簧的张力,使滚柱向楔形腔室较宽的一边滚动,于是滚柱在起动齿轮尾部与外座圈间发生滑摩,导致起动齿轮和外座圈以及电枢脱离联系,此时仅起动齿轮随飞轮旋转,从而避免了电枢超速旋转导线在强离心力作用下甩出的危险,滚柱式单向离合器优缺点结构简单、加工方便,成本低;轴向尺寸长,适用于大功率起动机。
摩擦片式离合器构造六、控制装置(电磁开关)电磁开关主要由电动机开关和磁力线圈组成,见下图中虚线部分所示。
电磁开关壳体的前部,装有电动机开关的C和30接线柱和磁力线圈50接柱,活动触盘装在触杆上,与触杆上的机件绝缘,起动机不工作时,在回位弹簧的作用下,使触盘与触点保持分开状态。
电磁开关构造(虚线部分)控制装置作用控制装置的作用是控制驱动齿轮和飞轮的啮合与分离;控制电动机电路的接通与切断。
常用的装置有机械式和电磁式汽车上广泛使用电磁式控制装置(电磁开关)。
QD124型起动机电磁控制装置构造如下图磁力线圈的作用磁力线圈的作用:是用电磁力来操纵啮合器和电动机开关工作的。
磁力线圈由导线粗、匝数少的拉动线圈和导线细,匝数多的保持线圈组成。
拉动线圈的两端分别接在C和50接柱上。
保持线圈的两端分别接在50 接柱和搭铁上。
引铁活装在电磁开关引铁套内,引铁尾部装有连接钩,与传动杆上部相连,有些连接钩可以借其螺纹进行调整。
减速起动机1、传动壳(后端盖)2、啮合器及怠速齿轮3、钢珠4、回位弹簧5、电磁开关6、螺栓8 、电枢7 、起动机外壳(轭)9、电刷架10、电动机前端盖11、毡垫圈12、轭及电枢13、拉紧螺栓七、减速起动机的构造机主要由电磁啮合开关,减速齿轮,电动机、起动齿轮(小齿轮)及单向啮合器等部分组成,如图9,10所示。