运筹学概念判断题
- 格式:docx
- 大小:13.05 KB
- 文档页数:6
《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。
)1. 图解法提供了求解线性规划问题的通用方法。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。
( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。
( )4. 满足线性规划问题所有约束条件的解称为基本可行解。
( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。
( )6. 对偶问题的目标函数总是与原问题目标函数相等。
( )7. 原问题与对偶问题是一一对应的。
( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。
( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )二、简述题1. 用图解法说明线性规划问题单纯形法的解题思想。
2. 运输问题是特殊的线性规划问题,但为什么不用单纯形法求解。
3. 建立动态规划模型时,应定义状态变量,请说明状态变量的特点。
三、填空题1. 图的组成要素;。
2. 求最小树的方法有、。
3. 线性规划解的情形有 、 、 、 。
4. 求解指派问题的方法是 。
5. 按决策环境分类,将决策问题分为 、 、 。
6. 树连通,但不存在 。
四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。
中南大学网络教育课程考试复习题及参考答案运筹学一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。
[ ]3.任何线性规划问题存在并具有惟一的对偶问题。
[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
[ ]5.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
[ ]6.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
[ ]11.如图中某点vi有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
[ ] 12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
[ ] 15.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
[ ]16.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
运筹学习题判断题及答案(通用篇)一、判断题1. 线性规划问题中,目标函数必须是线性函数。
()答案:错误。
线性规划问题的目标函数可以是线性函数,也可以是非线性函数。
但是,当目标函数为非线性函数时,该问题就不再是线性规划问题。
2. 在目标规划中,若决策变量有上界和下界,则称为有界决策变量。
()答案:正确。
在目标规划中,有界决策变量是指决策变量具有上界和下界限制。
3. 对偶问题与原问题具有相同的可行域。
()答案:错误。
对偶问题与原问题具有相同的解,但可行域一般不同。
4. 在整数规划中,若决策变量取值为整数,则该问题一定为整数规划问题。
()答案:错误。
整数规划问题要求决策变量取整数值,但并非所有决策变量取整数值的问题都是整数规划问题。
例如,线性规划问题的决策变量也可以取整数值。
5. 在动态规划中,最优子结构的性质是指一个问题的最优解包含了其子问题的最优解。
()答案:正确。
动态规划的最优子结构性质是指问题的最优解可以通过求解子问题的最优解来构造。
6. 网络流问题是图论中的一个特殊问题,它涉及到图中各顶点之间的流量分配。
()答案:正确。
网络流问题确实是图论中的一个特殊问题,主要研究如何在图中各顶点之间进行流量分配,使得整个网络的流量达到最大。
7. 在排队论中,顾客到达率和服务率是描述排队系统性能的关键指标。
()答案:正确。
顾客到达率和服务率是排队论中描述排队系统性能的两个重要指标,它们分别表示单位时间内到达系统的顾客数和单位时间内服务完毕的顾客数。
8. 在库存管理中,经济订货批量(EOQ)模型适用于确定最优订货量和订货周期。
()答案:正确。
经济订货批量(EOQ)模型是库存管理中的一种重要模型,用于确定最优订货量和订货周期,以降低库存成本。
9. 在非线性规划中,库恩-塔克(KKT)条件是判断约束非线性规划问题最优解的必要条件。
()答案:正确。
库恩-塔克(KKT)条件是约束非线性规划问题最优解的必要条件,它提供了一种求解约束非线性规划问题的方法。
可编辑修改精选全文完整版运筹学自测题第一套题一、判断题(T-正确,F-错误)1.图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
2.若线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
3.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
4.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。
5.任何线性规划问题存在并具有唯一的对偶问题。
6.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。
7.整数规划的目标函数值一般优于其相应的线性规划问题的解的目标函数值。
8.分枝定界法在需要分枝时必须满足:分枝后的各子问题必须容易求解;各子问题解的集合必须包含原问题的解。
9.整数割平面法每次只割去问题的部分非整数解。
10.线性规划问题是目标规划问题的一种特殊形式。
11.目标规划模型中,应同时包含系统约束(绝对约束)与目标约束。
12.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。
13.网络图中代表两点之间的距离长短的数字,其含义也可以是时间或费用。
14.在制定网络计划时,将一个任务分解成若干个独立的工作单元,称为任务的分解。
二、选择题1.线性规划数学模型的特征是:________都是线性的。
A. 目标函数和决策变量B. 决策变量和约束条件C. 目标函数和约束条件D. 目标函数、约束条件及决策变量2.关于剩余变量,下列说法错误的是:A. 为将某个大于等于约束化为等式约束,在该约束中减去一个剩余变量B. 剩余变量在实际问题中表示超过收益的部分C. 剩余变量在目标函数中的系数为零D. 在用单纯形法求解线性规划问题时,剩余变量一般作为初始基变量。
A. 任意m 个列向量组成的矩阵B. 任意m 阶子矩阵C. 前m 个列向量组成的矩阵D. 任意m 个线性无关的列向量组成的矩阵A. mB. n-mC. 至少mD. 至少n-m5.如果是求极大值的线性规划问题,单纯形法的每次迭代意味着其目标函数值将( A)必然增加;(B)必然减少;(C)可能增加;(D)可能减少6.单纯形法求解线性规划问题时,如何判断问题存在无界解?(A)全部变量的检验数非负;(B)某个检验数为正的非基变量,其系数列向量不存在正分量;(C)最终的单纯形表中含有人工变量,且其取值不为零;(D)非基变量全部非正,且某个非基变量的检验数为零。
运筹学判断题判断题:(共83道)1、对于任意线性规划问题(含三维以上),它的基可行解和可行域的顶点是一一对应的即基可行解数等于可行域的顶点数。
√2、结点机动时间等于计划工期减去通过该节点的最长路线时间。
√3、在任何给定的无向图中,度数为奇数的节点的数目必为偶数。
√4、基可行解的分量都是正的。
×5、对任一矩阵√策G={Sα,Sβ,A}而言,一定存在混合策略解。
×6、最初节点和最终节点可以不必唯一。
×7、求最小值问题的目标函数值是各分支函数值的下界。
√8、基本解对应的基X,当非负时为基本可行解,对应的基叫可行基。
×9、目标函数含有偏差变量。
√10、可以存在多余的虚工作。
参考答案:√(x)尊重作者11、用大M法处理人工变量时,若最终表上基变量中仍含人工变量,则原问题无可行解。
√12. 若某种资源的影子价格等于5,在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大25。
×13.在一个目标规划模型中,若不含有刚性约束,则一定有解。
√14. 在决策问题中,无论决策环境等条件是否变化,一个人的效用曲线总是不变的。
×15. 工作的最早开始时间等于该工作箭头结点最早实现时间。
×16、总时差为零的各项工序组成的路就是网络图的关键路线。
√17、在任一图G中,当点集V确定后,树图是G中边数最少的连通图。
√18、网络计划图中的关键路线,必然是从最初节点到最终节点的一条最短路线。
×19、单纯形表中,某一检验数大于0,而且√应变量所在队列中没有正数,则线性规划问题无最优解√20、在二元线性规划问题中,如果问题有可行解,则一定有最优解×21、如果线性规划的原问题存在可行解,则其√偶问题一定存在可行解×22、求网络最大流的问题可归结为求解一个线性规划模型。
√23、工作的最早开始时间等于该工作箭头结点最早实现时间。
判断题√√××一、线性规划1.若线性规划存在最优解则一定存在基本最优解√(若存在唯一最优解,则最优解为最优基本可行解(一个角顶),若存在多重最优解(由多个角顶的凸组合来表示)2.若线性规划为无界解则其可行域无界√(可行域封闭有界则必然存在最优解)3.可行解一定是基本解×(基本概念)4.基本解可能是可行解√(基本概念)5.线性规划的可行域无界则具有无界解×(有可能最优解,若函数的梯度方向朝向封闭的方向,则有最优解)6.最优解不一定是基本最优解√(在多重最优解里,最优解也可以是基本最优解的凸组合)7.x j的检验数表示变量x j增加一个单位时目标函数值的改变量√(检验数的含义,检验函数的变化率)8.可行解集有界非空时,则在极点上至少有一点达到最优值√(可行解集有界非空时,有可行解,有最优解,则至少有一个基本最优解)9.若线性规划有三个基本最优解X(1)、X(2)、X(3),则X=αX(1)+(1-α)X(3)及X=α1X(1)+α2X(2)+α3X(3)均为最优解,其中√(一般凸组合为X=α1X(1)+α2X(2)+α3X(3),若a3=0,则有X=αX(1)+(1-α)X(3))10.任何线性规划总可用大M单纯形法求解√(人工变量作用就是一个中介作业,通过它来找到初始基本可行解)11.凡能用大M法求解也一定可用两阶段法求解√(大M法和两阶段法没有本质区别)12.两阶段法中第一阶段问题必有最优解√(第一阶段中,线性规划的可行域是封闭有界的,必然有最优解)13.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解×(只能说有可行解,也有可能是无界解)14.任何变量一旦出基就不会再进基×15.人工变量一旦出基就不会再进基√(这个是算法的一个思想,目标函数已经决定了)16.普通单纯形法比值规则失效说明问题无界√17.将检验数表示为λ=C B B-1A-C的形式,则求极大值问题时基可行解是最优解的充要条件是λ≥0 √(各种情况下最优性判断条件)18.当最优解中存在为零的基变量时,则线性规划具有多重最优解×(退化解的概念,多重最优解和非基变量的检验数有关)19.当最优解中存在为零的非基变量时,则线性规划具唯一最优解×20.可行解集不一定是凸集×21.将检验数表示为的形式,则求极小值问题时,基可行解为最优解当且仅当λj≥0,j=1,2,…,n√22.若线性规划存在基本解则也一定存在基本解可行解×23.线性规划的基本可行解只有有限多个√24.在基本可行解中基变量一定不为零×25.123 123123123 max34 |25|5010100,0,0Z x x xx x xx x xx x x=+-++≤⎧⎪-+≥⎨⎪≥≥≥⎩是一个线性规划数学模型×二对偶规划1.任何线性规划都存在一个对应的对偶线性规划√2.原问题(极大值)第i个约束是“≥”约束,则对偶变量y i≥0 ×3.互为对偶问题,或者同时都有最优解,或者同时都无最优解√4.对偶问题有可行解,则原问题也有可行解×5.原问题有多重解,对偶问题也有多重解×在以下6~10中,设X*、Y*分别是的可行解6.则有CX*≤Y*b ×7.CX*是w的下界×8.当X*、Y*为最优解时,CX*=Y*b;√9.当CX*=Y*b时,有Y*X s+Y s X*=0成立√10.X*为最优解且B是最优基时,则Y*=C B B-1是最优解√11.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解√12.原问题无最优解,则对偶问题无可行解×13.对偶问题不可行,原问题无界解×14.原问题与对偶问题都可行,则都有最优解√15.原问题具有无界解,则对偶问题不可行√16.若某种资源影子价格为零,则该资源一定有剩余×17.原问题可行对偶问题不可行时,可用对偶单纯形法计算×18.对偶单纯法换基时是先确定出基变量,再确定进基变量√19.对偶单纯法是直接解对偶问题的一种方法×20.对偶单纯形法比值失效说明原问题具有无界解×21.在最优解不变的前提下,基变量目标系数c i的变化范围可由式确定√22.在最优基不变的前提下,常数b r的变化范围可由式确定,其中为最优基B的逆矩阵第r列×23.减少一约束,目标值不会比原来变差√24.增加一个变量,目标值不会比原来变好×25.当b i在允许的最大范围内变化时,最优解不变×三、整数规划1.整数规划的最优解是先求相应的线性规划的最优解然后取整得到×2.部分变量要求是整数的规划问题称为纯整数规划×3.求最大值问题的目标函数值是各分枝函数值的上界√4.求最小值问题的目标函数值是各分枝函数值的下界√5.变量取0或1的规划是整数规划√6.整数规划的可行解集合是离散型集合√7. 0-1规划的变量有n个,则有2n个可行解×8.6x1+5x2≥10、15或20中的一个值,表达为一般线性约束条件是 6x1+5x2≥10y1+15y2+20y3,y1+y2+y3=1,y1、y2、y3=0或1 √9. 高莫雷(R.E.Gomory)约束是将可行域中一部分非整数解切割掉√10.隐枚举法是将所有变量取0、1的组合逐个代入约束条件试算的方法寻找可行解×四、目标规划1.正偏差变量大于等于零,负偏差变量小于等于零×2.系统约束中没有正负偏差变量√3.目标约束含有正负偏差变量√4.一对正负偏差变量至少一个大于零×5.一对正负偏差变量至少一个等于零√6.要求至少到达目标值的目标函数是max Z=d+ ×7.要求不超过目标值的目标函数是 min Z=d-×8.目标规划没有系统约束时,不一定存在满意解×9.超出目标值的差值称为正偏差√10.未到达目标的差值称为负偏差√五、运输与指派问题1.运输问题中用位势法求得的检验数不唯一×2.平衡运输问题一定有最优解√3.不平衡运输问题不一定有最优解×4.产地数为3,销地数为4的平衡运输问题有7个基变量×5.m+n-1个变量组构成一组基变量的充要条件是它们不包含闭回路√6.运输问题的检验数就是其对偶变量×7.运输问题的检验数就是对偶问题的松驰变量√8.运输问题的位势就是其对偶变量√9.不包含任何闭回路的变量组必有孤立点√10.含有孤立点的变量组一定不含闭回路×11.用一个常数k加到运价矩阵C的某列的所有元素上,则最优解不变√12.令虚设的产地或销地对应的运价为一任意大于零的常数c(c>0),则最优解不变√13.若运输问题的供给量与需求量为整数,则一定可以得到整数最优解√14.按最小元素法求得运输问题的初始方案, 从任一非基格出发都存在唯一一个闭回路√15.运输问题中运价表的每一个元素都分别乘于一个常数,则最优解不变√16.运输问题中运价表的每一个元素都分别加上一个常数,则最优解不变√17.5个产地6个销地的平衡运输问题有11个变量×18.5个产地6个销地的平衡运输问题有30个变量√19. 5个产地6个销地的销大于产的运输问题有11个基变量√20. 产地数为3销地数为4的平衡运输中,变量组{x11,x13,x22,x33,x34}可作为一组基变量×六、网络模型1.容量不超过流量×2.最大流问题是找一条从起点到终点的路,使得通过这条路的流量最大×3.容量C ij是弧(i,j)的最大通过能力√4.流量f ij是弧(i,j)的实际通过量√5.可行流是最大流的充要条件是不存在发点到收点的增广链√6.截量等于截集中弧的流量之和×7.任意可行流量不超过任意截量√8.任意可行流量不小于任意截量×9.存在增广链说明还没有得到最大流量√10.存在增广链说明已得到最大流×11.找增广链的目的是:是否存在一条从发点到收点的路,使得可以增加这条路的流量√12.狄克斯屈拉算法是求最大流的一种标号算法×13.破圈法是:任取一圈,去掉圈中最长边,直到无圈√14.避圈法(加边法)是:去掉图中所有边,从最短边开始添加,加边的过程中不能形成圈,直到连通(n-1条边)√15.连通图一定有支撑树√16.P是一条增广链,则后向弧上满足流量f ≥0 ×17.P是一条增广链,则前向弧上满足流量f ij≤C ij ×18.可行流的流量等于每条弧上的流量之和×19.最大流量等于最大流×20.最小截集等于最大流量×七、网络计划1.网络计划中的总工期是网络图中的最短路的长度×2.紧前工序是前道工序√3.后续工序是紧后工序×4.虚工序不需要资源,是用来表达工序之间的衔接关系的虚设活动√5.A完工后B才能开始,称A是B的紧后工序×6. 单时差为零的工序称为关键工序×7.关键路线是由关键工序组成的一条从网络图的起点到终点的有向路√8.关键路线一定存在√9.关键路线存在且唯一×10.计划网络图允许有多个始点和终点×11.事件i的最迟时间T L(i)是指以事件i为完工事件的工序最早可能结束时间×12.事件i的最早时间T E(i)是以事件i为开工事件的工序最早可能开工时间√13.工序(i,j)的事件i与j的大小关系是i < j√14.间接成本与工程的完工期成正比√15.直接成本与工程的完工期成正比×16.×17.√18. √19. ×20.√1 线性规划1= "对"2= "对"3 = "错"4= "对"5= "错"6 = "对"7= "对"8= "对"9 = "对" 10= "对" 11= "对" 12 = "对" 13= "错" 14= "错" 15= "对" 16= "对" 17= "对" 18 = "错" 19= "错" 20 = "错" 21= "对" 22 = "错" 23= "对" 24 = "错" 2对偶问题1="对"2= "错"3 = "对"4= "错"5 = "错"6= "错"7 = "错"8= "对"9= "对"10 = "对"11 = "对"12= "错"13 = "错"14 = "对"15 = "对"16 = "错"17 = "错"18= "对"19 = "错"20= "错"21= "对"22 = "错"23= "对"24= "错"3 整数规划1= "错"2 = "错"3 = "对"4 = "对"5 = "对"6= "对"7 = "错"8= "对"9 = "对"10= "错4 目标规划1="错"2 = "对"3 = "对"4 = "错"5= "对"6 = "错"7= "错"8 = "错"9 = "对"10= "对"Welcome 欢迎您的下载,资料仅供参考!。
《运筹学试题与答案》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( )4. 满足线性规划问题所有约束条件的解称为可行解。
( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( )6. 对偶问题的对偶是原问题。
( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( )#8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )二、单项选择题~1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。
A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。
A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。
A. 非负条件B. 顶点集合C. 最优解D. 决策变量4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。
1、运筹学考1、2、5、6章,题目都是书上的例题,这是判断题。
2、题型:填空,选择,判断,建模,计算。
3、发现选择题中一个错误,第6章第2题,答案应该C4、大部分建立模型和计算是第一章内容,加选择判断题目已经发给你们了,主要考对概念,性质,原理, 算法的理解。
第1章线性规划1.任何线性规划一定有最优解。
2.若线性规划有最优解,则一定有基本最优解。
3.线性规划可行域无界,则具有无界解。
4.在基本可行解中非基变量一定为零。
5.检验数入j表示非基变量X j增加一个单位时目标函数值的改变量。
6.max Z = 6 x 1- 4 x 2X「x 2 3|x 1 - 4 x 2 | < 4x 1 _ 0, x 2 -0是一个线性规划数学模型。
7.可行解集非空时,则在极点上至少有一点达到最优值。
8.任何线性规划都可以化为下列标准形式:9.基本解对应的基是可行基。
10.任何线性规划总可用大M单纯形法求解。
11.任何线性规划总可用两阶段单纯形法求解。
12.若线性规划存在两个不同的最优解,则必有无穷个最优解。
13.两阶段法中第一阶段问题必有最优解。
14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。
15.人工变量一旦出基就不会再进基。
16.普通单纯形法比值规则失效说明问题无界。
17.最小比值规则是保证从一个可行基得到另一个可行基18.将检验数表示为的形式,则求极大值问题时基可行解是最优解的充要条件19.若矩阵B为一可行基,则|B|=0。
20.当最优解中存在为零的基变量时,则线性规划具有多重最优解。
I.X 不一定有最优解 2. V3. X 不一定4. V5. V6. X化为无绝对值的约束条件后才是线性规划模型7. V8. V 9. X 不一定是可行基,基本可行解对应的基是可行基10. VII.V12. V13. V14. X 原问题可能具有无界解15. V 16. V17. V18. V19. X 应为| B|工020. X 存在为零的基变量时,最优解是退化的;或者存在非基变量的检验数为零时,线性规划具有多重最优解第2章线性规划的对偶理论21 •原问题第i个约束是“w”约束,则对偶变量yi >0。
判断题Wxx一、线性规划1. 若线性规划存在最优解则一定存在基本最优解V(若存在唯一最优解,则最优解为最优基本可行解(一个角顶),若存在多重最优解(由多个角顶的凸组合来表示)2. 若线性规划为无界解则其可行域无界V(可行域封闭有界则必然存在最优解)3. 可行解一定是基本解x(基本概念)4. 基本解可能是可行解V(基本概念)5. 线性规划的可行域无界则具有无界解X(有可能最优解,若函数的梯度方向朝向圭寸闭的方向,则有最优解)6. 最优解不一定是基本最优解V(在多重最优解里,最优解也可以是基本最优解的凸组合)7. X j的检验数表示变量X j增加一个单位时目标函数值的改变量V(检验数的含义,检验函数的变化率)8. 可行解集有界非空时,则在极点上至少有一点达到最优值V(可行解集有界非空时,有可行解,有最优解,则至少有一个基本最优解)9. 若线性规划有三个基本最优解X1)、屮、疋,贝y X= 乂1)+(1- a*3)及X= a i X?1)+ o/2)+ 03疋均为最优解,其中■-丨:二」二;I Vi(一般凸组合为X= a X1〉+ a X2)+ a X3),若a3=0,则有X=«X(1)+(1- ”炉)10. 任何线性规划总可用大M单纯形法求解V(人工变量作用就是一个中介作业,通过它来找到初始基本可行解)11. 凡能用大M法求解也一定可用两阶段法求解V(大M法和两阶段法没有本质区别)12. 两阶段法中第一阶段问题必有最优解V(第一阶段中,线性规划的可行域是封闭有界的,必然有最优解)13. 两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解(只能说有可行解,也有可能是无界解)14. 任何变量一旦出基就不会再进基X15. 人工变量一旦出基就不会再进基V(这个是算法的一个思想,目标函数已经决定了)16. 普通单纯形法比值规则失效说明问题无界V17. 将检验数表示为匸C B E-1A- C的形式,则求极大值问题时基可行解是最优解的充要条件是入色V(各种情况下最优性判断条件)18. 当最优解中存在为零的基变量时,则线性规划具有多重最优解x (退化解的概念,多重最优解和非基变量的检验数有关)19. 当最优解中存在为零的非基变量时,则线性规划具唯一最优解x20. 可行解集不一定是凸集xV且仅当入为,j = 1,2,…,nV22. 若线性规划存在基本解则也一定存在基本解可行解 X 23. 线性规划的基本可行解只有有限多个 V24. 在基本可行解中基变量一定不为零XmaxZ =3x 1 x 2 -4x 3 12x ! 5x 2 x 350* N - % + 10x 3 K 1025 为 Z0,x 2 3 0, x 3 ±0 是一个线性规划数学模型X对偶规划1.任何线性规划都存在一个对应的对偶线性规划V2. 原问题(极大值)第i 个约束是约束,则对偶变量y i >03. 互为对偶问题,或者同时都有最优解,或者同时都无最优解4. 对偶问题有可行解,则原问题也有可行解 X5. 原问题有多重解,对偶问题也有多重解 X在 以 下 6〜10 中 ,设 XI 匚二M — 1匚 II 的可行解6. 则有 cX < Yb X7. CX *是w 的下界X8. 当X 、Y 为最优解时,cX=Y *b ; V9. 当 cX=Yb 时,有 Y *X s +Y s X=0 成立V10. X *为最优解且B 是最优基时,则 Y *=C B BT 是最优解V11. 对偶问题有可行解,原问题无可行解,则对偶问题具有无界解 V12. 原问题无最优解,则对偶问题无可行解 X 13. 对偶问题不可行,原问题无界解 X14. 原问题与对偶问题都可行,则都有最优解 V 15. 原问题具有无界解,则对偶问题不可行V16. 若某种资源影子价格为零,则该资源一定有剩余 X17. 原问题可行对偶问题不可行时,可用对偶单纯形法计算 X 18. 对偶单纯法换基时是先确定出基变量,再确定进基变量 V19. 对偶单纯法是直接解对偶问题的一种方法X20. 对偶单纯形法比值失效说明原问题具有无界解 X21.将检验数表示为 的形式,则求极小值问题时,基可行解为最优解当21.在最优解不变的前提下, 基变量目标系数C i 的变化范围可由式Y *分 别 是22. 在最优基不变的前提下,常数 b r 的变化范围可由式其中八I 为最优基B 的逆矩阵.'123. 减少一约束,目标值不会比原来变差 V 24. 增加一个变量,目标值不会比原来变好 X25. 当b 在允许的最大范围内变化时,最优解不变 X三、整数规划1.整数规划的最优解是先求相应的线性规划的最优解然后取整得到 X2. 部分变量要求是整数的规划问题称为纯整数规划 X3. 求最大值问题的目标函数值是各分枝函数值的上界 V4. 求最小值问题的目标函数值是各分枝函数值的下界 V5. 变量取0或1的规划是整数规划 V6. 整数规划的可行解集合是离散型集合 V7. 0 — 1规划的变量有n 个,则有2n 个可行解X8. 6x 1+5x 2^10、15或20中的一个值,表达为一般线性约束条件是y i +y 2+y 3= 1 , 屮、y 、y s = 0 或 1V9. 高莫雷(R.E.Gomory )约束是将可行域中一部分非整数解切割掉10. 隐枚举法是将所有变量取0、1的组合逐个代入约束条件试算的方法寻找可行解X四、目标规划1.正偏差变量大于等于零,负偏差变量小于等于零 X2.系统约束中没有正负偏差变量 V3.目标约束含有正负偏差变量 V4. 一对正负偏差变量至少一个大于零 X5. 一对正负偏差变量至少一个等于零 V6.要求至少到达目标值的目标函数是 max Z =d + X7.要求不超过目标值的目标函数是 min Z =d - X8. 目标规划没有系统约束时,不一定存在满意解X9. 超出目标值的差值称为正偏差 V 10. 未到达目标的差值称为负偏差 V五、运输与指派问题1. 运输问题中用位势法求得的检验数不唯一 X2. 平衡运输问题一定有最优解V空iCj <nun ^ — |a<0确定min max <0确定,6 X 1+5X 2羽0y 1+15y 2+20y 3,V3. 不平衡运输问题不一定有最优解X4. 产地数为3,销地数为4的平衡运输问题有7个基变量X5. m+ n - 1个变量组构成一组基变量的充要条件是它们不包含闭回路V6. 运输问题的检验数就是其对偶变量 x7. 运输问题的检验数就是对偶问题的松驰变量8. 运输问题的位势就是其对偶变量 V9. 不包含任何闭回路的变量组必有孤立点 V 10. 含有孤立点的变量组一定不含闭回路x11. 用一个常数k 加到运价矩阵C 的某列的所有元素上,则最优解不变V12. 令虚设的产地或销地对应的运价为一任意大于零的常数 c (c>0), 则最优解不变 V 13. 若运输问题的供给量与需求量为整数,则一定可以得到整数最优解 V 14. 按最小元素法求得运输问题的初始方案 , 从任一非基格出发都存在唯一一个闭回路V15. 运输问题中运价表的每一个元素都分别乘于一个常数 16. 运输问题中运价表的每一个元素都分别加上一个常数 17.5 个产地 6个销地的平衡运输问题有 11 个变量 x 18.5 个产地 6个销地的平衡运输问题有 30 个变量 V19. 5 个产地 6 个销地的 销大于产 的运输问题有 11 个基变量 V六、网络模型 1 .容量不超过流量 x2. 最大流问题是找一条从起点到终点的路,使得通过这条路的流量最大 x3. 容量 C ij 是弧( i , j )的最大通过能力 V V发点到收点的增广链 VV发点到收点的路,使得可以增加这条路的流量 12.狄克斯屈拉算法是求最大流的一种标号算法x13. 破圈法是:任取一圈,去掉圈中最长边,直到无圈 V14. 避圈法(加边法)是:去掉图中所有边,从最短边开始添加,加边的过程中不能形成圈, 直到连通( n - 1 条边) V 15. 连通图一定有支撑树 V16. P 是一条增广链,则后向弧上满足流量 f >0 x 17. P 是一条增广链,则前向弧上满足流量 f ij < C x18. 可行流的流量等于每条弧上的流量之和 x19. 最大流量等于最大流 x 20. 最小截集等于最大流量 x 七、网络计划1. 网络计划中的总工期是网络图中的最短路的长度 x2. 紧前工序是前道工序V, 则最优解不变 V ,则最优解不变V20. 产地数为 3 销地数为 4 的平衡运输中,变量组 {x 11,x 13,x 22,x 33,x 34} 可作为一组基变量4. 流量 f ij 是弧( i , j )的实际通过量5. 可行流是最大流的充要条件是不存在6. 截量等于截集中弧的流量之和 x7. 任意可行流量不超过任意截量 V8. 任意可行流量不小于任意截量x9. 存在增广链说明还没有得到最大流量 10. 存在增广链说明已得到最大流 x 11. 找增广链的目的是:是否存在一条从V3. 后续工序是紧后工序x4. 虚工序不需要资源,是用来表达工序之间的衔接关系的虚设活动5. A完工后B才能开始,称A是B的紧后工序X6. 单时差为零的工序称为关键工序X7. 关键路线是由关键工序组成的一条从网络图的起点到终点的有向路V8. 关键路线一定存在V9. 关键路线存在且唯一一X10. 计划网络图允许有多个始点和终点X11. 事件i的最迟时间T L (i)是指以事件i为完工事件的工序最早可能结束时间12. 事件i的最早时间T E (i )是以事件i为开工事件的工序最早可能开工时间V13. 工序(i , j )的事件i与j的大小关系是i < j V14•间接成本与工程的完工期成正比V15. 直接成本与工程的完工期成正比X16. ■■ X17. ^ V18. V19. X20. ' • ' V1线性规划2对偶问题3整数规划4目标规划1="对“1="对”1="错“1="错”2="对“2="错" 2 ="错" 2 ="对“3 ="错" 3 ="对" 3 ="对" 3 ="对“4="对" 4="错" 4 ="对" 4 ="错“5="错" 5 ="错" 5 ="对" 5="对“6 ="对" 6="错“6="对“ 6 ="错“7="对“7 ="错" 7 ="错" 7="错“8="对“8="对“8="对“8 ="错“9 ="对" 9="对“9 ="对" 9 ="对“10="对”10 ="对“10="错10="对”1仁"对" 11 ="对“12 ="对" 12="错"13="错”13 ="错“14="错”14 ="对“15="对”15 ="对“16="对”16 ="错“17="对”17 ="错“18 ="错“18="对”19="错”19 ="错“20 ="错“20="错"2仁"对”2仁"对”V25 = “ 错“25= “ 错“5运输问题1 ="错"2 ="对"3 ="错"4 ="错" 5="对"6 ="错"7 ="对"8 ="对" 9="对“ 10="错”11 ="对"12 ="对"13 ="对"14 ="对“15 ="对"16 ="对"17 ="错“18 ="对"19 = " V"20 ="错“6网络模型1 ="错"2 ="错"3 ="对"4 ="对"5 ="对"6 ="错"7 ="对"8 ="错"9 ="对"10 ="错“11 ="对“12 ="错“13 ="对“14 ="对“15 ="对“16 ="错“17 ="错“18 ="错“19 ="错“7网络计划1 ="错"2 ="对"3 ="错"4 ="对" 5="错"6 ="错"7 ="对"8 ="对" 9="错“10 ="错“11 ="错“ 12="对” 12="对”14 ="对“15 ="错“16 ="错“17 ="对“18 ="对“19 ="错“20 ="对“Welcome !!! 欢迎您的下载, 资料仅供参考!。
(完整word版)运筹学判断题判断题√√××⼀、线性规划1.若线性规划存在最优解则⼀定存在基本最优解√(若存在唯⼀最优解,则最优解为最优基本可⾏解(⼀个⾓顶),若存在多重最优解(由多个⾓顶的凸组合来表⽰)2.若线性规划为⽆界解则其可⾏域⽆界√(可⾏域封闭有界则必然存在最优解)3.可⾏解⼀定是基本解×(基本概念)4.基本解可能是可⾏解√(基本概念)5.线性规划的可⾏域⽆界则具有⽆界解×(有可能最优解,若函数的梯度⽅向朝向封闭的⽅向,则有最优解)6.最优解不⼀定是基本最优解√(在多重最优解⾥,最优解也可以是基本最优解的凸组合)7.x j的检验数表⽰变量x j增加⼀个单位时⽬标函数值的改变量√(检验数的含义,检验函数的变化率)8.可⾏解集有界⾮空时,则在极点上⾄少有⼀点达到最优值√(可⾏解集有界⾮空时,有可⾏解,有最优解,则⾄少有⼀个基本最优解)9.若线性规划有三个基本最优解X(1)、X(2)、X(3),则X=αX(1)+(1-α)X(3)及X=α1X(1)+α2X(2)+α3X(3)均为最优解,其中√(⼀般凸组合为X=α1X(1)+α2X(2)+α3X(3),若a3=0,则有X=αX(1)+(1-α)X(3))10. 任何线性规划总可⽤⼤M单纯形法求解√(⼈⼯变量作⽤就是⼀个中介作业,通过它来找到初始基本可⾏解)11. 凡能⽤⼤M法求解也⼀定可⽤两阶段法求解√(⼤M法和两阶段法没有本质区别)12. 两阶段法中第⼀阶段问题必有最优解√(第⼀阶段中,线性规划的可⾏域是封闭有界的,必然有最优解)13. 两阶段法中第⼀阶段问题最优解中基变量全部⾮⼈⼯变量,则原问题有最优解×(只能说有可⾏解,也有可能是⽆界解)14. 任何变量⼀旦出基就不会再进基×15. ⼈⼯变量⼀旦出基就不会再进基√(这个是算法的⼀个思想,⽬标函数已经决定了)16.普通单纯形法⽐值规则失效说明问题⽆界√17. 将检验数表⽰为λ=C B B-1A-C的形式,则求极⼤值问题时基可⾏解是最优解的充要条件是λ≥0√(各种情况下最优性判断条件)18.当最优解中存在为零的基变量时,则线性规划具有多重最优解×(退化解的概念,多重最优解和⾮基变量的检验数有关)19.当最优解中存在为零的⾮基变量时,则线性规划具唯⼀最优解×20.可⾏解集不⼀定是凸集×21.将检验数表⽰为的形式,则求极⼩值问题时,基可⾏解为最优解当且仅当λj≥0,j=1,2,…,n√22. 若线性规划存在基本解则也⼀定存在基本解可⾏解×23. 线性规划的基本可⾏解只有有限多个√24. 在基本可⾏解中基变量⼀定不为零×25.123 123123123 max34 |25|5010100,0,0Z x x xx x xx x xx x x=+-++≤-+≥≥≥≥是⼀个线性规划数学模型×⼆对偶规划1.任何线性规划都存在⼀个对应的对偶线性规划√2.原问题(极⼤值)第i个约束是“≥”约束,则对偶变量y i≥0 ×3.互为对偶问题,或者同时都有最优解,或者同时都⽆最优解√4.对偶问题有可⾏解,则原问题也有可⾏解×5.原问题有多重解,对偶问题也有多重解×在以下6~10中,设X*、Y*分别是的可⾏解6.则有CX*≤Y*b ×7.CX*是w的下界×8.当X*、Y*为最优解时,CX*=Y*b;√9.当CX*=Y*b时,有Y*X s+Y s X*=0成⽴√10.X*为最优解且B是最优基时,则Y*=C B B-1是最优解√11.对偶问题有可⾏解,原问题⽆可⾏解,则对偶问题具有⽆界解√12.原问题⽆最优解,则对偶问题⽆可⾏解×13.对偶问题不可⾏,原问题⽆界解×14.原问题与对偶问题都可⾏,则都有最优解√15.原问题具有⽆界解,则对偶问题不可⾏√16.若某种资源影⼦价格为零,则该资源⼀定有剩余×17.原问题可⾏对偶问题不可⾏时,可⽤对偶单纯形法计算×18.对偶单纯法换基时是先确定出基变量,再确定进基变量√19.对偶单纯法是直接解对偶问题的⼀种⽅法×20.对偶单纯形法⽐值失效说明原问题具有⽆界解×21.在最优解不变的前提下,基变量⽬标系数c i的变化范围可由式确定√22.在最优基不变的前提下,常数b r的变化范围可由式确定,其中为最优基B的逆矩阵第r列×23.减少⼀约束,⽬标值不会⽐原来变差√24.增加⼀个变量,⽬标值不会⽐原来变好×25.当b i在允许的最⼤范围内变化时,最优解不变×三、整数规划1.整数规划的最优解是先求相应的线性规划的最优解然后取整得到×2.部分变量要求是整数的规划问题称为纯整数规划×3.求最⼤值问题的⽬标函数值是各分枝函数值的上界√4.求最⼩值问题的⽬标函数值是各分枝函数值的下界√5.变量取0或1的规划是整数规划√6.整数规划的可⾏解集合是离散型集合√7. 0-1规划的变量有n个,则有2n个可⾏解×8. 6x1+5x2≥10、15或20中的⼀个值,表达为⼀般线性约束条件是6x1+5x2≥10y1+15y2+20y3,y1+y2+y3=1,y1、y2、y3=0或1 √9. ⾼莫雷(R.E.Gomory)约束是将可⾏域中⼀部分⾮整数解切割掉√10.隐枚举法是将所有变量取0、1的组合逐个代⼊约束条件试算的⽅法寻找可⾏解×四、⽬标规划1.正偏差变量⼤于等于零,负偏差变量⼩于等于零×2.系统约束中没有正负偏差变量√3.⽬标约束含有正负偏差变量√4.⼀对正负偏差变量⾄少⼀个⼤于零×5.⼀对正负偏差变量⾄少⼀个等于零√6.要求⾄少到达⽬标值的⽬标函数是 max Z=d+ ×7.要求不超过⽬标值的⽬标函数是min Z=d- ×8.⽬标规划没有系统约束时,不⼀定存在满意解×9.超出⽬标值的差值称为正偏差√10.未到达⽬标的差值称为负偏差√五、运输与指派问题1.运输问题中⽤位势法求得的检验数不唯⼀×2.平衡运输问题⼀定有最优解√3.不平衡运输问题不⼀定有最优解×4.产地数为3,销地数为4的平衡运输问题有7个基变量×5.m+n-1个变量组构成⼀组基变量的充要条件是它们不包含闭回路√6.运输问题的检验数就是其对偶变量×7.运输问题的检验数就是对偶问题的松驰变量√8.运输问题的位势就是其对偶变量√9.不包含任何闭回路的变量组必有孤⽴点√10.含有孤⽴点的变量组⼀定不含闭回路×11.⽤⼀个常数k加到运价矩阵C的某列的所有元素上,则最优解不变√12.令虚设的产地或销地对应的运价为⼀任意⼤于零的常数c(c>0),则最优解不变√13.若运输问题的供给量与需求量为整数,则⼀定可以得到整数最优解√14.按最⼩元素法求得运输问题的初始⽅案, 从任⼀⾮基格出发都存在唯⼀⼀个闭回路√15.运输问题中运价表的每⼀个元素都分别乘于⼀个常数,则最优解不变√16.运输问题中运价表的每⼀个元素都分别加上⼀个常数,则最优解不变√17.5个产地6个销地的平衡运输问题有11个变量×18.5个产地6个销地的平衡运输问题有30个变量√19. 5个产地6个销地的销⼤于产的运输问题有11个基变量√20. 产地数为3销地数为4的平衡运输中,变量组{x11,x13,x22,x33,x34}可作为⼀组基变量×六、⽹络模型1.容量不超过流量×2.最⼤流问题是找⼀条从起点到终点的路,使得通过这条路的流量最⼤×3.容量C ij是弧(i,j)的最⼤通过能⼒√4.流量f ij是弧(i,j)的实际通过量√5.可⾏流是最⼤流的充要条件是不存在发点到收点的增⼴链√6.截量等于截集中弧的流量之和×7.任意可⾏流量不超过任意截量√8.任意可⾏流量不⼩于任意截量×9.存在增⼴链说明还没有得到最⼤流量√10.存在增⼴链说明已得到最⼤流×11.找增⼴链的⽬的是:是否存在⼀条从发点到收点的路,使得可以增加这条路的流量√12.狄克斯屈拉算法是求最⼤流的⼀种标号算法×13.破圈法是:任取⼀圈,去掉圈中最长边,直到⽆圈√14.避圈法(加边法)是:去掉图中所有边,从最短边开始添加,加边的过程中不能形成圈,直到连通(n-1条边)√15.连通图⼀定有⽀撑树√16.P是⼀条增⼴链,则后向弧上满⾜流量f ≥0 ×17.P是⼀条增⼴链,则前向弧上满⾜流量f ij≤C ij ×18.可⾏流的流量等于每条弧上的流量之和×19.最⼤流量等于最⼤流×20.最⼩截集等于最⼤流量×七、⽹络计划1.⽹络计划中的总⼯期是⽹络图中的最短路的长度×2.紧前⼯序是前道⼯序√3.后续⼯序是紧后⼯序×4.虚⼯序不需要资源,是⽤来表达⼯序之间的衔接关系的虚设活动√5.A完⼯后B才能开始,称A是B的紧后⼯序×6. 单时差为零的⼯序称为关键⼯序×7.关键路线是由关键⼯序组成的⼀条从⽹络图的起点到终点的有向路√8.关键路线⼀定存在√9.关键路线存在且唯⼀×10.计划⽹络图允许有多个始点和终点×11.事件i的最迟时间T L(i)是指以事件i为完⼯事件的⼯序最早可能结束时间×12.事件i的最早时间T E(i)是以事件i为开⼯事件的⼯序最早可能开⼯时间√13.⼯序(i,j)的事件i与j的⼤⼩关系是i < j√14.间接成本与⼯程的完⼯期成正⽐√15.直接成本与⼯程的完⼯期成正⽐×16.×17.√18. √19. ×√20.。
运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。
答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。
答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。
答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。
答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。
答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。
它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。
2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。
其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。
数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。
运筹学复习题及参考答案《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4. 满足线性规划问题所有约束条件的解称为可行解。
( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( T )6. 对偶问题的对偶是原问题。
( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9. 指派问题的解中基变量的个数为m+n。
( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9.D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X ≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
运筹学基本概念及判断题(含答案)第1章线性规划1.任何线性规划一定有最优解。
2.若线性规划有最优解,则一定有基本最优解。
3.线性规划可行域无界,则具有无界解。
4.在基本可行解中非基变量一定为零。
5.检验数λj表示非基变量xj增加一个单位时目标函数值的改变量。
7.可行解集非空时,则在极点上至少有一点达到最优值。
8.任何线性规划都可以化为下列标准形式:9.基本解对应的基是可行基。
10.任何线性规划总可用大M单纯形法求解。
11.任何线性规划总可用两阶段单纯形法求解。
12.若线性规划存在两个不同的最优解,则必有无穷个最优解。
13.两阶段法中第一阶段问题必有最优解。
14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。
15.人工变量一旦出基就不会再进基。
16.普通单纯形法比值规则失效说明问题无界。
17.最小比值规则是保证从一个可行基得到另一个可行基。
18.将检验数表示为的形式,则求极大值问题时基可行解是最优解的充要条件是。
19.若矩阵B为一可行基,则|B|=0。
20.当最优解中存在为零的基变量时,则线性规划具有多重最优解。
第2章线性规划的对偶理论21.原问题第i个约束是“≤”约束,则对偶变量yi≥0。
22.互为对偶问题,或者同时都有最优解,或者同时都无最优解。
23.原问题有多重解,对偶问题也有多重解。
24.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解。
25.原问题无最优解,则对偶问题无可行解。
26.设X*、Y*分别是的可行解,则有(1)CX*≤Y*b;(2)CX*是w的上界(3)当X*、Y*为最优解时,CX*=Y*b;(4)当CX*=Y*b时,有 Y*Xs+Ys X*=0成立(5)X*为最优解且B是最优基时,则Y*=CBB-1是最优解;(6)松弛变量Ys的检验数是λs,则 X=-λS是基本解,若Ys是最优解,则X=-λS是最优解。
第5章运输与指派问题61.运输问题中用位势法求得的检验数不唯一。
中南大学网络教育课程考试复习题及参考答案运筹学一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
()2.线性规划问题的每一个基本解对应可行解域的一个顶点。
()3.任何线性规划问题存在并具有惟一的对偶问题。
()4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
()5.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
()6.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
()7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
()8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
()9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
()10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
()11.如图中某点vi有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
()12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
()13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
()14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
()15.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
()16.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
()17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
中南大学网络教育课程考试复习题及参考答案运筹学一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。
[ ]3.任何线性规划问题存在并具有惟一的对偶问题。
[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
[ ]5.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
[ ]6.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
[ ]11.如图中某点vi有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
[ ] 12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
[ ] 15.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
[ ]16.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
课程名称:《运筹学》一、判断题(共404小题)1、1957年,我国从“夫运筹帷之中,决胜于千里之外”这句话中摘取运筹两字,将Operations Research译作运筹学。
(A)2、答案:(B)。
运筹学的英文名字是Operations management。
3、答案:(B)。
我国第一个运筹学研究小组于1976年在中科院力学所成立4、答案:(B)。
线性规划的标准形式为求极小值。
5、答案:(A)。
满足线性规划所有约束条件的各变量的一组值称为线性规划问题的可行解。
6、答案:(A)。
设函数f(x),g(x)是上关于x的凸函数,则h(x)=max{f(x),g(x)}也是关于x的凸函数。
7、答案:(B)。
两个图若没有公共边,则称它们是不相交的8、答案:(B)。
目标函数和约束函数都是关于变量的非线性函数才是非线性规划9、答案:(A)。
从求解极小点的整体过程来说,最速下降法未必最快。
10/答案:(B)。
图解法提供了求解线性规划问题的通用方法11、答案:(A)。
《运筹学学报》的前身是《运筹学杂志》。
()12、答案:(B)。
《运筹学杂志》是国际运筹学联盟的一个主要刊物。
()13、答案:(A)。
运筹学是一门优化科学。
()14、答案:(A)。
运筹学是以数学为主要工具的。
()15、答案:(A)。
运筹学是系统工程的主要理论基础。
()16、答案:(B)。
运筹学主要是理论研究,不关注实用性。
()17、答案:(A)。
理论和应用的发展相互促进促使了运筹学的发展。
()18、答案:(A)。
机器等待维修问题属于排队问题。
()19、答案:(B)。
运筹学的研究领域已确定了,不会再出现新的领域了。
()20、答案:(B)。
运筹学独立于其他学科。
()21、答案:(A)。
运筹学所说的模型都是数学模型。
()22、答案:(A)。
运筹学是一种将定性和定量相结合的方法。
()23、答案:(A)。
运筹学分散融化于其他学科,并结合其他学科一起发展。
()24、答案:(A)。
中南大学网络教育课程考试复习题及参考答案运筹学一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。
[ ]3.任何线性规划问题存在并具有惟一的对偶问题。
[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
[ ]5.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
[ ]6.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
[ ]11.如图中某点vi有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
[ ] 12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
[ ] 15.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
[ ]16.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
第1章线性规划1.任何线性规划一定有最优解。
2.若线性规划有最优解,则一定有基本最优解。
3.线性规划可行域无界,则具有无界解。
4.在基本可行解中非基变量一定为零。
5.检验数入j表示非基变量xj增加一个单位时目标函数值的改变量。
7.可行解集非空时,则在极点上至少有一点达到最优值。
8.任何线性规划都可以化为下列标准形式:9.基本解对应的基是可行基。
10.任何线性规划总可用大M单纯形法求解。
11.任何线性规划总可用两阶段单纯形法求解。
12.若线性规划存在两个不同的最优解,则必有无穷个最优解。
13.两阶段法中第一阶段问题必有最优解。
14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。
15.人工变量一旦出基就不会再进基。
16.普通单纯形法比值规则失效说明问题无界。
17.最小比值规则是保证从一个可行基得到另一个可行基。
18.将检验数表示为的形式,则求极大值问题时基可行解是最优解的充要条件是19.若矩阵B为一可行基,则|B|=0。
20.当最优解中存在为零的基变量时,则线性规划具有多重最优解。
第2章线性规划的对偶理论21 •原问题第i个约束是“w”约束,则对偶变量yi >0。
22.互为对偶问题,或者同时都有最优解,或者同时都无最优解。
23 •原问题有多重解,对偶问题也有多重解。
24.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解。
25.原问题无最优解,则对偶问题无可行解。
26 •设X*、Y*分别是的可行解,则有(1)CX*w Y*b;(2)CX*是w的上界(3)当X*、Y*为最优解时,CX*=Y*b;(4)当CX*=Y*b 时,有Y*Xs+Ys X*=0 成立(5)X*为最优解且B是最优基时,则Y*=CBB- 1是最优解;(6)松弛变量Ys的检验数是入s,则X=—入S是基本解,若Ys是最优解,则X=—入S 是最优解。
第5章运输与指派问题61.运输问题中用位势法求得的检验数不唯一。
62.产地数为3,销地数为4的平衡运输中,变量组{x11,x13,x22,x33,x34} 可作为一组基变量。
63.不平衡运输问题不一定有最优解。
+n- 1个变量构成基变量组的充要条件是它们不包含闭回路。
65.运输问题中的位势就是其对偶变量。
66.含有孤立点的变量组不包含有闭回路。
67.不包含任何闭回路的变量组必有孤立点。
68.产地个数为m销地个数为n的平衡运输问题的对偶问题有m+n个约束。
69.运输问题的检验数就是对偶问题的松驰变量的值。
70.产地个数为m销地个数为n的平衡运输问题的系数矩阵为A,则有r(A) < m+n- 1。
71.用一个常数k加到运价矩阵C的某列的所有元素上,则最优解不变。
72.令虚设的产地或销地对应的运价为一任意大于零的常数c(c>0),则最优解不变。
73.若运输问题中的产量和销量为整数则其最优解也一定为整数。
74.指派问题求最大值时,是将目标函数乘以“—1”化为求最小值,再用匈牙利法求解。
75.运输问题中的单位运价表的每一行都分别乘以一个非零常数,则最优解不变。
76.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。
77.匈牙利法是求解最小值的分配问题。
78.指派问题的数学模型属于混和整数规划模型。
79.在指派问题的效率表的某行加上一个非零数最优解不变。
80.在指派问题的效率表的某行乘以一个大于零的数最优解不变。
41.整数规划的最优解是先求相应的线性规划的最优解然后取整得到;42.部分变量要求是整数的规划问题称为纯整数规划;43..求最大值问题的目标函数值是各分枝函数值的上界;44.求最小值问题的目标函数值是各分枝函数值的下界;45.变量取0或1的规划是整数规划;46.整数规划的可行解集合是离散型集合;47.将指派问题的效率矩阵每行分别加上一个数后最优解不变;48.匈牙利法求解指派问题的条件是效率矩阵的元素非负;49.匈牙利法可直接求解极大化的指派问题;50.高莫雷(R..)约束是将可行域中一部分非整数解切割掉。
三、填空题1、可行域中任意两点间联结线段上的点均在可行域内,这样的点集叫凸集。
2、线形规划的标准形式有如下四个特点:目标最大化、约束为等式、决策变量均非负、右端项非负。
3、一个模型是m个约束,n个变量,则它的对偶模型为n个约束,m个变量。
4、PERT图中,事件(结点)的最早开始时间是各项紧前作业最早结束时间的最大值5、动态规划是解决多阶段决策过程最优化问题的一种理论和方法。
6、预测的原理有(慢性原理)、(类推原理)、(相关原理)。
9、不确定性决策的选优原则有哪几种1悲观法(min-max法)此方法也称Wald法。
对于谨慎的决策者来说,由于害怕决策失误可能造成较大的损失,因此在决策分析中,对于客观情况总是抱悲观或保守的态度。
2乐观法(min-min法)这种方法正好与悲观法相反,决策者对客观情况总是抱着乐观的态度3折衷法(Hurwicz法)建立此方法的思想基础是,决策者并不认为在任何情况下都是完全乐观的;同时,对客观情况也不是特别悲观或保守的态度。
为了克服那种完全乐观或完全悲观的情绪,必须采取一种折中的办法。
4平均法此种方法就是把每个方案在各种自然因素影响下的损益值加以平均(即认为各种自然因素出现的概率是一样的),然后比较各方案的平均损益值,平均损益值最小的数对应的方案为最优方案。
5最小遗憾法(Savage法)这种方法也称最小的最大后悔法。
决策者在确定方案后,如果实际出现的自然因素要比原先预计的好,那么决策者很可能会后悔当初未选在此自然因素影响下的最好方案。
基于这种思想,最小遗憾法就是在真正选择一个特定方案之前,尽量使后悔程度达到最小。
【管理运筹学】考试判断题及答案一.判断题1.整数规划的目标函数值一般优于其相应的线性规划问题解的目标函数值;(X)2.指派问题数学模型的形式与运输问题十分相似,故也可以用表上作业法求解(V)3.求解整数规划问题,可以通过先求解无整数约束的松弛问题最优解,然后对该最优解取整求得原整数规划的最优解;(X)4.指派问题效率矩阵的每一个元素都乘上同一常数k,将不影响最优指派方案;(X)5.用割平面法求解纯整数规划时,要求包括松弛变量在内的所有变量必须取整数值;(V)6.对于一个动态规划问题,应用顺推或者逆推解法可能会得出不同的最优解;(X)7.动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性;(V)8.在动态规戈肪莫型中,问题的阶段数等于问题中子问题的数目;(")9.用分支定界法求解一个最大化的整数规划问题时,任何一个可行解的目标函数值都是该问题目标函数值的下界;(V)10.动态规划的最优决策具有如下的性质:无论初始状态与初始决策如何,对于先前决策所形成的状态而言,其以后的所有决策应构成最优策略;(V)11.用割平面法求解整数规划时,构造的割平面有可能切去一些不属于最优解的整数解;(X)12.分枝定界求解整数规划时,分枝问题的最优解不会优于原(上一级)问题的最优解;(V)13.无后效性是指动态规划各阶段状态变量之间无任何联系;(X)14.求解整数规划的分支定界法在本质上属于一种过滤隐枚举方法;(V)15.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已作出的决策; (V)二、概念判断题1.线性规划问题的数学模型中目标函数和约束函数不一定都是线性函数。
(V)2.求般获得最好经济效益问题是求如何合理安排决策变量(即如何安排生产)使目标函数最大的问题,求最大的目标函数问题,则记为max Z;若是如何安排生产使成本是最小的问题,则记为min Z . (V )3.用图解法解线性规划问题,存在最优解时,一定在有界可行域的某顶点得到;若在两个顶点同时得到最优解,则它们的连线上任意点都是最优解。
(V )4.求目标函数最小值问题不可能转换为求目标函数最大值问题。
(X)5.任何形式线性规划问题,均可变换为标准形式。
(V )7.线性规划问题标准型中,使目标函数达到最小值的可行解称为最优解。
(X)8.线性规划问题的数学模型中目标函数和约束函数都是线性函数。
(V )10.边:图G中两点间带箭头的连线称为边.(X )11.无向图(也简称图):一个图G是由点和边构成,记为G=(V, E)式中V、E分别G中点的集合和边的集合(V)12.图G中,若任何两点之间,至少有一条链,则称G是连通图,否则是不连通的.(V )13.路的第一点和最后一点相同,则称之回路.(V )14.设图G=(V,E)是一个树,p(G)》2,则G中至少有两个悬挂点。
( V)15.一个树中去掉一条边,则余下的图是不连通的,故点数相同的所有图中,树是含边数最少的连通图。
(V)16.在树中不相邻的两个点间添上一条边,则恰好得到一个圈。
(V )17.如果T= (V, E')是G的一个支撑树,称E'中所有边的权之和为支撑树T的权, 记为w(T) o (V )18.如果支撑树T*的权w(T*)是G的所有支撑树权中最小的,则称T*是G的最小树。
(V)19.对策现象有三个基本因素:局中人、策略、赢得函数(支付函数)(V )20.一般,每一局中人的策略集中至少应包括两个策略.(V )。