北京邮电大学601数学分析2019年考研真题试题
- 格式:pdf
- 大小:393.61 KB
- 文档页数:3
2019年考研数学二真题一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1) 当0x +→( )A. 1-B.lnC. 1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =( )A. 0B. 1C. 2π-D. 2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =-- (4)设函数f (x )在x=0处连续,下列命题错误的是 ( )A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()lim x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 ( ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 ( )A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 ( ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()(),00,0lim0x f x f x→-=,且()()00,0,0lim0y f y f y →-=C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 ( ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: ( ) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++ (C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , ( )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x xx →-=____.(12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____ (13)设函数123y x =+,则()0ny =_____.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_____. (15)设(,)f u v 是二元可微函数,(,)y x z f x y =,则_____z zx yx y∂∂-=∂∂. (16)设矩阵01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f -是f 的反函数,求()f x . (18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值.(19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解.(20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe--=所确定.设(ln sin ),z f y x =-求x dzdx=,202x d z dx=.(21)(本题11分) 设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=.(22)(本题满分11分)设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)Tα=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵是矩阵B的特征向量,并求B的全部特征值的特征向量;()I验证1II求矩阵B.()2019年考研数学二真题解析一.选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(2) 当0x +→(B )A. 1-B.lnC. 1D.1-(2)函数11()tan ()()xxe e xf x x e e +=-在区间[],ππ-上的第一类间断点是x =(A)A. 0B. 1C. 2π-D. 2π (3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =-- (4)设函数f (x )在x=0处连续,下列命题错误的是 (C)A. 若0()limx f x x →存在,则(0)0f = B. 若0()()lim x f x f x x→+-存在, (0)0f =C. 若0()lim x f x x →存在, 则(0)0f '=D. 0()()lim x f x f x x→--存在, (0)0f =(5)曲线1ln(1),xy e x=++渐近线的条数为 (D ).A 0 .B 1 .C 2 .D 3(6)设函数()f x 在(0,)+∞上具有二阶导数,且"()0f x >, 令n u = ()1,2.......,,f n n = 则下列结论正确的是 (D)A.若12u u >,则{}n u 必收敛B. 若12u u >,则{}n u 必发散C. 若12u u <,则{}n u 必收敛D. 若12u u <,则{}n u 必发散 (7)二元函数(,)f x y 在点(0,0)处可微的一个充分条件是 (B ) A.()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B. ()(),00,0lim0x f x f x→-=,且()()00,0,0lim0y f y f y →-=C.()(,0,0,00,0lim0x y f x f →-=D. ()0lim ',0'(0,0)0,x x x f x f →-=⎡⎤⎣⎦且()0lim ',0'(0,0)0,y y y f x f →⎡⎤-=⎣⎦ (8)设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于 (B ).A10arcsin (,)y dy f x y dx ππ+⎰⎰ .B 10arcsin (,)y dy f x y dy ππ-⎰⎰.C 1arcsin 02(,)y dy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(9)设向量组123,,ααα线形无关,则下列向量组线形相关的是: (A) (A ) ,,122331αααααα--- (B ) ,,122331αααααα+++ (C ) 1223312,2,2αααααα--- (D )1223312,2,2αααααα+++(10)设矩阵A=211121112--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭,B=100010000⎛⎫ ⎪⎪ ⎪⎝⎭,则A 于B , (B )(A) 合同,且相似 (B) 合同,但不相似(C) 不合同,但相似 (D)既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)30arctan sin limx x x x →-=16.(12)曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=1). (13)设函数123y x =+,则()0ny =23n -⋅.(14)二阶常系数非齐次线性微分方程2''4'32x y y y e -+=的通解y =_32122x x x C e C e e +-. (15)设(,)f u v 是二元可微函数,(,)y x z f x y =,则1222(,)(,)z z y y x x y xx y f f x y x x y y x y∂∂''-=-+∂∂. (16)设矩阵01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为_1______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)设()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导函数,且满足()100cos sin ()sin cos f x x t t f t dt t dt t t --=+⎰⎰,其中1f -是f 的反函数,求()f x . 【详解】: 设(),y f t =则1()t fy -=.则原式可化为:1(0)0cos sin '()sin cos xxf t tyf y dy tdt t t--=+⎰⎰ 等式两边同时求导得:cos sin '()sin cos x xxf x x x x-=+c o s s i n'()s i n c o sx x f x x x -=+ (18)(本题满分11分) 设D是位于曲线y =- ()1,0a x >≤<+∞下方、x 轴上方的无界区域.(Ⅰ)求区域D 绕x 轴旋转一周所成旋转体的体积()V a ; (Ⅱ)当a 为何值时,()V a 最小?并求此最小值. 【详解】:22222()())(ln )xa a I V a y dx dx a πππ-+∞+∞===⎰⎰22412(ln )(2ln )2()()0(ln )a a a a II V a a π-'=⋅= 得ln (ln 1)0a a -=故ln 1a =即a e =是唯一驻点,也是最小值点,最小值2()V e e π= (19)求微分方程()2''''y x y y +=满足初始条件(1)'(1)1y y ==的特解.【详解】: 设dy p y dx '==,则dpy dx''=代入得: 22()dp dx x p x x p p p dx dp p p++=⇒==+ 设x u p= 则()d pu u p dp =+du u p u p dp ⇒+=+1dudp ⇒=1u p c ⇒=+即21x p c p =+ 由于(1)1y '=故11110c c =+⇒=即2x p =32223dy p y x c dx ⇒==⇒=±+ 由21(1)13y c =⇒=或253c = 特解为322133y x =+或322533y x =-+(20)已知函数()f a 具有二阶导数,且'(0)f =1,函数()y y x =由方程11y y xe--=所确定.设(ln sin ),z f y x =-求x dzdx=,202x d zdx=.【详解】: 11y y xe--=两边对x 求导得11()0y y y e xe y --''-+⋅=得 111y y e y xe --'=- (当01)x y ==,故有11121x e y -='==-1(ln sin )(cos )(0)(111)0x x dz f y x y x f dxy=='''=--=⨯-=222221()(ln sin )(cos )(ln sin )(sin )x x d z y f y x y x f y x x dx y y=='''''=--+--+221(0)(111)(0)(10)1(1)11f f -'''=⨯-+⨯+=⨯-=- (21)(本题11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==证明:存在(,)a b ξ∈,使得''''()()f g ξξ=.【详解】:证明:设(),()f x g x 在(,)a b 内某点(,)c a b ∈同时取得最大值,则()()f c g c =,此时的c 就是所求点()()f g ηηη=使得.若两个函数取得最大值的点不同则有设()max (),()max ()f c f x g d g x ==故有()()0,()()0f c g c g d f d ->-<,由介值定理,在(,)c d 内肯定存在()()f g ηηη=使得由罗尔定理在区间(,),(,)a b ηη内分别存在一点''1212,,()()f f ξξξξ使得==0在区间12(,)ξξ内再用罗尔定理,即''''(,)()()a b f g ξξξ∈=存在,使得. (22)(本题满分11分)设二元函数2.1.(,)12.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤【详解】:D 如图(1)所示,它关于x,y 轴对称,(,)f x y 对x,y 均为偶函数,得1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰,其中1D 是D 的第一象限部分.由于被积函数分块表示,将1D 分成(如图(2)):11112D D D =,且1112:1,0,0 :12,0,0D x y x y D x y x y +≤≥≥≤+≤≥≥于是11212(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.而111112200111(,)(1)3412xD f x y d dx x dy x x dx σ-==-=-=⎰⎰⎰⎰⎰(1)(2)121222cos sin 10cos sin 1(,)()D D f x y d d rdr rπθθθθσσθ++==⋅⎰⎰⎰⎰极坐标变换220221122200021112001cos sin cos sin 2sin cos222(tan )222122(1)1tan 2tan22221)u td d d du du u u u dt dt t πππθθθθθθθθθθθ-===+-+===-+---+==-===⎰⎰⎰⎰⎰⎰ 所以11(,)1)12D f x y d σ=⎰⎰得1(,)4(1))12Df x y d σ=+⎰⎰(23)(本题满分11分)设线性方程组1231232123020(1)40x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321(2)x x x a ++=-有公共解,求a 的值及所有公共解. 【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩的解.即矩阵211100201401211aa a ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫ ⎪- ⎪→ ⎪- ⎪ ⎪++⎝⎭方程组(3)有解的充要条件为1,2a a ==.当1a =时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为(1,0,1)Tξ=-此时的公共解为:,1,2,x k k ξ==当2a =时,方程组(3)的系数矩阵为111011101220011014400001111100⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭此时方程组(3)的解为1230,1,1x x x ===-,即公共解为:(0,1,1)T k -(24)设3阶对称矩阵A 的特征向量值1231,2,2,λλλ===-1(1,1,1)Tα=-是A 的属于1λ的一个特征向量,记534B A A E =-+其中E 为3阶单位矩阵()I 验证1α是矩阵B 的特征向量,并求B 的全部特征值的特征向量; ()II 求矩阵B .【详解】:(Ⅰ)可以很容易验证111(1,2,3...)n nA n αλα==,于是 5353111111(4)(41)2B A A E ααλλαα=-+=-+=- 于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即 53()()4()1B A A λλλ=-+, 所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B 的属于1的特征向量为123(,,)Tx x x ,所以有方程如下:1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)T Tαα=-=(Ⅱ)令矩阵[]123111,,101110P ααα-⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,则1(2,1,1)P BP diag -=-,所以1111333111112(2,1,1)101(2,1,1)333110121333B P d i a g P d i a g -⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=⋅-⋅=---⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦011101110-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦。
考研数学分析真题集目录 南开大学 北京大学 清华大学浙江大学华中科技大学一、,,0N ∃>∀ε当N n >时,ε<>∀m a N m ,证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a ,a a kn k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。
三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减,又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。
北京邮电大学2019年硕士生入学考试自命题科
目考试大纲
601数学分析
一、考试目的
要求考生比较系统地理解和掌握数学分析的基本概念、基本理论和基本方法。
同时,考察考生的逻辑推理能力、计算能力和运用所学知识分析问题和解决问题的能力。
二、考试内容
1、实数集与函数
实数的概念,实数的性质,绝对值与不等式,区间与邻域,有界集与无界集,上确界与下确界,确界原理;函数的定义,函数的表示法,分段函数,有界函数,单调函数,奇函数与偶函数,周期函数。
2、数列极限
极限概念,收敛数列的性质(唯一性,有界性,保号性,单调性),数列极限存在的条件(单调有界准则,迫敛性法则,柯西准则)。
3、函数极限
函数极限的概念,单侧极限的概念,函数极限的性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性),函数极限存在的条件(归结原则(Heine定理),柯西准则),两个重要极限,无穷小量与无穷大量,阶的比较。
4、函数连续
一点连续的定义,区间连续的定义,单侧连续的定义,间断点及其分类,连续函数的局部性质及运算,闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性),复合函数的连续性,反函数的连续性,初等函数的连续性。
5、导数与微分
导数的定义,单侧导数,导函数,导数的几何意义,导数公式,导数的运算(四则运算),求导法则(反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程的求导法则),微分的定义,微分的运算法则,微分的应用,高阶导数与高阶微分。
2019年考研数学一真题一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0→x 时,若x x tan -与k x 是同阶无穷小,则=k A.1. B.2. C.3.D.4.5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+.C.232221y y y --.D.232221y y y ---.6.如图所示,有3张平面两两相交,交线相互平行,它们的方程组成的线性方程组的系数矩阵和增广矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A r9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx ∂∂⋅+∂∂⋅11= . 10. 微分方程02'22=--y y y 满足条件1)0(=y 的特解=y .11. 幂级数nn n n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S . 12. 设∑为曲面)0(44222≥=++z z y x 的上侧,则dxdy z x z⎰⎰--2244= .13. 设),,(321αααA =为3阶矩阵.若21αα,线性无关,且2132ααα+-=,则线性方程组0=x A 的通解为 .14. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )( . 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(2)求1lim-∞→n nn a .19.设Ω是锥面())10()1(2222≤≤-=-+z z y x 与平面0=z 围成的锥体,求Ω的形心坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的一个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的一个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A 与⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012相似(1)求y x ,.1.C2.B3.D4.D5.C6.A7.C8.A9.yxx y cos cos + 10.23-xe 11.x cos12.332 13. ,T)1,2,1(-k k 为任意常数.14. 解:(1))()()(2222c x ec dx e ee x y x xdxx xdx +=+⎰⎰=---⎰,又0)0(=y ,故0=c ,因此.)(221x xex y -=(2)22221221221)1(x x x ex ex ey ----=-=',17.1231 ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解得322a b c =⎧⎪=⎨⎪=-⎩.(2)()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的一个基.则()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,.其中112212004P PP -⎢⎥==--⎢⎥⎢⎥⎣⎦. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当0z ≤时,()zF z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0z zpez f z p e z -⎧<⎪=⎨->⎪⎩. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,又()()1,12D X E Y p ==-,从而当12p =时,(),0Cov X Z =,即,X Z 不相关. (III )由上知当12p ≠时,,X Z 相关,从而不独立;当12p =时,1111111111,,,,2P X Z P X X Y P X X P X X⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤为零,可得224122ii d σσσ=,解得的最大似然估计量为()211n ii x n μ=-∑.。
北京邮电大学
2020年硕士研究生招生考试试题
考试科目:601数学分析
请考生注意:CD 所有答案(包括选择题和填空题)一律写在答题纸上,否则不计成绩。
@不允许使用计算器
一、计算题(8分)
求极限lim
1-(c o s x )'i n x 二、计算题(8分)
判断尸sin(x 2)dx 的符号.
三、计算题(8分)
设f(x)存在连续导数,f(O)= 0, f'(O) * 0, F(x) = ,b (x 2 -!2订(t)dt I 且x ➔0时,F'(x)与X k
为同阶
无穷小量,求k的值.四、计算题(8分)
判别积分r;11nx 『d x 的敛散性.
五、计算题(8分)
1 p 判别级数区(e-(1+-r)的敛散性.n
六、计算题(10分)
求级数2(-lf(n 2 -n+l)n=O 2n 的和
七、证明题(10分)
I 设a n =I+—+ .. ·+上-2✓n ,nEN 十,证明:包}收敛.五五
八、证明题(10分)
n oo a 设a n > 0 , n = I, 2, …·La n 发散,凡=Ia k , n=I,2, …证明:级数I.....!!.收敛.s2 考试科目:601数学分析k=I n=I n 第1页共2页。
2019年考研数学—真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答案纸指定位置上。
(1)当时,若与是同阶无穷小,则0x →tan x x -k x k =(A )1.(B )2.(C )3.(D )4.(2)设函数则是的(),0,ln ,0,x x x f x x x x ⎧≤⎪=⎨>⎪⎩0x =()f x A.可导点,极值点. B.不可导点,极值点.C.可导点,非极值点. D.不可导点,非极值点.(3)设是单调递增的有界数列,则下列级数中收敛的是{}n u A. B.1mnn u n=∑()111mnn nu =-∑C. D.111mn n n u u =+⎛⎫- ⎪⎝⎭∑()2211mn n n u u +=-∑(4)设函数.如果对上半平面内的任意有向光滑封闭曲线都有()2,xQ x y y=()0y >C ,那么函数可取为()(),,0CP x y dx Q x y dy +=⎰A (),P x y A..B..23x y y-231x y y-C.. D..11x y-1x y-(5)设是3阶实对称矩阵,是3阶单位矩阵。
若,且,则二次型A E 22A A E +=4A =的规范形为T x Ax A.. B.222123y y y ++222123y y y +-C. D.222123y y y --222123y y y ---(6)如图所示,有3张平面两两相交,交线相互平行,他们的方程()1231,2,3i i i i a x a y a z d i +++=组成的线性方程组的系数矩阵和增广矩阵分别记为,则,A An gA. B.()()2,3r A r A ==()()2,2r A r A ==C.D.()()1,2r A r A ==()()1,1r A r A ==(7)设,为随机事件,则的充分必要条件是A B ()()P A P B =A. B. ()()()P A B P A P B =+ ()()()P AB P A P B =C.D.()()P AB P B A =()()P AB P AB=(8)设随机变量与相互独立,且都服从正态分布,则X Y ()2,N μσ{}1P X Y -<A.与无关,而与有关. B.与有关,而与无关.μ2σμ2σC.与都有关. D.与都无关.2,μσ2,μσ二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.设函数可导,,则()9()f u ()sin sin z f y x xy =-+11cos cos z zx x y y∂∂⋅+⋅=∂∂(10)微分方程满足条件的特解22220yy y --=()01y =y =(11)幂级数在内的和函数()()012!nnn x n ∞=-∑()0,+∞()S x =设为曲面的上侧,则()12∑()222440x y z z ++=≥z=设为三阶矩阵,若线性无关,且。
北京邮电大学2009--2010学年第一学期《工科数学分析》期中考试试题本试卷共20个小题,每小题5分,共100分1. 极限22212lim 12n n n n n n n n n →∞⎛⎫+++= ⎪++++++⎝⎭ . 解答:21 2.设0≠x , 则极限limcos cos cos 242n n x x x →∞= . 解答:sin x x3. 极限20x →= . 解答:12- 4. 极限123lim 2n n n n →∞⎛⎫+= ⎪⎝⎭. 解答:35. 设当0→x 时,)1ln()cos 1(2x x +-是比n x x sin ⋅高阶的无穷小,而n x x sin ⋅是比12-x e 高阶的无穷小,则正整数n 等于 . 解答:26. 曲线211x y x+=+的斜渐近线方程为 .解答:1y x =-7. 设函数)(x f 对任意x 满足)()1(x af x f =+, 且)0()0('的常数≠=a a f , 则=)1('f .解答:2a 8. 设函数)(x y y =由方程3222221y y xy x -+-=所确定, 则函数 )(x y y =的驻点为 , 其是否为极值点 . 解答:1,x = 是极大值点9.设()y y x =由参数方程⎩⎨⎧==t t y t t x sin cos 确定,则22d y dx = . 解答:232(cos sin )t t t t +- 10. 若lim , 0,1()lim , 0.txtx t x x x xn x e x e f x n n x n n →+∞--→+∞⎧+≤⎪⎪+=⎨-⎪>⎪-⎩则)(x f 得间断点为 ,且是 型间断点.解答:,0=x 第一类跳跃间断点11. 对数螺线e θρ=在点2πθ=对应点处的切线方程为 . 解答:()210y e x π-=--12. 设曲线()n f x x =在点)1,1(处切线与x 轴的交点为)0,(n x ,则lim ()n n f x →∞= . 解答:1e - 13.极限0x x →= .解答: 1.-14.设sin ,0()1, 0x x x f x x x ⎧-≠⎪=⎨⎪=⎩, 则)('x f . 解答:1215. 已知211d f dx x x ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦, 则1'2f ⎛⎫= ⎪⎝⎭ . 解答:1-16. 已知0lim 2,(3)x x f x →=则0(2)lim x f x x→= . 解答:1317.设21sin , 01(), 0ln(12), 0x x x x e f x b x x a x x ⎧⎪<⎪-⎪⎪==⎨⎪+⎪+>⎪⎪⎩, 则当=a ,=b 时,函数)(x f 在),(+∞-∞内连续.解答:2,0a b =-=18. 设函数)(x f y =在)1,1(-内具有二阶连续导数且.0)("≠x f 由中值定理对)1,1(-内的任一,0≠x 存在唯一的()(0,1)x θ∈使得()(0)'(())f x f xf x x θ=+成立,则极限0lim x θ→= . 解答:01lim 2x θ→=19. 设261x y x x =+-,则()n y = . 解答:()11(1)23()!5(21)(31)n n nn n n y x n x x ++⎡⎤-=+⎢⎥+-⎣⎦ 20. 当0>x 时,比较函数()f x x =和)1ln()(x x g +=的大小 .解答:ln(1)x x >+。
考研数学分析真题集目录 南开大学 北京大学 清华大学浙江大学华中科技大学一、,,0N ∃>∀ε当N n >时,ε<>∀m a N m ,证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a ,a a kn k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。
三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减,又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。
2019年全国硕士研究生入学统一考试数学(二)真题及答案(江南博哥)1[单选题]当x→0时,x-tanx与x k是同阶无穷小,则k=( ).A.1B.2C.3D.4正确答案:C参考解析:因为,若要x-tanx与x k是同阶无穷小,则k=3,故选C项。
2[单选题]y=xsinx+2cosx[x∈()]的拐点坐标是().A.(0,2)B.(π,-2)C.(,)D.正确答案:B参考解析:y'=sinx+xcosx-2sinx,y”=-xsinx,令y”=0得x=0,x=π,又因为=-sinx-xcosx,将上述两点代入(π)≠0,所以(π,-2)是拐点。
3[单选题]下列反常积分发散的是().A.B.C.D.正确答案:D参考解析:对于A项:4[单选题]已知微分方程的通解为y=(C1+C2x)e-x+e x,则a,b,c 依次为().A.1,0,1B.1,0,2C.2,1,3D.2,1,4正确答案:D参考解析:由条件知特征根为λ1=λ2=-1,特征方程为(λ—λ1)(λ—λ2)=λ2+2λ+1=0,故a=2,b=1,而y*=e x为特解,代入得c=4,故选D项。
5[单选题]已知平面区域,,则I1,I2,I3的大小关系为( )。
A.I3<I2<I1B.I2<I1<I3C.I1<I2<I3D.I2<I3<I1正确答案:A参考解析:因为6[单选题]已知f(x),g(x)二阶导数存在且在x=a处连续,则是f(x),g(x)相切于a且曲率相等的( )。
A.充分非必要条件B.充分必要条件C.必要非充分条件D.既非充分又非必要条件正确答案:A参考解析:必要性:f(x),g(x)相切于a,则f(a)=g(a),f'(a)=g'(a),f(x)与g(x)相切于点a,且曲率相等,故选A项。
7[单选题]设A是四阶矩阵,A*是A的伴随矩阵,若线性方程Ax=0的基础解系中只有2个向量,则A*的秩是( )。
A.0B.1C.2D.3正确答案:A参考解析:因为Ax=0的基础解系中只有2个向量,所以4-r(A)=2,则r(A)=2.所以r(A*)=0,故选A项。