基于遗传算法的PID整定
- 格式:pdf
- 大小:183.13 KB
- 文档页数:7
福建电脑2014年第2期课题来源:徐州工程学院“江苏省大学生创新创业训练计划项目(创新类)”,编号XCX13095,名称基于遗传算法的PID 参数整定。
0.引言PID 控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于过程控制和运动控制中,尤其适用于可建立精确数学模型的确定性控制系统中。
在PID 控制中,控制效果的好坏完全取决与PID 参数的整定与优化。
目前,PID 参数整定与优化方法有很多,如Z-N 法、继电型自整定法、最优设计法及梯度法、单纯形法。
前几种整定方法带有经验性并且不是最优解,梯度法和单纯形法极易陷入局部最优点。
因此可采用遗传算法进行参数寻优,该方法是一种不需要任何初始信息并可以寻求全局最优解的高效优化组合方法。
1.遗传算法遗传算法,是由美国的J.H.Holland 提出的一种模仿生物进化过程的最优化方法。
是以自然选择与遗传理论为基础,将生物进化过程中适者生存与群体内部染色体的随机信息交换机制相结合的全局搜索算法。
近年来,人们把它应用于学习、优化、自适应等问题中。
在优化问题中,遗传算法过程简述如下。
首先在解空间中取一群点(基因群),作为遗传开始的第一代。
每个点(基因)用一个二进制的数字串表示,其优劣程度用一个适应度函数来衡量。
适应度函数值小,表明那个点(基因)好,容易在遗传中生存下去。
在向下一代遗传演变中,前一代中的每个数字串根据由其适应度函数值决定的概率被复制到配对池中。
好的数字串以高的概率被复制下来,劣的数字串被淘汰掉。
然后将配对池中的数字串任意配对,并对每一对数字串进行交叉操作,产生新的子孙(数字串)。
最后对新的数字串的某一位进行变异。
这样就产生了新的一代。
按照同样的方法,经过数代的遗传演变后,在最后一代中得到全局最优解或近似最优解。
同常规优化算法相比,遗传算法有以下特点:1)遗传算法是对参数的编码进行操作,而非对参数本身。
遗传算法首先基于一个有限的字母表,把最优化问题的自然参数集编码为有限长度的字符串。
基于归一化遗传算法的PID控制器自适应整定2019.19科学技术创新基于归一化遗传算法的PID 控制器自适应整定刘文瑞3赵磊1,2,3颜子荔3(1、天津市先进机电系统设计与智能控制重点实验室,天津3003842、机电工程国家级实验教学示范中心(天津理工大学),天津3003843、天津理工大学机械工程学院,天津300384)PID 控制器在自动化生产和交直流伺服系统控制中是最普遍采用的控制策略。
PID 控制器主要参数是比例系数、积分系数和微分系数,它们通过线性组合构成控制量,对被控对象进行控制,故称为PID 控制器[1]。
PID 是最早应用到工业生产的控制策略之一,由于其算法简单、鲁棒性好和可靠性高等明显优势,得到广泛应用。
该类控制器对于已知精确数学模型系统的控制效果最佳[2]。
然而,在实际控制系统中,尤其是复杂的伺服控制系统,由于系统具有一定的非线性、时变性和不确定性,难以获得精确的数学模型,故应用的传统常规的PID 控制难以满足控制要求,主要问题在于PID 控制器最优参数的整定结果不理想,易出现控制器动态响应性能欠佳和稳态误差大的问题,导致适应性很差。
目前,PID 控制器参数优化的方法有很多,如间接寻优法、梯度法、爬山法等,而在热工系统中单纯形法、专家整定法应用较广。
上述几种方法对于控制模型精确的线性系统取得很好的控制效果,但对于非线性、时变系统的控制较差[3]。
单纯形法对初值优劣性敏感度高,易陷入局部最优解,造成优化失败;专家整定法需要太多的经验作数据支撑,不同的目标函数对应不同的数据参数,而整理庞大的专家数据库是一项繁重而又耗时的工程。
因此,寻求一种自适应PID 控制器参数的整定方法实现在线自适应参数的优化工作,具有重要的理论研究意义和工程应用价值。
1归一化遗传算法归一化遗传算法(NormalizedGenetic Algorithm )是在传统的一般GA 的基础上,对编码方式和控制算子进行改进、优化衍生的一种遗传算法。
控制理论与应用Control Theory and Applications《自动化技术与应用》2004年第23卷第7期用遗传算法实现PID 参数整定万佑红1,李新华2(1.南京邮电学院电子工程系,江苏 南京 210003; 2.安徽大学电子工程系,安徽 合肥 230001)摘要:PI D 参数整定一直是控制领域中的重要研究问题。
本文在M AT LAB 平台上将遗传算法应用于PI D 参数的自动整定,算法实例仿真取得了良好的效果,为PI D 参数整定方法提供了一种新的尝试。
关键词:PI D 参数;遗传算法中图分类号:TP27312 文献标识码:A 文章编号:100327241(2004)0720007202PID Tu nin g Bas e d O n Ge netic Alg orit h m sWAN You -hong 1,LI Xin -hua 2(1.E lectronics Department of Nanjing University of P osting T echnology ,Nanjing 210003,China ;2.E lectronics Department of AnHui University ,Hefei 230001,China )Abstract :A new method to s olve the tuning of PI D paramrters is proposed in this paper.I t is showed that g ood control effect can be obtained by usingG enetic Alg orithms (G A ).K ey w ords :PI D paramrters ;G A1 引言PI D 控制无需知道被控对象的数学模型,算法简单,鲁棒性好且可靠性高,因此成为一种获得广泛应用的控制策略。
基于遗传算法的PID控制器参数优化基于遗传算法的PID控制器参数优化是一种智能化调节方法,通过遗传算法的优化过程,可以自动得到最佳的PID参数组合,并实现对控制系统的自动调节。
以下将详细介绍基于遗传算法的PID控制器参数优化的原理、步骤和应用情况。
一、基于遗传算法的PID控制器参数优化原理遗传算法是一种模拟自然选择和遗传的数学模型,通过模拟生物进化的过程,利用优胜劣汰的原则逐步优化求解问题。
在PID控制器参数优化中,可以将PID参数看作个体(染色体),通过遗传算法的选择、交叉和变异等操作,不断优化个体的适应度,最终得到最佳的PID参数组合。
二、基于遗传算法的PID控制器参数优化步骤(1)初始化种群:随机生成一组PID参数作为初始种群,设置种群大小和迭代次数。
(2)适应度函数定义:根据所需控制效果,定义适应度函数来评估每个个体的优劣程度。
(3)选择操作:根据适应度函数的值选择优秀的个体,采用轮盘赌等选择策略,将优秀的个体复制并加入下一代种群中。
(4)交叉操作:从选择的个体中,选取两个个体进行交叉操作,通过交叉操作生成新的个体,并加入下一代种群中。
(5)变异操作:对下一代种群中的一些个体进行变异操作,改变其染色体的一些位,以保持种群的多样性。
(6)重复上述步骤:迭代执行选择、交叉和变异操作,直到达到预定的迭代次数或找到满意的PID参数组合。
(7)输出最佳解:最终输出具有最佳适应度的PID参数组合,作为优化后的参数。
三、基于遗传算法的PID控制器参数优化应用情况(1)机械控制系统:如电机驱动、自动化装配线等,通过优化PID 参数可以提高系统的控制精度和动态性能。
(2)能源系统:如电力系统、风力发电等,通过优化PID参数可以实现能源的高效利用和稳定运行。
(3)化工过程控制:如温度控制、压力控制等,通过优化PID参数可以提高产品质量和生产效率。
(4)交通管理系统:如城市交通信号控制、车辆行驶控制等,通过优化PID参数可以实现交通流畅和事故减少。
PID控制是工业过程控制中应用最广的策略之一,因此PID控制器参数的优化成为人们关注的问题,它直接影响控制效果的好坏,并和系统的安全、经济运行有着密不可分的关系。
目前PID参数的优化方法有很多,如间接寻优法、梯度法、爬山法等,而在热工系统中单纯形法专家整定法则应用较广。
虽然这些方法都具有良好的寻优特性,但存在着一些弊端,单纯形法对初值比较敏感,容易陷入局部最优化解,造成寻优失败。
专家整定法则需要太多的经验,不同的目标函数对应不同的经验,而整理知识库则是一项长时间的工程。
因此我们选取了遗传算法来进行参数寻优,该方法是一种不需要任何初始信息并可以寻求全局最优解的、高效的优化组合方法。
采用遗传算法进行PID三个系数的整定,具有以下优点:(1)与单纯形法相比,遗传算法同样具有良好的寻优特性,且克服了单纯形法参数初值的敏感性。
在初始条件选择不当的情况下,遗传算法在不需要给出调节器初始参数的情况下,仍能寻找到合适的参数,使控制目标满足要求。
同时单纯形法难以解决多值函数问题以及在多参数寻优(串级系统)中,容易造成寻优失败或时间过长,而遗传算法的特性决定了它能很好地客服以上问题。
(2)与专家整定相比,它具有操作方便、速度快的优点,不需要复杂的规则,只通过字串进行简单地复制、交叉、变异,便可达到寻优。
避免了专家整定法中前期大量的知识库整理工作及大量的仿真实验。
(3)遗传算法是从许多点开始并行操作,在解空间进行高效启发式搜索,克服了从单点出发的弊端及搜索的盲目性,从而使寻优速度更快,避免了过早陷入局部最优解。
(4)遗传算法不仅适用于单目标寻优,而且也适用于多目标寻优,根据不同的控制系统,针对一个或多个目标,遗传算法均能在规定的范围内寻找到合适参数。
遗传算法作为一种全局优化算法,得到越来越广泛的应用。
近年来,遗传算法在控制上的应用日益增多。
二、基于遗传算法的PID整定原理1、参数的确定及表示首先确定参数范围,该范围一般是由用户给定,然后由精度的要求,对其进行编码。
反馈是一个非常有用的概念。
反馈控制的使用常常带来革命性的结品控制器采用的是引入微分增益的实际PID 控制算法,其传递函数形式果,极大地改善了控制性能。
PID 控制是到目前为止实际使用中最主要的反馈控制形式。
PID 控制是比例积分微分控制的简称。
积分、比例和微分反馈分别基于过去(I )、现在(P )和将来(D )的控制偏差。
在生产过程自动控制的发展历程中,PID 控制是历史最久、生命力最强的基本控制方式。
PID 控制器的传统整定方法,如Ziegler-Nichols (Z-N )法、响应曲线法、临界比例法、继电型自整定法、单纯形法等,或是依赖于对象模型,或是易于陷入局部极小,均存在一定的应用局限性,且难以实现高性能的整定效果,常常超调较大、调整时间较长、误差指标过大等。
近年来,遗传算法作为一种新兴的优化和自学习算法在控制工程中逐渐受到重简单来说,PID 控制器各校正环节的作用是:视,它是一种基于生物进化论的并行搜索算法,搜索空间大,通过设计合1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,适的算法参数和策略能够避免陷入局部最小。
由于其独到的解决问题的能控制器立即产生控制作用,以减小偏差;力,其应用已渗透到控制领域诸多方面(系统辨识和模型降阶、最优控2)积分环节:主要用于消除静差。
积分作用的强弱取决于积分时间制、线性和非线性控制、滑模控制、鲁棒控制、模糊逻辑控制、神经网络控制和自适应控制等)。
3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系1 PID控制器原理统的动作速度,减少调节时间。
PID 控制是一种负反馈控制。
其反馈控制原理图如图1所示。
2 基于遗传算法的PID参数整定遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率搜索算法。
随着火电机组单机容量和参数的不断提高,系统变得日趋复杂,热工过程越来越表现出非线性、慢时变、大迟滞、强耦合性和不确定性,这对热工过程自动控制系统则提出了更高的要求,传统的PID 控制已经无法满足这种要求,必须采用先进的控制策略进行优化控制。
基于遗传算法的PID控制器参数优化遗传算法是一种模拟生物进化过程的智能算法,适用于解决优化问题。
在PID控制器设计中,参数的选择对控制系统的性能和稳定性有很大影响。
使用遗传算法对PID控制器参数进行优化,能够自动找到最优参数组合,提高系统的控制性能。
PID控制器由比例(P)、积分(I)、微分(D)三个部分组成,其输出是通过对误差的线性组合得到的。
参数的选择直接影响控制器的稳定性、动态响应和抗干扰能力。
传统的方法通常是通过试错法进行参数整定,这种方法的缺点是效率低、调试过程繁琐且容易出错。
遗传算法是一种模拟自然界进化过程的智能优化算法,其中每个个体代表一组可能的参数,通过适应度函数来衡量个体的适应度,并选择适应度较高的个体进行遗传和变异操作,最终找到适应度最优的个体。
将遗传算法应用于PID控制器参数优化的步骤如下:1.确定优化目标:通过设置适应度函数来度量控制系统的性能指标,如超调量、调整时间和稳定性。
2.初始化种群:随机生成一组初始参数作为初始种群,并利用适应度函数来评估每个个体的适应度。
3.选择操作:根据适应度选择一部分适应度较高的个体作为父代,通过选择操作进行选择。
4.交叉操作:将选中的父代进行交叉操作,生成新的子代个体。
5.变异操作:对子代进行变异操作,引入新的个体差异。
6.评估适应度:利用适应度函数评估新生成的子代个体的适应度。
7.判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到满足条件的解。
8.更新种群:根据选择、交叉和变异操作的结果,更新种群。
9.重复步骤3-8,直到满足终止条件。
10.输出最优解:输出适应度最好的个体参数作为PID控制器的优化参数。
使用遗传算法进行PID控制器参数优化有如下优点:1.自动化:遗传算法能够自动寻找最优参数组合,减少了人工试错的过程。
2.全局:遗传算法具有全局的能力,能够参数空间的各个角落,找到更好的解决方案。
3.鲁棒性:遗传算法能够处理多变量、多模态和不连续的问题,具有较好的鲁棒性。
第32卷第2期2005年北京化工大学学报JOURNAL OF BEI J IN G UN IV ERSIT Y OF CHEMICAL TECHNOLO GYVol.32,No.22005基于改进遗传算法的PID 参数整定策略宋洪法1 靳其兵1 赵 梅2(1.北京化工大学信息科学与技术学院,北京 100029;2.苏州科技学院电子系,江苏苏州 215011)摘 要:针对简单遗传算法(SG A )收敛速度慢、易于早熟等缺点,在前人研究成果的基础上,提出动态调整搜索空间策略,对遗传算法进行多步渐进搜索。
并采用改进的自适应交叉算子和自适应变异算子,结合兼顾性能指标和响应过程平衡的适配函数,以多种改进方式相结合的遗传算法对PID 参数进行迭代寻优整定。
仿真结果表明:当被控对象存在较大纯滞后、时间常数特性时,采用本方法优化PID 控制器参数可获得比较满意的调节效果。
关键词:遗传算法;自适应交叉;早熟;PID 参数整定中图分类号:TP273收稿日期:2004205206基金项目:中国石化总公司资助项目(X503014);中国石油天然气集团公司资助项目(03E7042)第一作者:男,1981年生,硕士生E 2mail :songhongfa @ 目前PID 参数整定方法主要有两种,一种是经验整定法,另一种是智能整定方法[1]。
前者算法简单,容易实现,但缺乏灵活性;后者具有很强的自适应能力,但算法比较复杂,无法满足现场的快速响应要求。
因此,既要有自适应能力又要求算法相对简单的PID 自整定技术成为控制界学者研究的努力方向。
简单遗传算法(SG A )已被证明不能收敛到全局最优解[2]。
文献[326]对自适应交叉和变异概率作了一定分析;文献[7]给出了遗传算法适配函数的一般构造原则以及遗传算法的自适应机制。
本文在综合考虑上述研究成果的同时,分析发现:遗传算法的初值给定范围与其搜索效率有很大的关系,即搜索初值越接近最优值,搜索范围越小,遗传算法的搜索效率就越高。
2010届毕业生毕业论文题目: 基于遗传算法整定的PID控制院系名称:信息科学与工程学院专业班级:电子信息科学与技术学生姓名:学号:指导教师:教师职称:讲师2010年 6 月 2 日摘要PID控制器是在工业过程控制中常见的一种控制器,因此,PID参数整定与优化一直是自动控制领域研究的重要问题。
遗传算法是一种具有极高鲁棒性的全局优化方法,在自控领域得到广泛的应用。
针对传统PID参数整定的困难性,本文提出了把遗传算法运用于PID参数整定中。
本文首先对PID控制的原理和PID参数整定的方法做了简要的介绍。
其次介绍了遗传算法的原理、特点和应用。
再次,本文结合实例阐述了基于遗传算法的PID参数优化方法,采用误差绝对值时间积分性能指标作为参数选择的最小目标函数,利用遗传算法的全局搜索能力,使得在无须先验知识的情况下实现对全局最优解的寻优,以降低PID参数整定的难度,达到总体上提高系统的控制精度和鲁棒性的目的。
最后,本文针对遗传算法收敛速度慢、易早熟等缺点,将传统的赌盘选择法与最优保存策略结合起来,并采用改进的自适应交叉算子和自适应变异算子对PID参数进行迭代寻优整定。
采用MATLAB对上述算法进行仿真验证,仿真结果表明了遗传算法对PID 参数整定的有效性。
关键词:PID;参数控制;遗传算法;MATLABTitle Tuning of PID Parameters Based on Genetic AlgorithmAbstractPID controller is a kind of controller that is usual in industrial process control. Therefore, tuning and optimization of PID parameters are important researchable problems in the automatic control field, where Genetic algorithm is widely used because of the highly robust global optimization ability of it. Aiming at the difficulty of traditional tuning of PID parameter, this paper puts forward a method that genetic algorithm is applied to the tuning of PID parameters.Firstly, the principle of PID control and the methods of tuning of PID parameters are introduced briefly. Secondly, this paper introduces the principle, characteristics and application of genetic algorithm. Thirdly, this article expounds on the methods of tuning of PID parameters based on genetic algorithm with an example. In this paper, the performance index of time integral of absolute error serves as the minimum objective function in the tuning of PID parameters, and the global search ability of genetic algorithm is used, so the global optimal solution is obtained without prior knowledge, and the difficulty of tuning of PID parameter is reduced, so the goal is achieved which is improving the control accuracy and robustness of the system overall. Finally, aiming at the weakness of genetic algorithm, such as the slow convergence of prematurity and precocious, the traditional gambling site selection method and elitist model are united in this paper, and the paper also adopted adaptive crossover operator and adaptive mutation operator to optimize PID parameters iteratively.Use MATLAB to simulate these algorithms, and the simulation results show that PID controller tuning based on genetic algorithm is effective.Keywords: Genetic algorithm; PID control; optimum; MATLAB目次1 引言 (1)1.1 PID控制的发展与现状 (1)1.2 遗传算法的发展与现状 (1)1.3 课题研究背景和意义 (3)1.4 本文主要工作 (3)2 PID控制 (5)2.1 PID控制原理 (5)2.2 PID参数整定 (7)3 遗传算法 (9)3.1 遗传算法基本原理 (9)3.1.1 遗传算法概要 (9)3.1.2 遗传算法的应用步骤 (10)3.2 遗传算法的实现 (11)3.2.1 编码方法 (11)3.2.2 适应度函数 (12)3.2.3 选择算子 (12)3.2.4 交叉算子 (13)3.2.5 变异算子 (14)3.2.6 遗传算法控制参数选取 (14)3.3 遗传算法的仿真验证 (15)4 基于遗传算法的PID参数优化 (18)4.1 总体实现 (18)4.2 具体实现 (19)4.2.1 参数的确定及表示 (19)4.2.2 选取初始种群 (19)4.2.3 适应度函数的确定 (19)4.2.4 选择部分实现 (20)4.2.5 交叉部分实现 (20)4.2.6 变异部分实现 (21)4.3 编译及仿真 (22)4.3.1 编译环境选择 (22)4.3.2 仿真验证及结果分析 (22)5 基于改进遗传算法的PID参数优化 (24)5.1 遗传算法的改进 (24)5.1.1 选择算子的改进 (24)5.1.2 交叉与变异算子的改进 (24)5.2 仿真验证及结果分析 (25)结论 (26)致谢 (27)参考文献 (28)1 引言1.1 PID控制的发展与现状PID控制技术的发展可以分为两个阶段。
摘要本文使用的是遗传算法对PID控制器参数的整定,PID控制器是过程控制中应用最为广泛的控制方法,PID控制理论成熟、算法简单、鲁棒性好、可靠性高。
控制器参数的选择决定了控制的稳定性和快速性,关乎系统的可靠性。
因此,PID 控制器参数整定问题是自动控制领域研究的一个重要内容。
实际工业生产过程往往具有非线性、时变性,人工试凑的参数整定方法往往整定不良、性能不佳,对运行工况的适应性很差。
本文基于遗传算法对数字PID控制器进行参数整定,可以提高优化性能,缩短整定时间。
关键词:数字PID控制器;参数整定;遗传算法;二次性能指标1引言PID控制作为比较成熟的控制技术广泛应用于工业生产过程,目前绝大多数底层控制都采用PID控制器。
实际应用中控制器的参数往往采用实验试凑的方法人工整定,该方法往往整定不良、性能不佳,而且对运行工况的适应性很差。
近年来随着计算机技术的广泛应用,人工智能算法PID整定策略发展迅速,如模糊PID、专家PID、神经元网络PID以及遗传算法等。
这些算法能够实现提高优化性能,缩短整定时间,实际应用方便的控制目标。
2PID控制器PID控制器是将偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对被控对象进行控制的。
模拟PID控制的系统原理图如图1所示。
图1. 模拟PID 控制的系统原理图模拟PID 控制规律为位置式:()()()()01=++tp DI de t u t k e t e t dt T T dt ⎡⎤⎢⎥⎣⎦⎰(1) 当系统采样周期为T 时,对上式离散化处理,可得到离散位置式PID 控制表达式:()()()()()=1--1=++kp i dj e k e k u k k e k k e j T k T ∑(2) 式中=/i p I k k T ,=d p D k k T 。
增量式PID 控制表达式可以表示为:()()()=-1+u k u k u k ∆(3)()()()()()()()()()=--1++-2-1+-2p i d u k k e k e k k e k k e k e k e k ∆(4)3 遗传算法遗传算法(Genetic Algorithm )是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,将达尔文生物进化理论引入参数寻优之中,适应度高的个体越容易被保留,经过若干代数遗传操作,种群各个体的适应度不断提高,直至满足一定的极限条件,获得优化问题最优解。
摘要:研究自动控制器参数整定问题,PID参数整定是自动控制领域研究的重要内容,系统参数选择决定控制的稳定性和快速性,也可保证系统的可靠性。
传统的PID参数多采用试验加试凑的方式由人工进行优化,往往费时而且难以满足控制的实时要求。
为了解决控制参数优化,改善系统性能,提出一种遗传算法的PID 参数整定策略。
在本文里,通过介绍了遗传算法的基本原理,并针对简单遗传算法在PID控制中存在的问题进行了分析,提出在不同情况下采用不同的变异概率的方法,并对其进行了实验仿真。
结果表明,用遗传算法来整定PID参数,可以提高优化性能,对控制系统具有良好的控制精度、动态性能和鲁棒性。
关键词:PID控制器;遗传算法;整定PID1 引言传统的比例、积分、微分控制,即PID控制具有算法简单、鲁棒性好和可靠性高等优点,已经被广泛用于工业生产过程。
但工程实际中,PID控制器的比例、积分和微分调节参数往往采用实验加试凑的方法由人工整定。
这不仅需要熟练的技巧,往往还相当费时。
更为重要的是,当被控对象特性发生变化,需要控制器参数作相应调整时,PID控制器没有自适应能力,只能依靠人工重新整定参数,由于经验缺乏,整定结果往往达不到最优值,难以满足实际控制的要求。
考虑生产过程的连续性以及参数整定费事费力,这种整定实际很难进行。
所以,人们从工业生产实际需要出发,基于常规PID控制器的基本原理,对其进行了各种各样的改进。
近年来许多学者提出了基于各种智能算法的PID整定策略,如模糊PID,神经元网络PID等…,但这些先进算法都要求对被控对象有很多的先验知识,在实际应用中往往难于做到。
随着计算技术的发展,遗传算法有了很大的发展。
将遗传算法用于控制器参数整定,已成为遗传算法的重要应用之一。
本文介绍基于遗传算法的PID参数整定设计方法。
这是一种寻求全局最优的控制器优化方法,且无需对目标函数微分,可提高参数优化效果,简化计算过程。
仿真实例表明该方法与其他传统寻优方法相比,在优化效果上具有一定的优势。
CHANGZHOU INSTITUTE OF TECHNOLOGY毕 业 设 计 说 明 书题目:基于遗传算法的PID 整定与研究二级学院(直属学部): 延陵学院专业: 自动化 班级: 07自Y学生姓名: 王思凡 学号: 07121222指导教师姓名:张燕红 职称:评阅教师姓名: 职称:2011年 6月KC021-1摘要PID控制是工业过程中应用最为广泛的一种方法,而遗传算法是模拟自然界遗传机制和生物进化论而成的一种并行随机搜索的最优化的方法,它将“优胜劣汰、适者生存”的生物进化原理引入优化参数形成的编码串连的群体中,按照所选择的适配值函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适配值高的个体被保留下来,组成新的群体,新的群体又继承了上一代的信息,又优于上一代,这样群体中的个体的适应度不断提高,从而得到全局最优解。
通过适应度函数来确定寻优方向,与其他一些常规整定方法相比,遗传算法比较简便,整定精度较高。
本文用遗传算法对PID进行整定与研究,对该系统进行了仿真,实验结果表明该种算法的有效性和优越性,也表明遗传算法是一种简单高效的算法,与传统的PID控制方法相比明显地改善了控制系统的各方面性能。
关键词PID控制;遗传算法;PID参数整定;Matlab;AbstractPID control is the most widely used industrial process in a way, the genetic algorithm is to simulate the genetic mechanisms and biological evolution in nature made of a parallel random search optimization method. It "survival of the fittest" theory of biological evolution optimized the parameters of the introduction of the encoding group in series.According to the adaptive value function which and through the heredity in duplication chooses, overlapping and the variation to the individual carries on screening, causes the adaptive value high individual to retain, forms the new community, the new community has inherited previous generation's information, also surpasses the previous generation, in such community's individual's sufficiency enhances unceasingly, thus obtains the globally optimal solution.Through the sufficiency function definite optimization direction, compares with other conventional installation method, the genetic algorithm is quite simple, the installation precision is high.In this paper, genetic algorithm for tuning PID and study the simulation of the system, experimental results show that the effectiveness and superiority of the kinds of algorithms, but also show that the genetic algorithm is a simple and efficient algorithm, and compared the traditional PID control method significantly improved control over all aspects of system performance.Key words : PID control; genetic algorithm; PID parameter tuning; Matlab目录摘要 (I)Abstract ........................................................................................................................... I I 目录 (III)第1章绪论 ................................................................................................................ - 1 -1.1课题研究背景 ................................................................................................ - 1 -1.2国内外研究现状 ............................................................................................ - 2 -1.3论文主要研究内容、目的和意义 ................................................................ - 5 -第2章PID算法简介 ................................................................................................. - 6 -2.1 PID控制原理................................................................................................. - 6 -2.2 PID控制器的基本用途................................................................................. - 7 -2.3 PID控制器的现实意义................................................................................. - 8 -2.4 PID控制器的参数整定................................................................................. - 8 -2.5本章小结 ...................................................................................................... - 10 -第3章遗传算法的基本理论及研究 ...................................................................... - 11 -3.1遗传算法的概念 .......................................................................................... - 11 -3.2标准遗传算法 .............................................................................................. - 11 -3.3遗传算法的模式定理 .................................................................................. - 12 -3.4标准遗传算法的结构、特点和应用关键 .................................................. - 13 -3.5本章小结 ...................................................................................................... - 16 -第4章基于遗传算法的PID参数整定 ................................................................. - 17 -4.1 Matlab简介.................................................................................................. - 17 -4.2 基于遗传算法PID控制器参数整定设计................................................. - 18 -4.3本章小结 ...................................................................................................... - 19 -第5章基于遗传算法的PID仿真 ......................................................................... - 20 -5.1遗传算法关键步骤的Matlab实现............................................................. - 20 -5.2基于二进制的遗传算法的PID仿真.......................................................... - 22 -5.3基于实数制的遗传算法PID仿真.............................................................. - 27 -5.4本章小结 ...................................................................................................... - 31 -结论 ............................................................................................................................ - 32 -参考文献 .................................................................................................................... - 33 -致谢 ............................................................................................................................ - 36 -附录 ............................................................................................................................ - 37 -第1章绪论1.1课题研究背景PID调节器是最早发展起来的控制策略之一,因为它所涉及的设计算法和控制结构都是简单的,并且十分适用于工程应用背景,此外PID控制方案并不要求精确的受控对象的数学模型,且采用PID控制的控制效果一般是比较令人满意的,所以在工业实际应用中,PID调节器是应用最为广泛的一种控制策略,也是历史最久、生命力最强的基本控制方式。
基于遗传算法的PID参数整定1引言传统的比例、积分、微分控制,即PID控制具有算法简单、鲁棒性好和可靠性高等优点,已经被广泛用于工业生产过程。
但工程实际中,PID控制器的比例、积分和微分调节参数往往采用实验加试凑的方法由人工整定。
这不仅需要熟练的技巧,往往还相当费时。
更为重要的是,当被控对象特性发生变化,需要控制器参数作相应调整时,PID控制器没有自适应能力,只能依靠人工重新整定参数,由于经验缺乏,整定结果往往达不到最优值,难以满足实际控制的要求。
考虑生产过程的连续性以及参数整定费事费力,这种整定实际很难进行。
所以,人们从工业生产实际需要出发,基于常规PID控制器的基本原理,对其进行了各种各样的改进。
近年来许多学者提出了基于各种智能算法的PID整定策略,比如模糊PID、神经元网络PID等等。
然而,这些先进算法都要求对被控对象有很多的先验知识,在实际应用中往往难于做到。
随着计算技术的发展,遗传算法有了很大的发展。
将遗传算法用于控制器参数整定,已成为遗传算法的重要应用之一。
本文介绍基于遗传算法的PID参数整定设计方法。
这是一种寻求全局最优的控制器优化方法,且无需对目标函数微分,可提高参数优化效果,简化计算过程。
仿真实例表明该方法与其他传统寻优方法相比,在优化效果上具有一定的优势。
2遗传算法简介2.1 遗传算法的基本原理遗传算法是John H.Holland根据生物进化的模型提出的一种优化算法。
自然选择学说是进化论的中心内容。
根据进化论,生物的发展进化主要有三个原因:即遗传、变异和选择。
遗传算法基于自然选择和基因遗传学原理的搜索方法,将“优胜劣汰,适者生存”的生物进化原理引入待优化参数形成的编码串群体中,按照一定的适应度函数及一系列遗传操作对各个体进行筛选,从而使适应度高的个体被保留下来,组成新的群体;新群体包含上一代的大量信息,并且引入了新的优于上一代的个体。
这样周而复始,群体中各个体适应度不断提高,直至满足一定的极限条件。
基于遗传算法的PID控制参数整定研究邵海龙【摘要】PID控制作为一种经典的控制方法被广泛应用于工业控制中,是实际工业生产过程正常运行的基本保障。
随着计算机技术的发展和人工智能技术的出现,PID控制器参数整定不再只是传统整定,而出现了多种新的PID控制器参数整定方法。
文章通过深入研究PID控制理论,罗列和分析了传统PID参数整定技术,最终利用遗传算法完成PID多参数智能整定,从而保证PID控制器的无超调、稳定、快速的完美控制。
%PID control, as a classical control method, is widely used in industrial control and the basic guarantee for the normal operation of the actual process of industrial production. With the development of computer technology and emergence of artificial intelligence technology, PID controller is no longer the traditional tuning method.Through in-depth study of PID control theory, this paper lists and analyzes the traditional PID parameter tuning technology, using the genetic algorithm to complete the PID multi parameter intelligent tuning ifnally, so as to ensure without overshoot, stable, fast perfect control of the PID controller.【期刊名称】《无线互联科技》【年(卷),期】2016(000)021【总页数】2页(P111-112)【关键词】Ziegler-Nichos法;遗传算法;PID控制【作者】邵海龙【作者单位】福州大学物理与信息工程学院,福建福州 354000【正文语种】中文PID控制即比例积分微分控制。