空间四面体翻滚机器人运动学分析及仿真实验
- 格式:pdf
- 大小:715.85 KB
- 文档页数:7
机械手模拟仿真实验文档实验简介问题描述:应用仿真技术,建立一个具有四自由度的(虚拟)机械手,可完成在任意给定的两个三维空间点之间画一条直线的任务解决方案:首先使用VRML语言建模机械手模型,再使用Matlab中的Simulink仿真环境模拟机械手四个关节的运动状态,然后在此基础之上编写Matlab程序完成所需功能。
重点难点:如何建立世界坐标系,并得到每个坐标点与四个关节旋转角度的对应关系?如何计算机械手臂沿两点直线移动过程中四个关节的运动姿态(即旋转角度)?一、机械手建模为了实现对机械手的仿真实现,我们首先建立一个模拟四个关节(四个自由度)可运动的机械手,效果如下图1.1所示。
图 1.1 四个自由度的机械手模型该机械手的模型分为底座,四个关节以及顶端的画笔,我们重点来弄清楚四个关节的运动情况,地下的红色小立方体可以在水平面的方向左右(即顺时针或逆时针)旋转正负90度,其余的三个颜色分别标记为绿色、蓝色和灰色的三个立方体,它们可以绕着各自的底平面心前后旋转运动,其运动幅度均为正负90度。
建立机械手模型时,采用了MA TLAB支持的虚拟现实建模语言VRML。
1.1 虚拟现实建模语言VRMLVRML(Virtual Reality Modeling Language)即虚拟现实建模语言,是一种用于建立真实世界的场景模型或者人们虚构的三维世界的场景建模语言,是一种面向Web面向对象的三维造型语言,其实质为一种解释性语言,常用的编辑环境有VrmlPad,VRML文件的后缀名为.wrl, 使用浏览器浏览时需要相应插件的支持,可下载cortona3d.msi安装即可由于VRML在互联网和可视化的广泛应用,Matlab对于虚拟现实也进行了有力的支持,Matlab提供了Simulink接口和Matlab接口来与虚拟现实进行交互,相应的详细说明文档请查看Matlab帮助文档中的Virtual Reality Toolbox内容。
可翻滚移动空间四面体机构的运动学分析
任露洋;张淑杰;蒋骏;彭福军
【期刊名称】《计算机辅助工程》
【年(卷),期】2016(25)2
【摘要】提出可变四面体机构的翻滚式移动平台设计概念.该机构由6根伸缩杆和4个节点支座组成,通过伸缩杆的运动改变机构重心,使整个结构失稳,达到翻滚移动的目的.结合其运动形式进行机构的运动学分析,并在此基础上分析其稳定性.设计、制造原理样机,并进行性能测试.测试结果表明:该可变四面体机构能以翻滚步态实现全方位移动.
【总页数】5页(P57-60,66)
【作者】任露洋;张淑杰;蒋骏;彭福军
【作者单位】同济大学航空航天与力学学院,上海 200092;同济大学航空航天与力学学院,上海 200092;同济大学航空航天与力学学院,上海 200092;上海宇航系统工程研究所,上海 201108
【正文语种】中文
【中图分类】TB242
【相关文献】
1.空间十二重四面体翻滚机器人运动学位置分析 [J], 张中鹏;王小涛;聂宏;陈萌
2.基于四面体构型的冗余并联机构的运动学分析 [J], 尤晶晶;李成刚;吴洪涛
3.具有弱耦合无奇异特征的空间移动并联机构及运动学分析 [J], 季晔
4.空间4R球面机构作为转动副的3RPS并联机构运动学分析 [J], 刘伟;曹亚斌
5.空间八面体翻滚机器人运动学分析及仿真研究 [J], 韩书葵;刘宏伟;赵子开;苏泽盛
因版权原因,仅展示原文概要,查看原文内容请购买。
机器人运动学与动力学建模与仿真1. 引言机器人技术的快速发展为生产制造、医疗保健、家庭服务等领域带来了巨大变革。
机器人的运动学与动力学建模与仿真是机器人控制技术的核心内容。
通过准确建模和仿真,可以使机器人运动更加灵活,精确和高效。
本文将深入探讨机器人运动学与动力学建模与仿真的原理和应用。
2. 机器人运动学建模机器人运动学建模是研究机器人运动规律的过程。
机器人的运动可以分为直线运动和旋转运动两种基本形式。
通过建模,可以计算机器人的位置、速度和加速度等参数。
运动学建模的核心是描述骨架结构和连接关系,以及联动机器人的关节状态。
3. 机器人动力学建模与运动学建模相比,机器人的动力学建模更加复杂。
动力学建模需要考虑机器人的惯性、外部力和驱动力等因素对机器人运动的影响。
一般来说,机器人动力学建模可以分为正向和逆向两种方式。
正向动力学模型是通过已知输入力和关节状态来推导机器人的运动方程。
而逆向动力学模型则是通过已知运动方程来求解对应的关节状态和输入力。
4. 机器人运动学与动力学仿真在机器人研究和开发的过程中,运动学和动力学仿真起着重要的作用。
通过仿真,可以对机器人的运动进行精确的预测,并进行优化和调整。
运动学仿真主要用于模拟机器人的位置和姿态,以及关节的运动范围。
动力学仿真则可以模拟机器人在受到各种力的作用下的运动和行为。
仿真技术可以帮助研究人员更好地理解和掌握机器人的运动规律,在设计和控制阶段提供有力的支持。
5. 机器人运动学与动力学仿真的应用机器人运动学与动力学建模与仿真的应用非常广泛。
在工业制造中,仿真可以帮助优化生产线的布局,提高生产效率和质量。
在医疗领域,仿真可以帮助医生进行手术模拟和培训,提前规划手术方案,减少手术风险。
在家庭服务领域,仿真可以帮助设计智能机器人的运动轨迹和操作规则,提供更好的家庭助理服务。
此外,仿真还可以应用于教育训练、虚拟现实等多个领域。
6. 机器人运动学与动力学建模与仿真的挑战与发展尽管机器人运动学与动力学建模与仿真技术已取得了很大进展,但仍面临一些挑战。
一种空间正交四边形滚动机器人
郝艳玲;刘长焕;谢基龙;姚燕安
【期刊名称】《上海交通大学学报》
【年(卷),期】2012(46)6
【摘要】为使机器人仅利用较少的自由度就可实现移动及转向,提出了一种具有空间正交四边形几何形态的新型滚动机器人.该机器人本体是一个14杆16副的空间连杆机构,由2个平台和4条支链构成,外观形态为一对空间正交的四边形.并基于其自由度与运动原理,分析了该机器人的稳定性和滚动方向,进行了运动仿真.制作了一台原理样机进行实验以验证概念的可行性.实验结果表明,该机器人能够在2个驱动器控制下以翻滚步态实现全方位移动.
【总页数】7页(P949-955)
【关键词】球形机器人;滚动;变形
【作者】郝艳玲;刘长焕;谢基龙;姚燕安
【作者单位】北京交通大学机械与电子控制工程学院
【正文语种】中文
【中图分类】TP24
【相关文献】
1.非正交边界薄板弯曲问题的一种新单元--任意四边形单元 [J], 罗崧发;潘光明;潘慧
2.一种求欧氏空间子空间的标准正交基的新方法 [J], 张焕玲;刘爱奎
3.欧氏空间子空间的标准正交基的一种全新的求法——褿ivens变换法 [J], 刘国志
4.空间平行四边形索环牵引并联机器人设计与仿真分析 [J], 周莉; 李研; 关岚升; 孙冠男
5.空间三正交平行四边形滚动机构 [J], 荀致远;关永瀚;席利贺;孙春华;姚燕安
因版权原因,仅展示原文概要,查看原文内容请购买。
一、实训背景随着科技的不断发展,机器人技术在我国得到了广泛应用。
为了提高我国机器人技术的研究水平和人才培养质量,我国许多高校纷纷开设了机器人相关课程。
仿真力学机器人实训课程作为其中一门重要的课程,旨在使学生掌握机器人运动学和动力学的基本原理,并能运用所学知识进行机器人仿真实验。
二、实训目的1. 理解机器人运动学和动力学的基本原理,掌握机器人运动学方程和动力学方程的建立方法。
2. 熟悉机器人仿真软件的使用,能够运用仿真软件进行机器人运动学和动力学仿真实验。
3. 培养学生的创新能力和实践能力,提高学生解决实际问题的能力。
三、实训内容1. 机器人运动学(1)机器人运动学基本概念:机器人运动学是研究机器人运动规律和位置关系的学科。
主要内容包括自由度、运动学方程、运动学参数等。
(2)机器人运动学方程的建立:根据机器人结构,运用运动学基本原理,建立机器人运动学方程。
(3)机器人运动学仿真:运用仿真软件对机器人运动学进行仿真实验,观察机器人运动轨迹和姿态变化。
2. 机器人动力学(1)机器人动力学基本概念:机器人动力学是研究机器人受力情况、运动规律和运动状态变化的学科。
主要内容包括受力分析、动力学方程、动力学参数等。
(2)机器人动力学方程的建立:根据机器人结构、质量和刚度,运用动力学基本原理,建立机器人动力学方程。
(3)机器人动力学仿真:运用仿真软件对机器人动力学进行仿真实验,观察机器人受力情况、运动状态变化和稳定性。
3. 机器人仿真软件使用(1)机器人仿真软件介绍:介绍常用的机器人仿真软件,如MATLAB、Robotics Toolbox等。
(2)仿真软件操作:讲解仿真软件的基本操作,包括机器人建模、仿真参数设置、仿真结果分析等。
四、实训过程1. 实训准备(1)学习机器人运动学和动力学基本理论,了解机器人仿真实验的基本流程。
(2)熟悉仿真软件的基本操作,掌握仿真实验的基本方法。
2. 实训实施(1)建立机器人模型:根据机器人结构,运用仿真软件建立机器人模型。
可变形仿生翻滚四足机器人结构设计摘要:移动机器人是科学技术进步的产物,更是人类无限幻想和智慧的结晶。
移动机器人在军事、生产、生活以及科学研究中还有着许多潜在的应用前景。
移动机构决定了移动机器人的综合移动性能,是移动机器人能够在工作环境中实现快捷、平稳、精确、高效移动的关键。
为了提高机器人的移动效率,同时也为了降低机器人结构的复杂性,本课题从现代仿生学原理出发,将自然界中的翻滚运动引入到四足机器人结构当中,并借鉴可重构机器人理论,首次提出一种具有翻滚模式和步行模式的可变形仿生翻滚四足机器人,达到用一种机构实现两种运动的目的。
本文对可变形仿生翻滚四足机器人进行了总体方案设计,选定了结构参数,和驱动方式。
详细地对机器人的本体结构进行了设计,并对机器人关键部位进行了校核。
本课题提高了四足机器人的环境适应能力,拓展四足机器人的应用领域,而且丰富了移动机器人学科的理论和实践,对移动技术的发展和高机动性移动平台的开发具有一定的借鉴作用,具有重要的理论意义与实际应用价值。
关键词:四足机器人;仿生翻滚;可重构机器人;设计校核全套图纸加153893706Structural Design for a Reconfigurable Bionic RollingQuadruped RobotAbstract : Mobile robot is the product by scientific and technological progress, and also the crystallization of human infinite fantasy and wisdom. Mobile robot have many potential application prospect in the military, production, living and scientific research. The move mechanism of the robot determines the comprehensive move performance, also it’s the key for robot to work smooth, accurate and quick, efficient in the surroundings.In order to improve the robot move efficiency, and also to reduce the complexity of the structure, this paper is based upon the modern bionics principle. The rolling style in nature is put into robot structure. Referencing reconfigurable robot theory, a reconfigurable bionic rolling quadruped robot is put forward, which has two move modes---- walk model and rolling model. In this way, it can achieve the purpose of using a mechanism to get two movement models.General scheme design of the robot is made in this paper, structure parameters and drive mode are selected. Robot body structure is designed detailed, and the key parts of the robot are checked in this paper.This topic raised the ability for robot to adapt environment, expand the application field of robot, and also enriched the discipline theory andpractice for robotics. It has a certain reference of the development of mobile technology and high mobility mobile platform. So this paper has an important theoretical significance and practical application value.Key words:quadruped robot; bionic rolling; reconfigurable robot; design and check目录第一章绪论 (6)1.1课题研究的目的与意义 (6)1.2移动机器人的应用领域 (7)1.2.1工业领域 (7)1.2.2农业生产 (7)1.2.3科技探索 (7)1.2.4医疗服务机器人 (8)1.3国内外在该领域的研究现状 (8)1.3.1轮-足复合式移动机构 (8)1.3.2仿生翻滚与翻转移动平台 (9)1.4主要研究内容 (11)第二章移动机器人系统 (12)2.1移动机器人系统组成 (12)2.2 传统移动机器人简介 (12)2.3 腿式移动机器人 (13)2.3.1双腿 (13)2.3.2四腿 (14)2.3.3六腿 (15)2.4腿式机器人存在的问题及展望 (16)2.5轮式移动机器人 (17)2.5.1单轮滚动机器人 (17)2.5.2 两轮移动机器人 (18)2.5.3 三轮及四轮移动机器人 (19)2.5.4 复合式移动机器人 (21)2.6轮式移动机器人性能比较 (21)2.7履带式机器人 (22)2.7.1单节双履带式机器人 (23)2.7.2双节双履带式移动机器人 (23)2.7.3多节多履带式移动机器人 (23)2.7.4多节轮履复合式移动机器人 (24)2.7.5自重构式移动机器人 (24)2.7.6履带式移动机器人存在的问题及发展趋势 (25)第三章总体方案设计 (26)3.1 结构外形设计 (26)3.2 仿生翻滚运动方案设计 (27)3.3结构基本参数 (28)3.4驱动方案选择 (29)第四章机器人设计 (30)4.1 电机选择 (30)4.1.1 电机扭矩 (30)4.1.2确定电机型号 (31)4.1.3选择联轴器 (32)4.2 机械结构设计 (33)4.2.1 材料选择 (33)4.2.2 机体设计 (33)4.2.3 大腿机构设计 (35)4.2.4 小腿机构设计 (36)4.2.5 足部设计 (36)第五章设计总结 (37)5.1主要内容小结 (37)5.2设计心得体会 (38)参考文献 (38)致谢 (41)第一章绪论1.1课题研究的目的与意义移动机器人是科学技术进步的产物,更是人类无限幻想和智慧的结晶。
机器人运动学建模与动力学仿真分析机器人一直以来是人类最喜欢的机械产物之一。
它们已经在许多领域中得到了广泛应用,从工业生产到医疗,从军事到普通家庭,都有机器人的身影。
然而,机器人的行为不可能只受简单的人工指令控制,在设计和创建机器人时,必须考虑它们如何使用传感器和算法自主进行运动控制。
这就需要对机器人进行运动学建模和动力学仿真分析。
机器人的运动学模型描述了机器人的位置和方向,以及机器人在三维空间中运动的方式。
运动学模型通常由连接在一起的“关节”组成,每个关节提供机器人在空间中运动的自由度。
一个典型的机器人通常由多个关节组成,在每个关节处都有一个旋转或平移关节。
关节的旋转和平移由马达或气动驱动器等装置控制,以允许机器人进行复杂运动,从而能完成其指定的任务。
机器人的运动学模型可以用数学的方法来表示,其中一个广为人知的方法是丹尼·德文波特的变换题。
这个题的思想是将机器人从其基本位置(被定义为零位)旋转和移动,函数将这个位置映射到全局坐标系统中。
对于机器人中每个关节,将“关节空间”中的变化转换为“工作空间”中的直线和角度转换,从而得到机器人的整体位置和方向。
机器人的动力学模型描述了运动学之外的一些物理特性,如质量、惯性、摩擦力等,从而解释与力学和动力学相关的运动。
这是在机器人仿真系统中进行动力学仿真分析的关键所在之一。
通常情况下,机器人的惯性和摩擦力对动力学非常重要,它们直接影响机器人的运动和位移。
在设计机器人时,考虑这些因素是至关重要的,否则机器人可能会无法完全精确地执行指定的任务。
了解机器人的运动学和动力学模型有许多好处。
首先,它们可以帮助设计师更好地理解机器人的基本运动和设计风格。
其次,运动学和动力学模型也可以用于控制机器人的运动。
例如,运动学模型可以将圆轴坐标转换为笛卡尔坐标,并为控制器提供所需的坐标信息,以使机器人在空间中移动。
同时,动力学模型可以帮助设计师制定适当的控制器 PID(位置、积分、微分)参数,以保证机器人的稳定性和运动精度。
变拓扑六重四面体机器人步态规划与仿真王小涛;曹雯;韩运峥;韩如雪【摘要】变拓扑多面体机器人是一个多闭链多耦合的连杆机构,现有的变拓扑多面体机器人的步态规划仅仅是根据几何关系来计算,没有考虑运动方向改变和实时计算连杆变化量的复杂性.针对上述问题,提出将变拓扑六重四面体机器人的步态规划与中枢模式发生器(central patten generator,CPG)相结合,其运动方向由有限状态机确定,即确定连杆运动的次序;而CPG网络产生的信号直接驱动变拓扑六重四面体机器人的连杆运动.利用ADAMS进行仿真,实验结果表明利用算法变拓扑六重四面体机器人能根据CPG输出的信号实现翻滚运动.【期刊名称】《科学技术与工程》【年(卷),期】2015(015)035【总页数】5页(P42-46)【关键词】变拓扑多面体机器人;有限状态机;中枢模式发生器;步态规划【作者】王小涛;曹雯;韩运峥;韩如雪【作者单位】南京航空航天大学航天学院,南京210016;南京航空航天大学航天学院,南京210016;南京航空航天大学航天学院,南京210016;南京航空航天大学航天学院,南京210016【正文语种】中文【中图分类】TP242.3变拓扑六重四面体机器人相比于传统机器人具有运动方式的多样性,可实现翻滚、步行、爬行等多种运动模式,存在对复杂地面适应能力强、不惧翻覆等优点[1]。
目前国内外对于变拓扑四面体机器人的研究相对较少。
NASA迄今已研制了三代样机,其合作单位美国Hope College 的Miguel Abrahante[2—4]等人对六重、八重和十二重等多面体机器人进行了步态规划方面的研究。
国内北京航空航天大学的张利格[5]等人对单重四面体机器人进行了运动学分析、ADAMS仿真和样机验证。
这类研究仅考虑了一步运动,并没有考虑运动的节律性和连续性。
而近年来关于CPG的研究已相对成熟。
2004年,清华大学郑浩峻等人通过修改和细化日本九州工学院的Matsuoka的微分振荡器模型得到了一个改进的CPG振荡器模型,实现了四足机器人运动控制, 解决了高层调节的问题; 但是结构复杂、响应速度慢、实时性差[6]。