2020-2021学年北师大版数学七年级下册第一章至第四章 期中复习卷二(综合卷)
- 格式:doc
- 大小:543.50 KB
- 文档页数:6
2020-2021北师大版七年级数学下册第1章1.7整式的除法 专题培优训练卷一、选择题1、计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 42、计算27m 6÷(﹣3m 2)3的结果是( )A .1B .﹣1C .3D .﹣33、下列计算正确的是( )A .(x 3+x 4)÷x 3=x 4B .(-7x 3-8x 2+x )÷x =-7x 2-8xC .(2x 2+x 6)÷x 2=2+x 4D .(ab 2-4a 3b 4)÷2ab =b -2a 2b 34、计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 25、下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a6、(-15a 3b 2+8a 2b )÷( )=5a 2b -83a ,括号内应填( ) A .3ab B .-3ab C .3a 2b D .-3a 2b7、小亮在计算(6x 3y ﹣3x 2y 2)÷3xy 时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( )A .2x 2﹣xyB .2x 2+xyC .4x 4﹣x 2y 2D .无法计算8、计算(-4x 3+12x 2y -7x 3y 2)÷(-4x 2)等于( )A .x +74xy 2B .x -3y +74xy 2C .x 2-3y +74xy 2D .x -3y +47x 9、若长方形的面积是4a 2+8ab +2a ,它的一边长为2a ,则它的周长为( )A .2a +4b +1B .2a +4bC .4a +4b +1D .8a +8b +210、已知长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( )A .2x 2y 3+y +3xyB .2x 2y 2-2y +3xyC .2x 2y 3+2y -3xyD .2x 2y 3+y -3xy二、填空题11、计算:(xy 2)2÷xy 3= .12、计算:(5x 5﹣3x 2)÷(﹣x )2= .13、计算(m 2n )3•(﹣m 4n )÷(﹣mn )2的结果为 .14、如果“□×2ab =4a 2b ”,那么“□”内应填的代数式是 .15、计算:(7x 2y 3﹣14x 3y 2z )÷7x 2y 2= .16、计算:(6x 5y -3x 2)÷(-3x 2)=_____.17、计算3a 2÷13a 4的结果是_________ 18、月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,若坐飞机飞行这么远的距离需 小时.19、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 3y -2xy 2,若商必须是2xy ,则小亮报的除式是________.20、计算:(1))32732(523n mn n +-÷23n 2=________; (2)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3=________. 三、解答题21、计算:(1)(﹣3x 2y )2÷(﹣3x 2y 2); (2) 3a 3b •(﹣2ab )÷(﹣3a 2b )2.(3)(2×109)÷(5×103). (4)(6x 3+3x 2﹣2x )÷(﹣2x )﹣(x ﹣2)2.(5)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.(6)(30x4-20x3+10x)÷10x(7)(32x3y3z+16x2y3z-8xyz)÷8xyz (8)(6a n+1-9a n+1+3a n-1)÷3a n-1.(9)[(a+b)2-(a-b)2]÷4ab;(10)[x(x2y2-xy)-y(x2-x3y)]÷3x2y.22、先化简,再求值:(1)[(xy-2)2-(xy+2)(2-xy)]÷(-14xy),其中x=2019,y=12019.(2)[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷y;其中|x﹣|+(y+2)2=0.23、李老师给学生出了一道题:当x=2019,y=2020时,求[2x(x2y-xy2)+xy(2xy-x2)]÷x2y的值.题目出完后,小明说:“老师给的条件y=2020是多余的.”小颖说:“不给这个条件,就不能求出结果,所以不是多余的.”你认为他们谁说得有道理?为什么?2020-2021北师大版七年级数学下册第1章1.7整式的除法 专题培优训练卷(答案)一、选择题1、计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 42、计算27m 6÷(﹣3m 2)3的结果是( )A .1B .﹣1C .3D .﹣3解:27m 6÷(﹣3m 2)3=27m 6÷(﹣27m 6)=﹣1. 故选:B .3、下列计算正确的是( C )A .(x 3+x 4)÷x 3=x 4B .(-7x 3-8x 2+x )÷x =-7x 2-8xC .(2x 2+x 6)÷x 2=2+x 4D .(ab 2-4a 3b 4)÷2ab =b -2a 2b34、计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 2解:(4x 3﹣2x )÷(﹣2x )=﹣2x 2+1. 故选:C5、下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a【解答】A 、(3a 2+a )÷a =3a +1,本选项错误;B 、(2ax 2+a 2x )÷4ax =x +a ,本选项错误;C 、(15a 2-10a )÷(-5)=-3a 2+2a ,本选项错误;D 、(a 3+a 2)÷a =a 2+a ,本选项正确,故选D6、(-15a 3b 2+8a 2b )÷( )=5a 2b -83a ,括号内应填( B ) A .3ab B .-3ab C .3a 2b D .-3a 2b7、小亮在计算(6x 3y ﹣3x 2y 2)÷3xy 时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( )A .2x 2﹣xyB .2x 2+xyC .4x 4﹣x 2y 2D .无法计算解:正确结果为:原式=6x 3y ÷3xy ﹣3x 2y 2÷3xy =2x 2﹣xy ,错误结果为:原式=6x 3y ÷3xy +3x 2y 2÷3xy =2x 2+xy ,∴(2x 2﹣xy )(2x 2+xy )=4x 4﹣x 2y 2,故选:C .8、计算(-4x 3+12x 2y -7x 3y 2)÷(-4x 2)等于( )A .x +74xy 2B .x -3y +74xy 2C .x 2-3y +74xy 2D .x -3y +47x [解析] (-4x 3+12x 2y -7x 3y 2)÷(-4x 2)=x -3y +74xy 2. 故选B.9、若长方形的面积是4a 2+8ab +2a ,它的一边长为2a ,则它的周长为( )A .2a +4b +1B .2a +4bC .4a +4b +1D .8a +8b +2解:另一边长是:(4a 2+8ab +2a )÷2a =2a +4b +1,则周长是:2[(2a +4b +1)+2a ]=8a +8b +2.故选:D .10、已知长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( )A .2x 2y 3+y +3xyB .2x 2y 2-2y +3xyC .2x 2y 3+2y -3xyD .2x 2y 3+y -3xy[解析] 由题意得:长方形的宽=(18x 3y 4+9xy 2-27x 2y 2)÷9xy =2x 2y 3+y -3xy .故选D.二、填空题11、计算:(xy 2)2÷xy 3= .解:原式=x 2y 4÷xy 3=xy . 故答案为xy .12、计算:(5x 5﹣3x 2)÷(﹣x )2= .解:(5x 5﹣3x 2)÷(﹣x )2=(5x 5﹣3x 2)÷x 2=5x 3﹣3,故答案为:5x 3﹣3.13、计算(m 2n )3•(﹣m 4n )÷(﹣mn )2的结果为 .解:(m 2n )3•(﹣m 4n )÷(﹣mn )2=(m 6n 3)•(﹣m 4n )÷(m 2n 2)=(﹣m 10n 4)÷(m 2n 2)=﹣m 8n 2.故答案为:﹣m 8n 214、如果“□×2ab =4a 2b ”,那么“□”内应填的代数式是 .解:□×2ab =4a 2b ,∴4a 2b ÷2ab =2a ,则“□”内应填的代数式是2a .15、计算:(7x 2y 3﹣14x 3y 2z )÷7x 2y 2= .解:原式=7x 2y 3÷7x 2y 2﹣14x 3y 2z ÷7x 2y 2=y ﹣2xz ,故答案为:y ﹣2xz16、计算:(6x 5y -3x 2)÷(-3x 2)=_____.【解答】(6x 5y -3x 2)÷(-3x 2)=6x 5y ÷(-3x 2)+(-3x 2)÷(-3x 2)=-2x 3y +1.17、计算3a 2÷13a 4的结果是( D )A .9a 6B .a 6 C.9a -2 D.9a 218、月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,若坐飞机飞行这么远的距离需 小时.解:依题意得(3.84×105)÷(8×102),=0.48×103,=4.8×102(小时).∴坐飞机飞行这么远的距离需4.8×102小时.19、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 3y -2xy 2,若商必须是2xy ,则小亮报的除式是________.[解析] (x 3y -2xy 2)÷2xy =12x 2-y.故答案是12x 2-y.20、计算:(1))32732(523n mn n +-÷23n 2=________; (2)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3=________.答案:(1)n -212m +n 3 (2)3x 2y 3-2y -4xy 2三、解答题21、计算:(1)(﹣3x 2y )2÷(﹣3x 2y 2); (2) 3a 3b •(﹣2ab )÷(﹣3a 2b )2.(3)(2×109)÷(5×103). (4)(6x 3+3x 2﹣2x )÷(﹣2x )﹣(x ﹣2)2.(5)[x (x 2y 2﹣xy )﹣y (x 2﹣x 3y )]÷3x 2y . (6)(30x 4-20x 3+10x )÷10x(7)(32x 3y 3z +16x 2y 3z -8xyz )÷8xyz (8)(6a n +1-9a n +1+3a n -1)÷3a n -1.(9)[(a +b )2-(a -b )2]÷4ab ; (10)[x (x 2y 2-xy )-y (x 2-x 3y )]÷3x 2y .解:(1)原式=9x 4y 2÷(﹣3x 2y 2)=﹣3x 2;(2)3a 3b •(﹣2ab )÷(﹣3a 2b )2=3a 3b •(﹣2ab )÷9a 4b 2=﹣6a 4b 2÷9a 4b 2=﹣.(3)原式=0.4×106=4×105.(4)原式=6x 3÷(﹣2x )+3x 2÷(﹣2x )+(﹣2x )÷(﹣2x )﹣(x ﹣2)2=﹣3x 2﹣x +1﹣(x 2﹣4x +4)=﹣3x 2﹣x +1﹣x 2+4x ﹣4=﹣4x 2+x ﹣3.(5)[x (x 2y 2﹣xy )﹣y (x 2﹣x 3y )]÷3x 2y=(x 3y 2﹣x 2y ﹣x 2y +x 3y 2))÷3x 2y=(2x 3y 2﹣2x 2y )÷3x 2y =xy ﹣; (6)(30x 4-20x 3+10x )÷10x =3x 3-2x 2+1;(7)(32x 3y 3z +16x 2y 3z -8xyz )÷8xyz =4x 2y 2+16xy 2-1;(8)(6a n +1-9a n +1+3a n -1)÷3a n -1=(-3a n +1+3a n -1)÷3a n -1=-3a 2+1.(9)[(a +b )2-(a -b )2]÷4ab =(a 2+b 2+2ab -a 2-b 2+2ab )÷4ab =4ab ÷4ab =1.(10)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷3x 2y =23xy -23.22、先化简,再求值:(1)[(xy -2)2-(xy +2)(2-xy )]÷(-14xy ),其中x =2019,y =12019.(2)[(x +2y )2﹣(x +y )(x ﹣y )﹣5y 2]÷y ;其中|x ﹣|+(y +2)2=0.解:(1)原式=(x 2y 2-4xy +4-4+x 2y 2)÷(-14xy) =(2x 2y 2-4xy)÷(-14xy) =-8xy +16.当x =2019,y =12019时,原式=-8+16=8. (2)原式=(x 2+4xy +4y 2﹣x 2+y 2﹣5y 2)÷y =4xy ÷y =4x ,∵|x ﹣|+(y +2)2=0,∴x =,y =﹣2,当x =时,原式=4×=2.23、李老师给学生出了一道题:当x =2019,y =2020时,求[2x (x 2y -xy 2)+xy (2xy -x 2)]÷x 2y 的值.题目出完后,小明说:“老师给的条件y =2020是多余的.”小颖说:“不给这个条件,就不能求出结果,所以不是多余的.”你认为他们谁说得有道理?为什么?解:小明说得有道理.理由:原式=(2x 3y -2x 2y 2+2x 2y 2-x 3y )÷x 2y =x 3y ÷x 2y =x .显然最后的化简结果不含y ,所以最后的结果与y 的值无关,所以小明说得有道理.。
第4章三角形一、选择题1.下列说法正确的是( )A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形2.如图,∠1=140°,∠2=100°,则∠3=( )A.100°B.120°C.130°D.140°3.如图,点A,D在线段BC的同一侧,AC与BD相交于点E,连接AB,CD,已知∠1=∠2,现添加以下哪个条件仍不能判定△ABC≌△DCB的是( )A.∠A=∠D B.AC=DB C.∠ABC=∠DCB D.AB=DC4.下列各组长度的三条线段能组成三角形的是( )A.1,2,3B.1,1,2C.1,2,2D.1,5,75.如果三角形的两条边长分别是8厘米、6厘米,那么第三边的长不可能是( )A.9厘米B.4厘米C.3厘米D.2厘米6.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能( )A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形7.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,DH⊥BC于H,交BE于G,有下列结论:①BH=DH;②BD=CD;③AD+CF=BD;④CE=BF.其中正确的是( )A.①②B.①③C.①②③D.①②③④8.如图,△ABC的高CD、BE相交于点O,如果∠A=60°,那么∠BOC的大小为( )A.60°B.100°C.120°D.130°9.如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A=45°),BC交DE于点F,则∠DFC的度数是( )A.75°B.105°C.135°D.125°10.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是( )A.AF=FC B.GF=BG C.AG=2GD D.EG=CE11.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二、填空题12.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是 .13.如图,矩形的一个顶点落在边长为3的正方形中心(正方形对角线交点),则图中重合部分(阴影部分)的面积为 平方单位.14.在△ABC中,∠A:∠B:∠C=4:5:9,若按角分类,△ABC是 三角形.15.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.16.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为1、3,则正方形的边长为 .17.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加 根木条才能固定.18.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC=140°,∠BGC=110°,则∠A= .19.如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E= .20.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是 .三、解答题21.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).22.已知:如图,在△ABC中,∠DAE=10°,AD⊥BC于点D,AE平分∠BAC,∠B=60°,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.24.如图,点A,B,C,D在同一条直线上,AB=CD,∠A=∠D,AE=DF.(1)求证:△ACE≌△DBF.(2)若BF⊥CE于点H,求∠HBC的度数.25.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,E是对角线AC上一点,连接BE,DE.(1)求证:BE=DE.(2)当BE∥CD,∠BAD=78°时,求∠BED的度数.26.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.27.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是 ;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?答案一、选择题1.D2.B3.D4.C5.D6.A7.D8.C9.B10.B11.B二、填空题12.三角形的稳定性.13..14.直角.15.35.16..17.3.18.80°.19.30°.20.ASA.三、解答题21.解:如图所示:.22.解:∵AD⊥BC,∠B=60°,∴在△ABD中,∠BAD=90°﹣60°=30°,又∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=30°+10°=40°,又∵AE平分∠BAC,∴∠BAC=2∠BAE=80°,∴在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°.答:∠C的度数是40°.23.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.24.(1)证明:∵AB=CD,∴AB+BC=CD+BC.∴AC=BD.在△ABC和△EDF中,,∴△ACE≌△DBF(SAS);(2)解:由(1)知△ACE≌△DBF,∴∠ACE=∠DBF.∵BF⊥CE,∴∠BHC=90°,∴∠HBC+∠HCB=90°,∴∠HBC=∠HCB=45°.25.(1)证明:∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中,,∴△BAE≌△DAE(SAS),∴BE=DE;(2)解:由(1)得:△BAE≌△DAE,∴∠BEA=∠DEA,∴∠BEC=∠DEC,∵AC平分∠BAD,∠BAD=78°,∴∠BAC=∠DAC=∠BAD=×78°=39°,∵AC=AD,∴∠ACD=∠ADC=×(180°﹣39°)=70.5°,∵BE∥CD,∴∠BEC=∠ACD=70.5°,∴∠BEC=∠DEC=70.5°,∴∠BED=2×70.5°=141°.26.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.27.解:(1)PC=3﹣t.(2)△CPQ≌△BDP,理由如下:∵P、Q的运动速度相等,∴1秒后,CQ=BP=1,CP=BC﹣BP=3﹣1=2,∵D为AB的中点,∴BD=,∴CP=BD,在△CPQ和△BDP中,,∴△CPQ≌△BDP(SAS).(3)解:由(1)知,PC=3﹣t,BP=t,CQ=at,BD=2,∵∠C=∠B∵△BPD与△CQP全等,①当△CPQ≌△BDP时,BP=CQ,t=at,∵t≠0,∴a=1与P、Q的运动速度不相等矛盾,故舍去.②当△CPQ≌△BPD时,BP=CP,CQ=BD,∴t=3﹣t,at=2,t=a=.即点P、Q的运动速度不相等时,点Q的运动速度a为时,能够使△BPD与△CQP全等.。
七年级数学下册练习第一章《整式的乘除》图形专练(二)1.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,左右两边修两条宽为a米的道路.(a>0,b>0)(1)①试用含a,b的代数式表示绿化的面积是多少平方米?②假设阴影部分可以拼成一个矩形,请你求出所拼矩形相邻两边的长;如果要使所拼矩形面积最大,求a与b满足的关系式;(2)若a=3,b=2,请求出绿化面积.2.如图,甲、乙都是长方形,边长的数据如图所示(其中m为正整数).(1)图中的甲长方形的面积S1,乙长方形的面积S2,试比较S1、S2的大小,并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.3.如图,某小区有一块长为(4a+b)米,宽为(3a+b)米的长方形土地,物业管理公司计划在阴影部分的区域进行绿化,中间修建一个正方形喷水池.(1)求绿化的面积是多少平方米?(2)若a=1,b=2时,求绿化面积.4.如图,某市有一块长(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米.(2)当a=2,b=1时求绿化面积.5.如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分面积,并求出当a+b=16,ab=60时阴影部分的面积.6.如图,从边长为(a+3)的正方形纸片中剪去一个边长为a的小正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠无缝隙).(1)用含a的代数式表示矩形的周长和面积.(2)当a=3时,求矩形的周长和面积.7.[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)图②中阴影部分的正方形的边长是;(2)请用两种不同的方法求图②中阴影部分的面积:方法1:;方法2:;(3)观察图②,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(4)根据(3)中的等量关系解决如下问题:若x+y=6,,则(x﹣y)2=;[知识迁移]类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式.(5)根据图③,写出一个代数恒等式:;(6)已知a+b=3,ab=1,利用上面的规律求的值.8.如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若m+n=7,mn=5,求(m﹣n)2的值.9.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.10.如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均分成4个长方形,然后按图2形状拼成一个正方形.(1)图2中阴影部分的边长是(用含a、b的式子表示);(2)若2a+b=7,且ab=3,求图2中阴影部分的面积;(3)观察图2,用等式表示出(2a﹣b)2,ab,(2a+b)2的数量关系是.11.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2﹣4y2=24,3x+2y=6,求3x﹣2y的值;②计算:.12.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.13.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a =6,b=4时的绿化面积.14.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).15.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)参考答案1.解:(1)①绿化的面积为:(3a+b)(2a+b)﹣(a+b)2﹣a(3a+b﹣a﹣b)=6a2+5ab+b2﹣a2﹣2ab﹣b2﹣2a2=(3a2+3ab)平方米;答:绿化的面积是(3a2+3ab)平方米;②如图,∵3a2+3ab=3a(a+b),∴所拼矩形相邻两边的长分别为3a米和(a+b)米;所以要使所拼矩形面积最大,3a=a+b,所以2a=b;(2)当a=3,b=2,绿化面积是3a2+3ab=3×9+3×3×2=45(平方米).2.解:(1)S1=(m+1)(m+7)=m2+8m+7,S2=(m+2)(m+4)=m2+6m+8,∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S2.(2)图中甲的长方形周长为2(m+7+m+1)=4m+16,∴该正方形边长为m+4,∴S﹣S1=(m+4)2﹣(m2+8m+7)=9,∴这个常数为9.3.解:(1)由图形可得:(4a+b)(3a+b)﹣(a+b)2=12a2+4ab+3ab+b2﹣a2﹣2ab﹣b2=11a2+5ab.∴绿化的面积是(11a2+5ab)平方米.(2)当a=1,b=2时,绿化面积为:11×1+5×1×2=21(平方米).∴当a=1,b=2时,绿化面积为21平方米.4.解:(1)S绿化面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab;答:绿化的面积是(5a2+3ab)平方米;(2)当a=2,b=1时,绿化面积=5×22+3×2×1=20+6=26.答:当a=2,b=1时,绿化面积为26平方米.5.解:根据题意得:S阴影部分=a2+b2﹣a2﹣b(a+b)=a2+b2﹣a2﹣ab﹣b2=(a2+b2﹣ab)=[(a+b)2﹣3ab],把a+b=16,ab=60代入得:S阴影部分=38.故图中阴影部分的面积为38.6.解:(1)由拼图可得,拼成的长方形的长为a+3+a=2a+3,宽为a+3﹣a=3,所以周长为:(2a+3+3)×2=4a+12,面积为:(2a+3)×3=6a+9,答:拼成的矩形的周长为4a+12,面积为6a+9;(2)当a=3时,周长4a+12=4×3+12=24,面积6a+9=6×3+9=27.7.解:(1)由拼图可得,中间小正方形的边长为a﹣b,故答案为:a﹣b;(2)方法1,直接根据正方形的面积公式得,(a﹣b)2,方法2,大正方形面积减去四种四个长方形的面积,即(a+b)2﹣4ab,故答案为:(a﹣b)2,(a+b)2﹣4ab;(3)故答案为:(a﹣b)2=(a+b)2﹣4ab;(4)由(3)得,(x﹣y)2=(x+y)2﹣4xy=36﹣22=14;故答案为:14;(5)根据体积的不同计算方法可得;(a+b)3=a3+3a2b+3ab2+b3;故答案为:(a+b)3=a3+3a2b+3ab2+b3;(6)a+b=3,ab=1,∴===9.8.解:(1)图②中画有阴影的小正方形的边长(m﹣n);(2)(m+n)2=(m﹣n)2+4mn;(3)由(2)得:(m+n)2=(m﹣n)2+4mn;∵m+n=7,mn=5,∴(m﹣n)2=(m+n)2﹣4mn=49﹣20=29;答:(m﹣n)2的值为29.9.解:(1)根据题意,广场上需要硬化部分的面积是(2a+b)(3a+b)﹣(a+b)2=6a2+2ab+3ab+b2﹣(a+b)2=6a2+5ab+b2﹣(a2+2ab+b2)=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab答:广场上需要硬化部分的面积是(5a2+3ab)m2.(2)把a=30,b=10代入5a2+3ab=5×302+3×30×10=5400 m2答:广场上需要硬化部分的面积是5400m2.10.解:(1)图2的阴影部分的边长是2a﹣b,故答案为:2a﹣b;(2)由图2可知,阴影部分的面积=大正方形的面积﹣4个小长方形的面积,∵大正方形的边长=2a+b=7,∴大正方形的面积=(2a+b)2=49,又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴阴影部分的面积=(2a﹣b)2=49﹣24=25;(3)由图2可以看出,大正方形面积=阴影部分的正方形的面积+四个小长方形的面积,即:(2a+b)2﹣(2a﹣b)2=8ab.故答案为:(2a+b)2﹣(2a﹣b)2=8ab.11.解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a ﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①∵9x2﹣4y2=(3x+2y)(3x﹣2y),∴24=6(x﹣2y)得:3x﹣2y=4;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+),=×××××…××××,=×,=.12.解:(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,…(2分)故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;…(4分)(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴,∴x+y+z=9,故答案为:9;…(6分)(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.…(8分)13.解:S阴影=(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab(平方米),当a=6,b=4时,5a2+3ab=5×36+3×6×4=180+72=252(平方米).14.解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.15.解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)] =(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.。
1.4整式的乘法同步练习一.选择题1.下列计算正确的是()A.a3+a3=a6B.a3•a3=a6C.(4a3)2=8a6D.a3•b3=ab32.若(x+a)(x+b)=x2+4x+3,则a+b的值为()A.3B.﹣3C.4D.﹣43.计算3a(5a﹣2b)的结果是()A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab4.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣35.在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3+□+3x,“□”的地方被墨水污染了,你认为“□”内应填写()A.9x2B.﹣9x2C.9x D.﹣9x6.若单项式﹣8x a y和x2y b的积为﹣2x5y6,则ab的值为()A.2B.30C.﹣15D.157.若2x+m与x+3的乘积中不含x的一次项,则m的值为()A.﹣6B.0C.﹣2D.38.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断该多项式是()A.4x2﹣x+1B.x2﹣x+1C.﹣2x2﹣x+1D.无法确定9.根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b210.已知a、b、c三个数中有两个奇数,一个偶数,n是整数,如果S=(a+n+1)+(b+2n+2)+(c+3n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶不能确定二.填空题11.计算(﹣2a)3(﹣3a)2=.12.计算:(x﹣2y)(x+5y)=.13.一个长方体的长、宽、高分别是(3x﹣4)米,2x米和x米,则这个长方体的体积是.14.若(x+m)与(x+3)的乘积中不含x的一次项,则m=.15.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=.三.解答题16.计算:(ab2﹣2ab)•ab.17.计算:6a2(ab﹣b2)﹣2a2b(a﹣b).18.小轩计算一道整式乘法的题:(2x+m)(5x﹣4),由于小轩将第一个多项式中的“+m”抄成“﹣m”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)请计算出这道题的正确结果.19.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.参考答案一.选择题1.解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项正确;C、(4a3)2=16a6,故此选项错误;D、a3•b3=a3b3,故此选项错误;故选:B.2.解:∵(x+a)(x+b)=x2+4x+3,∴x2+(a+b)x+ab=x2+4x+3,∴a+b=4.故选:C.3.解:3a(5a﹣2b)=15a2﹣6ab.故选:D.4.解:(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.5.解:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+3x,故选:B.6.解:﹣8x a y×x2y b=﹣2x a+2y b+1=﹣2x5y6,∴a+2=5,b+1=6,解得a=3,b=5,∴ab=3×5=15,故选:D.7.解:(2x+m)(x+3)=2x2+(m+6)x+3m,∵2x+m与x+3的乘积中不含x的一次项,∴m+6=0,解得:m=﹣6.故选:A.8.解:根据题意得:多项式为x2﹣x+1﹣(﹣3x2),x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,故选:A.9.解:根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.10.解:(a+n+1)+(b+2n+2)+(c+3n+3)=a+b+c+6(n+1).∵a+b+c为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴S是偶数.故选:A.二.填空题11.解:原式=﹣8a3•9a2=﹣72a5.12.解:原式=x2+5xy﹣2xy﹣10y2=x2+3xy﹣10y2,故答案为:x2+3xy﹣10y2.13.解:由题意可得,这个长方体的体积是(3x﹣4)×2x×x=(3x﹣4)×2x2=(6x3﹣8x2)立方米.故答案为:(6x3﹣8x2)立方米.14.解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故答案为:﹣3.15.解:由题意得:,解得:,则A+B=,故答案为:.三.解答题16.解:原式=ab2⋅ab﹣2ab⋅ab=a2b3﹣a2b2.17.解:原式=6a2×ab﹣6a2×b2﹣2a2b×a+2a2b×b =2a3b﹣6a2b2﹣2a3b+2a2b2=﹣4a2b2.18.解:(1)由题知:(2x﹣m)(5x﹣4)=10x2﹣8x﹣5mx+4m=10x2﹣(8+5m)x+4m=10x2﹣33x+20,所以8+5m=33或4m=20,解得:m=5.故m的值为5;(2)(2x+5)(5x﹣4)=10x2﹣8x+25x﹣20=10x2+17x﹣20.19.解:(1)根据题意,广场上需要硬化部分的面积是(2a+b)(3a+b)﹣(a+b)2=6a2+2ab+3ab+b2﹣(a+b)2=6a2+5ab+b2﹣(a2+2ab+b2)=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab答:广场上需要硬化部分的面积是(5a2+3ab)m2.(2)把a=30,b=10代入5a2+3ab=5×302+3×30×10=5400 m2答:广场上需要硬化部分的面积是5400m2.。
第四章三角形单元综合测试一.选择题1.已知三条线段长分别为2cm、4cm、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm2.全等形是指两个图形()A.大小相等B.完全重合C.形状相同D.以上都不对3.下列各选项中的两个图形属于全等形的是()A.B.C.D.4.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC =75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA5.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°6.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D7.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E8.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个9.如图,已知△ABC的六个元素,则下面甲、乙、丙、丁四个三角形中一定和△ABC全等的图形是()A.甲、丁B.甲、丙C.乙、丙D.乙10.如图,AB=AC,角平分线BF、CE交于点O,AO与BC交于点D,则图中共有()对全等三角形.A.8B.7C.6D.5二.填空题11.已知三角形的三边长为3、7、a,则a的取值范围是.12.如图,测量三角形中线段AB的长度为cm;判断大小关系:AB+AC BC(填“>”,“=”或“<”).13.如图,把两根钢条AB,CD的中点连在一起做成卡钳,可测量工件内槽的宽,已知AC的长度是6cm,则工件内槽的宽BD是cm.14.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.15.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.16.下列说法正确的是(填写语句的序号):①形状相同的图形是全等图形;②边长相等的等边三角形是全等图形;③面积相等的三角形是全等三角形;④平移前后的两个图形一定是全等形;⑤全等图形的对应边和对应角都相等.17.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.18.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.19.如图,已知线段AB与CD相交于点E,AC=AD,CE=ED,则图中全等三角形有对.20.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF =AC,CD=3,BD=8,则线段AF的长度为.三.解答题21.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.22.下面图形中有哪些是全等图形?23.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.24.如图,在五边形ABCDE和五边形A′B′C′D′E′中,如果AB=A′B′,BC=B′C′,CD=C′D′,DE=D′E′,EA=E′A′.请添加尽可能少的条件,使它们全等(写出添加的条件,不需要说明理由)25.阅读下题及其证明过程:已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,.∴△AEB≌△AEC(第一步).∴∠BAE=∠CAE(第二步).问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.26.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,E是对角线AC上一点,连接BE,DE.(1)求证:BE=DE.(2)当BE∥CD,∠BAD=78°时,求∠BED的度数.27.已知:在△ABC和△DBE中,AB=DB,BC=BE,其中∠ABD=∠CBE.(1)如图1,求证:AC=DE;(2)如图2,AB=BC,AC分别交DE,BD于点F,G,BC交DE于点H,在不添加任何辅助线的情况下,请直接写出图2中的四对全等三角形.参考答案一.选择题1.解:依题意有4﹣2<a<4+2,解得:2<a<6.只有选项C在范围内.故选:C.2.解:能够完全重合的两个图形叫做全等形,故选:B.3.解:A、两个图形属于全等形,故此选项符合题意;B、两个图形不属于全等形,故此选项不符合题意;C、两个图形不属于全等形,故此选项不符合题意;D、两个图形不属于全等形,故此选项不符合题意;故选:A.4.解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.5.解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:C.6.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.7.解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.8.解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)根据“ASA”或“AAS”定理,有两角和一边对应相等的两个三角形,比如一边是两角的夹边和一角对边相等,则这两个三角形就不全等,故原说法错误;(4)全等三角形对应边相等,正确.所以有2个判断正确.故选:B.9.解:A、△ABC和甲两个三角形根据SAS可以判定全等,△ABC与丁三角形根据ASA可以判定全等,故本选项正确;B、△ABC与丙两个三角形的对应角不一定相等,无法判定它们全等,故本选项错误;C、△ABC与乙、丙都无法判定全等,故本选项错误;D、△ABC与乙无法判定全等,故本选项错误;故选:A.10.解:∵AB=AC,角平分线BF、CE交于点O,∴AO平分∠BAC,点D为BC的中点,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS);同理可证:△OBD≌△OCD,△OBE≌△OCE,△OEA≌△OF A,△OBA≌△OCA,△BEC ≌△CFB,△ABF≌△ACF,由上可得,图中共有7对全等的三角形,故选:B.二.填空题11.解:根据三角形的三边关系,得7﹣3<a<7+3,即:4<a<10.故答案为:4<a<10.12.解:测量可知,三角形中线段AB的长度为2cm;判断大小关系:AB+AC>BC.故答案为:2,>.13.解:∵把两根钢条AB,CD的中点连在一起做成卡钳,∴AO=BO,CO=DO,在△BOD和△AOC中,∴△BOD≌△AOC(SAS),∴BD=AC=6cm,故答案为:6.14.解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.15.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.16.解:①形状相同,大小相等的图形是全等图形,故本小题错误;②边长相等的等边三角形是全等图形,正确;③面积相等的三角形是全等三角形,错误;④平移前后的两个图形一定是全等形,正确;⑤全等图形的对应边和对应角都相等,正确.所以,正确的说法有②④⑤.故答案为:②④⑤.17.解:设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.18.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.19.解:在△ACE和△ADE中,,∴△ACE≌△ADE(SSS),∴∠CAE=∠DAE,在△CAB和△DAB中,∴△CAB≌△DAB(SAS),∴BC=BD,在△BCE和△BDE中,∴△BCE≌△BDE(SSS).∴图中全等三角形有3对.故答案为:3.20.解:∵AD是BC边上的高,BE是AC边上的高,∴∠ADC=∠BDF=∠AEB=90°,∴∠DAC+∠C=90°,∠C+∠DBF=90°,∴∠DAC=∠DBF,在△ADC和△BDF中,,∴△ADC≌△BDF(AAS),∴CD=FD=3,AD=BD=8,∵CD=3,BD=8,∴AD=8,DF=3,∴AF=AD﹣FD=8﹣3=5,故答案为:5.三.解答题21.解:∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.22.解:如图所示:(1)和(8)是全等图形.23.(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.24.解:如图:,连接AC,AD,A′C′,A′D′,AC=A′C′,AD=A′D′,五边形ABCDE≌五边形AB′C′D′E′.25.解:上面证明过程不正确;错在第一步.正确过程如下:∵BE=CE,∴∠EBC=∠ECB,又∵∠ABE=∠ACE,∴∠ABC=∠ACB,∴AB=AC,在△AEB和△AEC中,,∴△AEB≌△AEC(SSS),∴∠BAE=∠CAE.26.(1)证明:∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中,,∴△BAE≌△DAE(SAS),∴BE=DE;(2)解:由(1)得:△BAE≌△DAE,∴∠BEA=∠DEA,∴∠BEC=∠DEC,∵AC平分∠BAD,∠BAD=78°,∴∠BAC=∠DAC=∠BAD=×78°=39°,∵AC=AD,∴∠ACD=∠ADC=×(180°﹣39°)=70.5°,∵BE∥CD,∴∠BEC=∠ACD=70.5°,∴∠BEC=∠DEC=70.5°,∴∠BED=2×70.5°=141°.27.证明:(1)∵∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠DBC,即∠ABC=∠DBE,在△ABC与△DBE中,,∴△ABC≌△DBE(SAS),∴AC=DE;(2)由(1)得△ABC≌△DBE,∴∠A=∠D,∠C=∠E,AB=DB,BC=BE,∴AB=BE,∵AB=BC,∴∠A=∠C,∴∠A=∠E,在△ABG与△EBH中,,∴△ABG≌△EBH(ASA),∴BG=BH,在△DBH与△CBG中,,∴△DBH≌△CBG(SAS),∴∠D=∠C,∵DB=CB,BG=BH,∴DG=CF,在△DFG与△CFH中,,∴△DFG≌△CFH(AAS).1、三人行,必有我师。
2020-2021学年北师大版七年级数学下册第四章 4.2图形的全等同步练习题A组(基础题)一、填空题1.如图,C和D是两个全等三角形的对应顶点,且∠AOC与∠BOD是对应角.(1)写出表示两个三角形全等的式子______________;(2)对应相等的边是______,______,______;(3)对应相等的角是______,______,______.2.(1)如图,两个三角形为全等三角形,则∠α的度数是______.(2)如图,△ACE≌△DBF,点A,B,C,D共线,若AC=5,BC=2,则CD的长度为______.3.如图,图中由实线围成的图形与①是全等图形的有______.(填序号)①②③④⑤4.如图,点D,E分别在AC,AB上,若△ADE≌△BDE≌△BDC,则∠A的度数为______.二、选择题5.给出下列四对图形,其中为全等图形的有( )A.1对B.2对C.3对D.4对6.下列命题中正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指能够完全重合的两个三角形7.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( ) A.AC=CE B.∠BAC=∠ECDC.∠ACB=∠ECD D.∠B=∠D8.如图,△ABD≌△ACE,AE=3 cm,AC=5 cm,则线段CD的长为( )A.2 cm B.3 cm C.4 cm D.5 cm三、解答题9.(1)如图,已知△ABC≌△FED,求证:AB∥EF.(2)如图,已知△ABC≌△DCB.①分别写出对应角和对应边;②求证:∠1=∠2.10.(1)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.(2)如图,若点A,D,E,B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.①求证:CD⊥AB;②求∠B的度数.B组(中档题)一、填空题11.如图是由全等的图形组成的,其中AB=3 cm,CD=2AB,则AF=______cm.12.如图所示的方格中,∠1+∠2+∠3=______.13.将五边形纸片ABCDE按如图所示方式折叠,折痕为AF,点E,D分别落在点E′,D′处,已知∠AFC=76°,则∠CFD′=______.二、解答题14.沿图形中的虚线,分别把下面图形划分为两个全等图形.C组(综合题)15.如图,已知△ABC≌△ADE,BC的反向延长线交AD于点F,交AE于点G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.参考答案2020-2021学年北师大版七年级数学下册第四章 4.2图形的全等同步练习题A组(基础题)一、填空题1.如图,C和D是两个全等三角形的对应顶点,且∠AOC与∠BOD是对应角.(1)写出表示两个三角形全等的式子:△AOC≌△BOD;(2)对应相等的边是AO=BO,OC=OD,AC=BD;(3)对应相等的角是∠A=∠B,∠C=∠D,∠AOC=∠BOD.2.(1)如图,两个三角形为全等三角形,则∠α的度数是72°.(2)如图,△ACE≌△DBF,点A,B,C,D共线,若AC=5,BC=2,则CD的长度为3.3.如图,图中由实线围成的图形与①是全等图形的有②③.(填序号)①②③④⑤4.如图,点D,E分别在AC,AB上,若△ADE≌△BDE≌△BDC,则∠A的度数为30°.二、选择题5.给出下列四对图形,其中为全等图形的有(A)A.1对B.2对C.3对D.4对6.下列命题中正确的是(D)A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指能够完全重合的两个三角形7.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是(C) A.AC=CE B.∠BAC=∠ECDC.∠ACB=∠ECD D.∠B=∠D8.如图,△ABD≌△ACE,AE=3 cm,AC=5 cm,则线段CD的长为(A)A.2 cm B.3 cm C.4 cm D.5 cm三、解答题9.(1)如图,已知△ABC≌△FED,求证:AB∥EF.证明:∵△ABC≌△FED,∴∠A=∠F,∴AB∥EF.(2)如图,已知△ABC≌△DCB.①分别写出对应角和对应边;②求证:∠1=∠2.解:①对应角:∠BAC与∠CDB,∠ABC与∠DCB,∠ACB与∠DBC;对应边:AB与DC,AC与DB.BC与CB.②证明:∵△ABC≌△DCB,∴∠ABC=∠DCB,∠ACB=∠DBC.∴∠ABC-∠DBC=∠DCB-∠ACB.∴∠1=∠2.10.(1)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.解:在△ABC中,∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°.∵△ABC≌△DEF,∴∠BCA=∠EFD,BC=EF.∴EC=BF=3 cm.∴∠DFE=90°,EC=3 cm.(2)如图,若点A,D,E,B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.①求证:CD⊥AB;②求∠B的度数.解:①证明:∵△ACD≌△ECD,∴∠A=∠CED,∠ADC=∠EDC.∵∠ADC+∠EDC=180°,∴∠ADC∠EDC=90°.∴CD⊥AB.②∵△CEF≌△BEF,∴∠B=∠ECF.设∠B=∠ECF=x,则∠CED=2x=∠A.∵∠ACB=90°,∴x+2x=90°.∴x=30°,即∠B=30°.B组(中档题)一、填空题11.如图是由全等的图形组成的,其中AB=3 cm,CD=2AB,则AF=27cm.12.如图所示的方格中,∠1+∠2+∠3=135°.13.将五边形纸片ABCDE按如图所示方式折叠,折痕为AF,点E,D分别落在点E′,D′处,已知∠AFC=76°,则∠CFD′=28°.二、解答题14.沿图形中的虚线,分别把下面图形划分为两个全等图形.解:如图所示.(答案不唯一)或C组(综合题)15.如图,已知△ABC≌△ADE,BC的反向延长线交AD于点F,交AE于点G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.解:∵△ABC≌△ADE,∴∠ACB=∠AED,∠ABC=∠ADE,∠CAB=∠EAD.∵∠ADE=25°,∴∠ABC=∠ADE=25°.∵∠ACB=105°,∴∠CAB=180°-105°-25°=50°.∴∠DFB=∠DAB+∠ABC=50°+10°+25°=85°,∠AGB=∠ACB-∠GAC=105°-50°-10°=45°.。
2020-2021学年度第二学期期中测试北师大版七年级数学试题一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下四个标志中,是轴对称图形的是( ) A.B.C.D.2.下列计算正确的是( ) A. 347a a a +=B. 632a a a ÷=C. 326()a a =D. ()222a b a b -=-3.新型冠状病毒的直径大约是0.00000006m ~0.00000014m ,将0.00000014m 用科学记数法表示为( ) A. 60.1410-⨯mB. 70.1410-⨯mC. 61.410-⨯mD. 71.410-⨯m4.下列事件是必然事件的是( ) A. 乘坐公共汽车恰好有空座 B. 购买一张彩票,中奖C. 同位角相等D. 三角形的三条高所在的直线交于一点5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .7cm 、9cm 、2cm B. 7cm 、15cm 、10cm C. 7cm 、9cm 、15cmD. 7cm 、10cm 、13cm6.如图,在下列四组条件中,能得到AB //CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠ADC +∠BCD =180°D. ∠BAC =∠ACD7.如图,AB ∥ED ,CD=BF ,若要说明△ABC ≌△EDF ,则不能补充的条件是( )A. AC=EFB. AB=EDC. ∠A=∠ED. AC∥EF8.如果249x mx-+是完全平方式,则m的值为()A. 6 B. ±6 C. 12 D. ±12 9.下列条件中①∠A+∠B=∠C ②∠A﹕∠B﹕∠C=1﹕2﹕3 ③∠A=∠B=13∠C ④∠A=∠B=2∠C ⑤∠A=∠B=12∠C 中能确定△ABC为直角三角形的条件有().A. 2个B. 3个C. 4个D. 5个10.如图,点C在∠AOB的边OB上,用直尺和圆规作∠BCN=∠AOC,这个尺规作图的依据是()A. SASB. SSSC. AASD. ASA11.五一小长假的某一天,亮亮全家上午8时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()A. 景点离亮亮的家180千米B. 亮亮到家的时间为17时C. 小汽车返程的速度为60千米/时D. 10时至14时,小汽车匀速行驶12.如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点1A,1B,1C,使1A B AB=,1B C BC =,1C A CA =,顺次连接1A ,1B ,1C ,得到△111A B C .第二次操作:分别延长11A B ,11B C ,11C A 至点2A ,2B ,2C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接2A ,2B ,2C ,得到△222A B C ,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作( )A. 4B. 5C. 6D. 7二、填空题(本大题共6个小题,每小题4分,共24分.把正确答案填在题中横线上)13.计算:()03.14π-=_____________________.14.一个等腰三角形两边的长分别是13cm 和6cm ,则它的周长是 _____________cm .15.如图,在△ABC 中,AB =10,AC =8,AD 为中线,则ABD △与ACD 的周长之差=_____________________16.已知a ∥b ,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.17.已知3a b +=,7ab =-,则22a b +=_________________.18.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤) 19.计算下列各式: (1)()()235743x x x --⋅ ; (2)()45344321234.2a b a b a bab ⎛⎫-+÷ ⎪⎝⎭20.先化简,再求值:()()()()()222222a b a b a b a b a b --+-+-+,其中2,1a b =-=-.21.已知:如图,已知∠B =45°,∠BDC =45°,∠A =∠1. 求证:∠2=∠BDE .22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,求摸出的是白球的概率; (2)如果任意摸出一个球是绿球的概率是15,求袋内有几个白球? 23.如图,线段AD 、BE 相交与点C,且△ABC ≌△DEC ,点M 、N 分别为线段AC 、CD 的中点.求证:(1)ME=BN ; (2)ME ∥BN .24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ; (4)运用你所得到的公式,计算下列各题: ① 20.2×19.8 ;②()()22m n p m n p +--+.25.下表是小颖往表姐家打长途电话的收费记录: 通话时间x (分钟) 1 2 3 4 5 6 7 电话费y (元) 3333.64.24.85.4(1)上表的两个变量中, 是自变量, 是因变量; (2)写出y 与x 之间的关系式;(3)若小颖的通话时间是15分钟,则需要付多少电话费? (4)若小颖有24元钱,则她最多能打多少分钟电话?26.(1)如图1,AB ∥CD ,点P 在AB 、CD 外部,若∠B =60°,∠D =30°,则∠BPD = °; (2)如图2,AB ∥CD ,点P 在AB 、CD 内部,则∠B ,∠BPD ,∠D 之间有何数量关系?证明你的结论; (3)在图2中,将直线AB 绕点B 按逆时针方向旋转一定角度交直线CD 于点M ,如图3,若∠BPD =86°,∠BMD =40°,求∠B +∠D 的度数.图1 图2 图327.CD 是经过∠BCA 定点C 的一条直线,CA=CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CF A =∠β. (1)若直线CD 经过∠BCA 内部,且E 、F射线CD 上,①若∠BCA=90°,∠β=90°,例如左边图,则BE CF ,EF |BE - AF | (填“>”,“<”,“=”);②若0°<∠BCA <180°,且∠β+∠BCA=180°,例如中间图,①中的两个结论还成立吗?并说明理由; (2)如右边图,若直线CD 经过∠BCA 外部,且∠β=∠BCA ,请直接写出线段EF 、BE 、AF 的数量关系(不需要证明).附加题(本大题共3个题,每小题5分,共20分, 得分不计入总分.)28.已知2241210340x y x y +--+=,则2x y += __________________.29.已知()()222019202130x x -+-=,则()22020x -=_____________.30.如图,MN //EF , 点C 为两直线之间一点,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点 D ,则∠ACB 与 ∠ADB 之间的数量关系是 .31.如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数是_________________.答案与解析一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下四个标志中,是轴对称图形的是( ) A.B.C.D.【答案】C 【解析】 【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念对各选项分析判断即可.【详解】解:A 、不是轴对称图形,故本选项错误; B 、不是轴对称图形,故本选项错误; C 、是轴对称图形,故本选项正确; D 、不是轴对称图形,故本选项错误. 故选:C .【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键. 2.下列计算正确的是( ) A. 347a a a += B. 632a a a ÷=C. 326()a a =D. ()222a b a b -=-【答案】C 【解析】 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方运算法则和完全平方公式计算各项,进而可得答案.【详解】解:A 、3a 与4a 不是同类项,不能合并,所以本选项计算错误,不符合题意; B 、6332a a a a ÷=≠,所以本选项计算错误,不符合题意; C 、()236a a =,所以本选项计算正确,符合题意;D 、()222222a b a ab b a b -≠-=+-,所以本选项计算错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则、同底数幂的除法法则、幂的乘方运算法则和完全平方公式等知识,属于基础题型,熟练掌握基本知识是解题关键.3.新型冠状病毒的直径大约是0.00000006m ~0.00000014m ,将0.00000014m 用科学记数法表示为( ) A. 60.1410-⨯m B. 70.1410-⨯mC. 61.410-⨯mD. 71.410-⨯m【答案】D 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a×10−n ,其中1≤|a|<10,n 为整数,n 的值取决于原数变成a 时,小数点移动的位数,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】0.00000014=71.410-⨯. 故选D .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10−n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.下列事件是必然事件的是( ) A. 乘坐公共汽车恰好有空座 B. 购买一张彩票,中奖C. 同位角相等D. 三角形的三条高所在的直线交于一点【答案】D 【解析】 【分析】根据必然事件、不可能事件和随机事件的概念逐项判断,进而可得答案.【详解】解:A 、乘坐公共汽车恰好有空座是随机事件,不是必然事件,本选项不符合题意; B 、购买一张彩票,中奖,是随机事件,不是必然事件,本选项不符合题意;C 、同位角相等,只在两直线平行的前提下才成立,是随机事件,不是必然事件,本选项不符合题意;D 、三角形的三条高所在的直线交于一点,是必然事件,本选项符合题意. 故选:D .【点睛】本题考查了必然事件、不可能事件和随机事件的概念,属于基础概念题型,熟练掌握基本知识是解题的关键.5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A. 7cm、9cm、2cmB. 7cm、15cm、10cmC. 7cm、9cm、15cmD. 7cm、10cm、13cm【答案】A【解析】【分析】根据三角形的三边关系依次判断即得答案.【详解】解:A、∵9-7=2,∴长度为7cm、9cm、2cm 的三条线段不能做成三角形框架,本选项符合题意;B、∵15-10<7<15+10,∴长度为7cm、15cm、10cm 的三条线段能做成三角形框架,本选项不符合题意;C、∵15-9<7<15+9,∴长度为7cm、9cm、15cm 的三条线段能做成三角形框架,本选项不符合题意;D、∵13-10<7<13+10,∴长度为7cm、10cm、13cm 的三条线段能做成三角形框架,本选项不符合题意.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的三边关系是解题关键.6.如图,在下列四组条件中,能得到AB//CD的是()A. ∠1=∠2B. ∠3=∠4C. ∠ADC+∠BCD=180°D. ∠BAC=∠ACD【答案】D【解析】分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、若∠1=∠2,则AD//BC,故本选项错误;B、若∠3=∠4,则AD∥BC,故本选项错误;C、若∠ADC+∠BCD=180°,则AD∥BC,故本选项错误;D、∠BAC=∠ACD,则AB∥CD,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.如图,AB ∥ED ,CD=BF ,若要说明△ABC ≌△EDF ,则不能补充的条件是( )A. AC=EFB. AB=EDC. ∠A =∠ED. AC ∥EF【答案】A 【解析】 【分析】根据平行线的性质得出∠B=∠D ,再求出BC=DF ,根据全等三角形的判定定理逐个判断即可. 【详解】解:∵AB ∥DE , ∴∠B=∠D , ∵BF=DC , ∴BC=DF ,在△ABC 和△DEF 中, BC DF AC B EF D =⎧⎪⎨⎪=∠∠⎩=,不能证得△ABC ≌△DEF ,故A 选项正确;在△ABC 和△DEF 中,BC DF AB B DE D =⎧⎪⎨⎪=∠∠⎩=,能证得△ABC ≌△DEF (SAS ),故B 选项错误;在△ABC 和△DEF 中,D C E DF B A B ∠=∠∠=∠=⎧⎪⎨⎪⎩,能证得△ABC ≌△DEF (AAS ),故C 选项错误;∵AC ∥EF ,∴∠ACB =∠EFD ,在△ABC 和△DEF 中,B D ACB EFD BC DF ∠=∠∠=∠=⎧⎪⎨⎪⎩,能证得△ABC ≌△DEF (ASA ),故C 选项错误; 故选:A .【点睛】本题考查了平行线的性质,全等三角形的判定定理的应用,能熟练地运用全等三角形的判定定理进行推理是解此题的关键.8.如果 249x mx -+是完全平方式,则m 的值为( )A. 6B. ±6C. 12D. ±12 【答案】D【解析】【分析】根据完全平方式的定义解答即可.【详解】解:∵249x mx -+是完全平方式,∴22312m =±⨯⨯=±.故选:D .【点睛】本题考查的是完全平方式的定义,属于应知应会题型,熟练掌握完全平方式的概念是关键.9.在下列条件中①∠A +∠B =∠C ②∠A ﹕∠B ﹕∠C =1﹕2﹕3 ③∠A =∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C 中能确定△ABC 为直角三角形的条件有( ). A. 2个B. 3个C. 4个D. 5个 【答案】C【解析】①是,因为根据三角形内角和定理可求出∠C=90°,所以是直角三角形;②是,因为根据三角形内角和定理可求出三个角分别为30°,60°,90°,所以是直角三角形;③是,因为由题意得∠C=90°,所以是直角三角形;④不是,因为根据三角形内角和定理可求出三个角分别是36°,72°,72°,所以不是直角三角形.⑤是,因为根据三角形内角各定理可求出∠C=90°,所以是直角三角形.故选C .10.如图,点C 在∠AOB 边OB 上,用直尺和圆规作∠BCN =∠AOC ,这个尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】【分析】用尺规画一个角等于已知角的步骤:首先以C为圆心,OD为半径画弧交OB于点E,再以点E为圆心,DM 为半径画弧,记两弧交于点N,据此即可求解.【详解】解:连接NE,根据做法可知:CE=OD,EN=DM,CN=OM∴△CEN≌△ODM(SSS),∴∠ECN=∠DOM即∠BCN=∠AOC故选:B.【点睛】本题主要考查尺规作图,属于基础题型,解题的关键是熟练掌握用尺规画一个角等于已知角的步骤.11.五一小长假的某一天,亮亮全家上午8时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()A. 景点离亮亮的家180千米B. 亮亮到家的时间为17时C. 小汽车返程的速度为60千米/时D. 10时至14时,小汽车匀速行驶【答案】D【解析】【分析】根据图像提供的信息判断即可.【详解】解:由图像可得,小明8时出发10时到达旅游景点,走过的路程为180千米,所以景点离亮亮的家180千米,A 选项正确;14时开始回家,回家的行驶速度为180120601514-=-千米/时,回家所用时间为180603÷=时,所以亮亮到家的时间为14317+=时,B 、C 选项正确;10时至14时,路程没有发生变化,说明是在景点游玩,小汽车静止不动,D 选项错误.故答案为D【点睛】本题考查了函数图像,此类题要理解每个数据及每段函数图像所表达的含义,正确从函数图像获取信息是解题的关键.12.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点1A ,1B ,1C ,使1A B AB =,1B C BC =,1C A CA =,顺次连接1A ,1B ,1C ,得到△111A B C .第二次操作:分别延长11A B ,11B C ,11C A 至点2A ,2B ,2C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接2A ,2B ,2C ,得到△222A B C ,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作( )A. 4B. 5C. 6D. 7【答案】A【解析】【分析】 先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】解:连接A 1C ,如图,∵AB =A 1B ,∴△ABC 与△A 1BC 的面积相等,∵△ABC 面积为1,∴1A BC S △=1.∵BB 1=2BC ,∴1112A B B A BC S S △△==2,同理可得,11C B C S =2,11AA C S △=2,∴111111111A B C C B C AA C A B B ABC S S S S S +++△△△△△==2+2+2+1=7;同理可得:△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故选:A .【点睛】考查了三角形的中线的性质和三角形的面积,属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据规律求解.第II 卷(非选择题 共102分)二、填空题(本大题共6个小题,每小题4分,共24分.把正确答案填在题中横线上) 13.计算:()03.14π-=_____________________. 【答案】1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键. 14.一个等腰三角形两边的长分别是13cm 和6cm ,则它的周长是 _____________cm .【答案】32【解析】【分析】先根据等腰三角形的定义和三角形的三边关系确定三角形的第三边,再计算周长即可.【详解】解:记第三边为c cm ,若c =13cm ,则该三角形的周长=13+13+6=32cm ;若c =6cm ,由于6+6<13,不能构成三角形,所以此种情况应舍去;所以该三角形的周长是32cm .故答案为:32.【点睛】本题考查了等腰三角形的定义和三角形的三边关系,属于基础题型,熟练掌握基本知识是解题关键.15.如图,在△ABC 中,AB =10,AC =8,AD 为中线,则ABD △与ACD 的周长之差=_____________________【答案】2.【解析】【分析】根据三角形的周长的计算方法得到ABD △的周长和ACD 的周长的差就是AB 与AC 的差.【详解】解:∵AD 是ABC 中BC 边上的中线,∴BD=DC=12BC , ∴ABD △与ACD 的周长之差()()AB BD AD AC DC AD =++-++=AB-AC =1082-= .则ABD △与ACD 的周长之差=2.故答案为:2.【点睛】本题考查三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,同时考查了三角形周长的计算方法.16.已知a ∥b ,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.【答案】60°【解析】【分析】如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.【详解】解:如图,∵∠1=30°,∴∠3=∠1=30°,∵a ∥b ,∴∠4=∠3=30°,∴∠5=180°-∠4-90°=60°,∴∠2=∠5=60°.故答案为:60°.【点睛】本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键.17.已知3a b +=,7ab =-,则22a b +=_________________.【答案】23【解析】【分析】先把所求式子变形为()2222a b a b ab +=+-,再把已知的式子整体代入计算即可.【详解】解:()()2222232791423a b a b ab +=+-=-⨯-=+=.故答案为:23.【点睛】本题考查了完全平方公式变形与求值,属于基本题型,熟练掌握完全平方公式和整体代入的思想是解题关键.18.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.【答案】12【解析】【分析】 据已知条件证得△ABD ≌△AED ,根据全等三角形的性质得到BD =ED ,得出S △ABD =S △AED ,S △BCD =S △DCE ,推出S △ACD =12S △ABC ,根据概率公式可得的答案. 【详解】延长BD 交AC 于E ,∵AD 平分∠BAC ,∴∠BAD =∠EAD ,∵BD ⊥AD ,∴∠ADB =∠ADE =90°,在△ABD 和△AED 中,ADB ADE AD ADBAD EAD ∠=∠⎧⎪=⎨⎪∠∠⎩=, ∴△ABD ≌△AED (ASA ),∴BD =ED ,∴S △ABD =S △AED ,S △BCD =S △DCE ,,∴S △ACD =12S △ABC , 则点P 落在△ADC 内(包括边界)的概率为:12ACDABC S S=. 故答案为12. 【点睛】本题考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)19.计算下列各式:(1)()()235743x x x --⋅ ; (2)()45344321234.2a b a b a b ab ⎛⎫-+÷ ⎪⎝⎭ 【答案】(1)1043x ;(2)33223468a b a b a b -+.【解析】【分析】(1)先计算积的乘方,再计算刘项式乘以单项式,最后合并同类项即可;(2)依据多项式除以单项式的运算法则进行计算即可.【详解】(1)()()235743x x x --⋅ =()03711627x xx --⋅ =100116+27x x=1043x ;(2)()453443212342a b a b a b ab ⎛⎫-+÷ ⎪⎝⎭=452342432111234222a b ab a b ab a b ab ⎛⎫⎛⎫⎛⎫÷-÷+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=33223468a b a b a b -+.【点睛】此题主要考查了整式的混合运算,注意运算顺序以及符号的处理.20.先化简,再求值:()()()()()222222a b a b a b a b a b --+-+-+,其中2,1a b =-=-. 【答案】226a ab b --+,﹣15.【解析】【分析】先根据完全平方公式、平方差公式和多项式的乘法法则计算各项,再合并同类项,然后把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=()()22222244422a ab b a b a ab b -+--+--=222222444224a ab b a b a ab b -+-++--=226a ab b --+当2,1a b =-=-时,原式=()()()()2226211---⨯-⨯-+-=﹣15.【点睛】本题考查了整式乘法的混合运算和代数式求值,属于基础题型,熟练掌握整式乘法的运算法则是解题关键.21.已知:如图,已知∠B =45°,∠BDC =45°,∠A =∠1. 求证:∠2=∠BDE .【答案】见解析【解析】【分析】根据平行线的判定得出AB ∥DC ,根据平行线的性质得出∠A =∠C ,求出∠C =∠1,根据平行线的判定得出AC ∥DE ,根据平行线的性质得出即可.【详解】∵∠B =45°,∠BDC =45°,∴∠B =∠BDC ,∴AB ∥DC ,∴∠A =∠C ,∵∠A =∠1,∴∠C =∠1,∴AC ∥DE ,∴∠2=∠BDE .【点睛】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键. 22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,求摸出的是白球的概率;(2)如果任意摸出一个球是绿球的概率是15,求袋内有几个白球?【答案】(1)13;(2)袋内有7个白球.【解析】【分析】(1)用白球的个数除以袋中球的总个数即可;(2)设袋内有x个白球,根据概率公式可得关于x的方程,解方程即可求出结果.【详解】解:(1)41 3543=++.答:从中任意摸出一个球,摸出的是白球的概率是13;(2)设袋内有x个白球,根据题意,得:31355x=++,解得:x=7.答:袋内有7个白球.【点睛】本题考查了简单事件的概率,属于基础题型,正确理解题意、熟练掌握概率公式是解题的关键.23.如图,线段AD、BE相交与点C,且△ABC≌△DEC,点M、N分别为线段AC、CD的中点.求证:(1)ME=BN;(2)ME∥BN.【答案】(1)证明见解析;(2)证明见解析.【解析】【详解】(1)∵△ABC≌△DEC,∴AC=DC,BC=CE.∵点M、N分别为线段AC、CD的中点,∴CM=CN.在△BCN和△ECM中∵AC=DC,∠BCN=∠ECM,BC=CE∴△BCN≌△ECM(SAS)∴ME=BN.(2)∵△BCN≌△ECM,∴∠CBN=∠CEM,∴ME∥BN.24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:① 20.2×19.8 ;②()()22m n p m n p +--+.【答案】(1)a 2−b 2;(2)a−b ,a +b ,(a +b )(a−b );(3)(a +b )(a−b )=a 2−b 2;(4)①99.96;②4m 2−n 2+2np−p 2.【解析】【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】(1)利用正方形的面积公式可知:阴影部分的面积=a 2−b 2;故答案为:a 2−b 2;(2)由图可知矩形的宽是a−b ,长是a +b ,所以面积是(a +b )(a−b );故答案为:a−b ,a +b ,(a +b )(a−b );(3)(a +b )(a−b )=a 2−b 2(等式两边交换位置也可);故答案为:(a +b )(a−b )=a 2−b 2;(4)①解:原式=(10+0.2)×(10−0.2),=102−0.22,=100−0.04,=99.96;②解:原式=[2m +(n−p )]•[2m−(n−p )],=(2m )2−(n−p )2,=4m 2−n 2+2n p−p 2.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.25.下表是小颖往表姐家打长途电话的收费记录:(1)上表的两个变量中, 是自变量, 是因变量;(2)写出y 与x 之间的关系式;(3)若小颖的通话时间是15分钟,则需要付多少电话费?(4)若小颖有24元钱,则她最多能打多少分钟电话?【答案】(1)通话时间;电话费; (2)()()3030.6 1.23x y x x ⎧≤≤⎪=⎨+⎪⎩>;(3)小颖通话15分钟,则需付话费10.2元;;(4)小颖有24元钱,则她最多能打38多少分钟电话.【解析】【分析】(1)根据函数的定义解答即可;(2)根据表格可知,当通话时间不超过3分钟,通话费用为3元,当通话时间大于3分钟,通话每增加1分钟,电话费增加0.6元,可得电话费y (元)与通话时间x (分钟)之间的关系式;(3)把15x =代入(2)的结论即可;(4)把24y =代入(2)的结论即可【详解】解:(1)自变量是通话时间,因变量是电话费.故答案为:通话时间;电话费;(2)由图表信息知:当3,x ≤≤0 3,y =当3x >时,设y kx b =+,4 3.65 4.2k b k b +=⎧∴⎨+=⎩, 解得:0.6,1.2k b =⎧⎨=⎩ 0.6 1.2,y x ∴=+经检验:当6,7x x ==符合题意,()()303.0.6 1.23x y x x ⎧≤≤⎪∴=⎨+⎪⎩> (3)当15x =时,0.615 1.210.2y =⨯+=,所以小颖通话15分钟,则需付话费10.2元;(4)把24y =代入0.6 1.2y x =+中得: 0.6 1.224,x +=∴38x =.所以小颖有24元钱,则她最多能打38多少分钟电话.【点睛】本题主要考查了函数的定义,列一次函数解析式,理清题意,得出电话费y (元)与通话时间x (分钟)之间的关系式是解答本题的关键.26.(1)如图1,AB ∥CD ,点P 在AB 、CD 外部,若∠B =60°,∠D =30°,则∠BPD = °; (2)如图2,AB ∥CD ,点P 在AB 、CD 内部,则∠B ,∠BPD ,∠D 之间有何数量关系?证明你的结论; (3)在图2中,将直线AB 绕点B 按逆时针方向旋转一定角度交直线CD 于点M ,如图3,若∠BPD =86°,∠BMD =40°,求∠B +∠D 的度数.图1 图2 图3【答案】(1)30°;(2)∠BPD =∠B +∠D ,证明见解析;(3)46°.【解析】【分析】(1)根据平行线的性质可求得∠BOD 的度数,由三角形外角的性质即可求得结果;(2)过点P 作PE ∥AB ,如图4,由平行公理的推论可得AB ∥PE ∥CD ,然后根据平行线的性质和角的和差即可得出结论;(3)延长BP交CD于点E,如图5,根据三角形外角的性质可得∠BPD=∠BMD+∠B+∠D,进一步即可求出结果.【详解】解:(1)∵AB∥CD,∠B=60°,∴∠BOD=∠B=60°,∴∠BPD=∠BOD﹣∠D=60°﹣30°=30°.故答案为:30°;(2)∠BPD=∠B+∠D.证明:过点P作PE∥AB,如图4,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(3)延长BP交CD于点E,如图5,∵∠1=∠BMD+∠B,∠BPD=∠1+∠D,∴∠BPD=∠BMD+∠B+∠D,∵∠BPD=86°,∠BMD=40°,∴∠B+∠D=∠BPD﹣∠BMD=86°﹣40°=46°.【点睛】此题考查了平行线的性质与三角形外角的性质,属于常考题型,正确作出辅助线、熟练掌握平行线的性质和三角形的外角性质是解题的关键.27.CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CF A=∠β.(1)若直线CD经过∠BCA内部,且E、F在射线CD上,①若∠BCA=90°,∠β=90°,例如左边图,则BE CF,EF|BE - AF|(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如中间图,①中的两个结论还成立吗?并说明理由;(2)如右边图,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).【答案】(1)①=,= ②两结论依然成立,证明见解析(2)EF=BE+AF【解析】【分析】(1)①本题考查全等三角形的判定,可利用AAS定理进行解答;②本题考查全等三角形判定,可通过三角形内角和定理运用AAS解答.(2)本题考查全等三角形的判定,运用三角形内角和以及平角定义,通过AAS解答.【详解】(1)①∵∠BCA=90°,∠β=90°∴∠FCA+∠BCF=90°,∠FCA+∠CAF=90°∴∠BCF=∠CAF又∵∠BEC=∠CFA,CA=CB∴△BEC≅△CFA(AAS)∴BE=CF,CE=AF=-=-∴EF CF CE BE AF②在△FCA中,∠CFA+∠FCA+∠CAF=180°又∵∠BEC=∠CFA=∠β,∠β+∠BCA=180°∴∠FCA+∠CAF=∠BCA∵∠BCA=∠BCE+∠FCA∴∠CAF=∠BCE∵CA=CB∴△BEC≅△CFA(AAS)∴BE=CF,CE=AF∴EF CF CE BE AF =-=-(2)在△BEC 中,∠B+∠BEC+∠BCE=180°又∵∠BEC=∠CFA=∠β,∠BCE+∠BCA+∠ACF=180°,∠β=∠BCA∴∠B=∠ACF∵CA=CB∴△BEC ≅△CFA(AAS)∴BE=CF ,CE=AFEF=EC+CF=AF+BE【点睛】本题考查全等三角形证明以及性质的应用,并结合一定的探究思路,按照题目指引利用AAS 判别定理解答即可.附加题(本大题共3个题,每小题5分,共20分, 得分不计入总分.)28.已知2241210340x y x y +--+=,则2x y += __________________.【答案】8【解析】【分析】化简方程,再根据非负数的性质列出算式,求出x y 、的值,再进行计算即可.【详解】解:由题可得:22224121034(23)(5)0x y x y x y +--+=+-=-,即230x -=,50y -=,解得:32x =,5y =. ∴322582x y +=⨯+=. 【点睛】本题主要考查的是非负数的性质,解题的关键是掌握几个非负数的和为0时,这几个非负数都为0. 29.已知()()222019202130x x -+-=,则()22020x -=_____________. 【答案】14【解析】【分析】设2020x a -=,则20191x a -=+,20211x a -=-,于是原式可变形为关于a 2的等式,求出a 2即为所求的式子的值.【详解】解:设2020x a -=,则20191x a -=+,20211x a -=-,因为()()222019202130x x -+-=,所以()()221130a a ++-=,整理,得:22230a +=,所以214a =,即()22020x -=14.故答案为:14.【点睛】本题考查了整式乘法的完全平方公式及其变形,设2020x a -=、灵活利用整体代入的数学思想是解题的关键.30.如图,MN //EF , 点C 为两直线之间一点,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点 D ,则∠ACB 与 ∠ADB 之间的数量关系是 .【答案】∠ACB =180°﹣2∠ADB【解析】【分析】如图,过点C 作CG ∥MN ,过点D 作DH ∥MN ,根据平行公理的推论可得MN ∥CG ∥DH ∥EF ,根据平行线的性质、角平分线的定义和角的和差可得:∠ACB =180°﹣2(∠1-∠2),∠ADB =∠1-∠2,进一步即可推出结论.【详解】解:如图,过点C 作CG ∥MN ,过点D 作DH ∥MN ,∵MN ∥EF ,∴MN ∥CG ∥DH ∥EF ,∴∠1=∠ADH ,∠2=∠BDH ,∠6=∠4,∠FBC =∠5,∴∠ACB =∠4+∠5=∠6+∠FBC ,∵∠MAC 与∠FBC 的平分线相交于点D ,∴∠MAC =2∠1,∠CBF =2∠3=2∠2,∴∠ACB =∠6+∠FBC=180°﹣∠MAC +2∠2=180°﹣2∠1+2∠2=180°﹣2(∠1-∠2),∵∠ADB=∠ADH-∠BDH=∠1-∠2,∴∠ACB=180°﹣2∠ADB.故答案为:∠ACB=180°﹣2∠ADB.【点睛】本题考查了平行线的性质和角平分线的定义等知识,正确的作出辅助线、熟练掌握平行线的性质是解题的关键.31.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是_________________.【答案】360°【解析】【分析】如图,根据三角形的外角性质和四边形的内角和是360°解答即可.【详解】解:如图,∵∠CGF=∠1+∠A=∠B+∠E+∠A,∠CGF +∠F+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【点睛】本题考查了三角形的外角性质和四边形的内角和,属于基础题型,熟练掌握三角形的外角性质和四边形的内角和是360°是解题的关键.。
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。
北师大版七年级数学下册第四章4.1认识三角形同步测试(原卷版)一.选择题1.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.2.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.113.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形4.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.若AD是△ABC的中线,则下列结论正确的是()A.AD△BC B.BD=CD C.△BAD=△CAD D.AD=BC 6.现有两根笔直的木棍,它们的长度是20cm和30cm,若不改变木棍的长度,要做一个三角形的木框,则第三根木棍的长度可能为()A.10cm B.20cm C.50cm D.60cm7.如图,已知AD是△ABC的边BC上的中线,CE是△ADC的边AD上的中线,若△ABD的面积为16cm2,则△CDE的面积为()A.32 cm2B.16cm2C.8cm2D.4cm28.如图,在△ABC中,D为BC上一点,△1=△2,△3=△4,△BAC=105°,则△DAC的度数为()A.80°B.82°C.84°D.86°9.如图,△ABC中,△A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时△C′DB=74°,则原三角形的△C的度数为()A.27°B.59°C.69°D.79°10.如图,△ABC的角平分线CD、BE相交于F,△A=90°,EG△BC,且CG△EG于G,下列结论:△△CEG=2△DCB;△△ADC=△GCD;△CA平分△BCG;△△DFB=△CGE.其中正确的结论是()A.△△B.△△△C.△△△D.△△△△二.填空题11.如图,AB△CD,CE与AB交于点A,BE△CE,垂足为E.若△C=37°,则△B= .12.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.13.在三角形的三条高中,位于三角形外的可能条数是条.14.如图,△ABC的中线BD、CE相交于点O,OF△BC,且BC=4cm,OF=2cm,则四边形ADOE的面积是.15.一个三角形的周长为偶数,其中两条边长分别为6和2019,则满足上述条件的三角形有个.16.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1,△A1BC和△A1CD的平分线交于点A2,得△A2,…,△A2017BC和△A2017CD的平分线交于点A2018,则△A2018=度.三.解答题17.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.18.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,△CAB =50°,△C=60°,求△DAE和△BOA的度数.19.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.20.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.22.(1)如图1,则△A、△B、△C、△D之间的数量关系为△A+△B=△C+△D.(2)如图2,AP、CP分别平分△BAD、△BCD.若△B=36°,△D=14°,求△P 的度数;(3)如图3,CP、AG分别平分△BCE、△F AD,AG反向延长线交CP于点P,请猜想△P、△B、△D之间的数量关系.并说明理由.北师大版七年级数学下册第四章4.1认识三角形同步测试(解析版)一.选择题1.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【解答】解:根据选项,可知根据角和边来对三角形分别进行分类.故选:C.【点评】此题考查三角形问题,很基础的一道考查数学概念的题目,在考查知识的同时.也考查了学生对待学习的态度,是一道好题.2.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.11【分析】设第三边的长为x,再由三角形的三边关系即可得出结论.【解答】解:设第三边的长为x,△三角形两边的长分别是3和5,△5﹣3<x<5+3,即2<x<8.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形【分析】分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,锐角三角形沿虚线剪开即可得到一个锐角三角形和一个钝角三角形.因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形.综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形.故选:A.【点评】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.4.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.故选:C.【点评】本题主要考查了三角形的角平分线、中线和高,注意不同形状的三角形的高的位置.5.若AD是△ABC的中线,则下列结论正确的是()A.AD△BC B.BD=CD C.△BAD=△CAD D.AD=BC【分析】根据三角形的中线的定义即可判断.【解答】解:△AD是△ABC的中线,△BD=DC,故选:B.【点评】本题考查三角形的中线的定义,解题的关键是熟练掌握基本知识,属于中考基础题.6.现有两根笔直的木棍,它们的长度是20cm和30cm,若不改变木棍的长度,要做一个三角形的木框,则第三根木棍的长度可能为()A.10cm B.20cm C.50cm D.60cm【分析】先设第三根木棒的长为lcm,再根据三角形的三边关系求出l的取值范围,找出符合条件的l的值即可.【解答】解:设第三根木棒的长为lcm,△两根笔直的木棍,它们的长度分别是20cm和30cm,△30cm﹣20cm<l<30cm+20cm,即10cm<l<50cm.△四个选项中只有B符合题意.故选:B.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.7.如图,已知AD是△ABC的边BC上的中线,CE是△ADC的边AD上的中线,若△ABD的面积为16cm2,则△CDE的面积为()A.32 cm2B.16cm2C.8cm2D.4cm2【分析】根据三角形的中线把三角形分成面积相等的两部分,进而解答即可.【解答】解:△AD是△ABC的边BC上的中线,△ABD的面积为16cm2,△△ADC的面积为16cm2,△CE是△ADC的边AD上的中线,△△CDE的面积为8cm2,故选:C.【点评】本题主要考查了三角形面积的求法和三角形的中线,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.8.如图,在△ABC中,D为BC上一点,△1=△2,△3=△4,△BAC=105°,则△DAC的度数为()A.80°B.82°C.84°D.86°【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【解答】解:△△BAC=105°,△△2+△3=75°△,△△1=△2,△3=△4,△△4=△3=△1+△2=2△2△,把△代入△得:3△2=75°,△△2=25°,△△DAC=105°﹣25°=80°.故选:A.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理是解题的关键.9.如图,△ABC中,△A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时△C′DB=74°,则原三角形的△C的度数为()A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得△1=△2,△2=△3,△CDB=△C′DB=74°,则△1=△2=△3,即△ABC=3△3,根据三角形内角和定理得△3+△C=106°,在△ABC 中,利用三角形内角和定理得△A+△ABC+△C=180°,则20°+2△3+106°=180°,可计算出△3=27°,即可得出结果.【解答】解如图,△△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,△△1=△2,△2=△3,△CDB=△C′DB=74°,△△1=△2=△3,△△ABC=3△3,在△BCD中,△3+△C+△CDB=180°,△△3+△C=180°﹣74°=106°,在△ABC中,△△A+△ABC+△C=180°,△20°+2△3+(△3+△C)=180°,即20°+2△3+106°=180°,△△3=27°,△△ABC=3△3=81°,△C=106°﹣27°=79°,故选:D.【点评】此题主要考查了图形的折叠变换及三角形内角和定理的应用等知识;熟练掌握折叠的性质,得出△ABC和△CBD的倍数关系是解决问题的关键.10.如图,△ABC的角平分线CD、BE相交于F,△A=90°,EG△BC,且CG△EG于G,下列结论:△△CEG=2△DCB;△△ADC=△GCD;△CA平分△BCG;△△DFB=△CGE.其中正确的结论是()A.△△B.△△△C.△△△D.△△△△【分析】△正确.利用平行线的性质证明即可.△正确.首先证明△ECG=△ABC,再利用三角形的外角的性质解决问题即可.△错误.假设结论成立,推出不符合题意即可.△正确.证明△DFB=45°即可解决问题.【解答】解:△EG△BC,△△CEG=△BCA,△CD平分△ACB,△△BCA=2△DCB,△△CEG=2△DCB,故△正确,△CG△EG,△△G=90°,△△GCE+△CEG=90°,△△A=90°,△△BCA+△ABC=90°,△△CEG=△ACB,△△ECG=△ABC,△△ADC=△ABC+△DCB,△GCD=△ECG+△ACD,△ACD=△DCB,△△ADC=△GCD,故△正确,假设AC平分△BCG,则△ECG=△ECB=△CEG,△△ECG=△CEG=45°,显然不符合题意,故△错误,△△DFB=△FCB+△FBC=(△ACB+△ABC)=45°,△CGE=45°,△△DFB=△CGE,故△正确,故选:B.【点评】本题考查三角形内角和定理,三角形外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题11.如图,AB∥CD,CE与AB交于点A,BE⊥CE,垂足为E.若∠C=37°,则∠B= .11.答案:53°解析:【解答】△AB△CD,△△C=△BAE=37°,△BE△CE,△△BAE=90°,△△B=90°-△BAE=90°-37°=53°.【点评】先根据平行线的性质得出∠BAE的度数,再由直角三角形的性质即可得出结论.12.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形21个.【分析】根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,即第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n=6时,原式=21.注意规律:后面的图形比前面的多4个.【解答】解:第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n =6时,原式=21,故答案为:21.【点评】注意正确发现规律,根据规律进行计算.13.在三角形的三条高中,位于三角形外的可能条数是0或2条.【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外.由此即可确定三角形的三条高中,在三角形外部的最多有多少条.【解答】解:△当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内.△三角形的三条高中,在三角形外部的最多有2条.故答案为:0或2.【点评】此题主要考查了三角形的高,关键是掌握三角形高的定义和画法.14.如图,△ABC的中线BD、CE相交于点O,OF△BC,且BC=4cm,OF=2cm,则四边形ADOE的面积是4cm2.【分析】根据三角形的面积=底×高÷2,求出△BOC的面积是多少;然后根据三角形的中线将三角形分成面积相等的两部分,可得△BCD、△ACE的面积均是△ABC的面积的一半,据此判断出四边形ADOE的面积等于△BOC的面积,据此解答即可.【解答】解:△BD、CE均是△ABC的中线,△S△BCD=S△ACE=S△ABC,△S四边形ADOE+S△COD=S△BOC+S△COD,△S四边形ADOE=S△BOC=4×2÷2=4cm2.故答案为:4cm2.【点评】此题主要考查了三角形的面积的求法,以及三角形的中线的性质,要熟练掌握,解答此题的关键要明确:(1)三角形的中线将三角形分成面积相等的两部分;(2)三角形的面积=底×高÷2.15.一个三角形的周长为偶数,其中两条边长分别为6和2019,则满足上述条件的三角形有5个.【分析】根据三角形的三边关系求得第三边的取值范围,再根据三角形的周长是偶数,且已知的两边和是奇数,则三角形的第三边应该是奇数,从而求解.【解答】解:根据三角形的三边关系,得三角形的第三边大于2013而小于2025.根据题意,得三角形的第三边应该是奇数,则三角形的第三边可以为:2015,2017,2019,2021,2023共5个.故答案为:5.【点评】此题考查了三角形的三边关系,同时能够根据周长和已知的边判断第三边应满足的条件.16.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1,△A1BC和△A1CD的平分线交于点A2,得△A2,…,△A2017BC和△A2017CD的平分线交于点A2018,则△A2018=度.【分析】利用角平分线的性质、三角形外角性质,易证△A1=△A,进而可求△A1,由于△A1=△A,△A2=△A1=△A,…,以此类推可知△A2018即可求得.【解答】解:△A1B平分△ABC,A1C平分△ACD,△△A1BC=△ABC,△A1CA=△ACD,△△A1CD=△A1+△A1BC,即△ACD=△A1+△ABC,△△A1=(△ACD﹣△ABC),△△A+△ABC=△ACD,△△A=△ACD﹣△ABC,△△A1=△A,△A2=△A1=△A,…,以此类推可知△A2018=△A=()°,故答案为:.【点评】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出△A1=△A,并能找出规律.三.解答题17.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.【分析】(1)设AE=xcm,根据三角形BDE与四边形ACDE的周长相等列方程,解方程即可;(2)找出图中所有的线段,再根据所有线段长度的和是53cm,求出2BC+DE,得到答案.【解答】解:(1)△三角形BDE与四边形ACDE的周长相等,△BD+DE+BE=AC+AE+CD+DE,△BD=DC,△BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,△AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,△2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,△BC+DE=(cm).【点评】本题考查的是三角形的周长、四边形的周长,正确作出图中所有线段是解题的关键.18.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,△CAB =50°,△C=60°,求△DAE和△BOA的度数.【分析】先利用三角形内角和定理可求△ABC,在直角三角形ACD中,易求△DAC;再根据角平分线定义可求△CBF、△EAF,可得△DAE的度数;然后利用三角形外角性质,可先求△AFB,再次利用三角形外角性质,容易求出△BOA.【解答】解:△△CAB=50°,△C=60°△△ABC=180°﹣50°﹣60°=70°,又△AD是高,△△ADC=90°,△△DAC=180°﹣90°﹣△C=30°,△AE、BF是角平分线,△△CBF=△ABF=35°,△EAF=25°,△△DAE=△DAC﹣△EAF=5°,△AFB=△C+△CBF=60°+35°=95°,△△BOA=△EAF+△AFB=25°+95°=120°,△△DAC=30°,△BOA=120°.故△DAE=5°,△BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出△EAF、△CBF,再运用三角形外角性质求出△AFB.19.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【分析】利用三角形三边关系定理,先确定第三边的范围,进而解答即可.【解答】解:△在△ABC中,AB=3,AC=7,△第三边BC的取值范围是:4<BC<10,△符合条件的偶数是6或8,△当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.△△ABC的周长为16或18.【点评】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.20.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|20.答案:见解答过程.解析:【解答】根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.△|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b +c+a-b=3c+a-b.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算.21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.21.答案:100°.【解答】△AD是△ABC的角平分线,△BAC=60°,△△DAC=△BAD=30°.△CE 解析:是△ABC的高,△BCE=40°,△△B=50°,△△ADB=180°-△B-△BAD=180°-30°-50°=100°.【分析】根据AD是△ABC的角平分线,△BAC=60°,得出△BAD=30°.再利用CE是△ABC 的高,△BCE=40°,得出△B的度数,进而得出△ADB的度数.22.(1)如图1,则△A、△B、△C、△D之间的数量关系为△A+△B=△C+△D.(2)如图2,AP、CP分别平分△BAD、△BCD.若△B=36°,△D=14°,求△P 的度数;(3)如图3,CP、AG分别平分△BCE、△F AD,AG反向延长线交CP于点P,请猜想△P、△B、△D之间的数量关系.并说明理由.【分析】(1)根据三角形的内角和定理,结合对顶角的性质可求解;(2)根据角平分线的定义可得△BAP=△DAP,△BCP=△DCP,结合(1)的结论可得2△P=△B+△D,再代入计算可求解;(3)根据角平分线的定义可得△ECP=△PCB,△F AG=△GAD,结合三角形的内角和定理可得△P+△GAD=△B+△PCB,△P+(180°﹣△GAD)=△D+(180°﹣△ECP),进而可求解.【解答】解:(1)△△AOB+△A+△B=△COD+△C+△D=180°,△AOB=△COD,△△A+△B=△C+△D,故答案为△A+△B=△C+△D;(2)△AP、CP分别平分△BAD、△BCD,△△BAP=△DAP,△BCP=△DCP,由(1)可得:△BAP+△B=△BCP+△P,△DAP+△P=△DCP+△D,△△B﹣△P=△P﹣△D,即2△P=△B+△D,△△B=36°,△D=14°,△△P=25°;(3)2△P=△B+△D.理由:△CP、AG分别平分△BCE、△F AD,△△ECP=△PCB,△F AG=△GAD,△△P AB=△F AG,△△GAD=△P AB,△△P+△P AB=△B+△PCB,△△P+△GAD=△B+△PCB,△△P+△P AD=△D+△PCD,△△P+(180°﹣△GAD)=△D+(180°﹣△ECP),△2△P=△B+△D.【点评】本题主要考查三角形的内角和定理,角平分线的定义,及角的计算,灵活运用等式的性质进行角的计算是解题的关键.。
北师大版七年级下册数学《整式的乘除》高频考点分类专题提升练习考点一:同底数幂的乘法1. 计算3n·(-9)·3n+2的结果是( )A.-32n-2B.-3n+4C.-32n+4D.-3n+62.计算(x-y)3·(y-x)= ( )A.(x-y)4B.(y-x)4C.-(x-y)4D.(x+y)43. 计算:a6(-a2)=_ _.4.若a3·a m=a9,则m=_ _. .5. 化简:(1)a6·a2+a5·a3-2a·a7.(2)(a-b)m+3·(b-a)2·(a-b)m·(b-a)5.(3)(a-b-c)(b+c-a)(c-a+b)3.考点二:幂的乘方与积的乘方1. 计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a182. 若2m=a,32n=b,m,n均为正整数,则23m+10n的值为( )A.a3b2B.a2b3C.a3+b2D.a3b3. 已知2n=3,则4n+1的值是__ __.4.已知a=8131,b=2741,c=961,则a,b,c的大小关系是__ __.5. 计算下列各题:(1)(-x3)2·(-x2)3.(2)(a2n-2)3·(a n+1)2.(3)(-a2b n)3·(a n-1b2)3.考点三:同底数幂的除法1. 计算(-a)3÷a结果正确的是 ( )A.a2B.-a2C.-a5D.-a42.已知5x=3,5y=2,则52x-3y= ( )A.34B.1 C.23D.983. 计算:x2y4·(xy2)3÷x4y8=_ __.4.若5x=16与5y=2,则5x-2y=__ __.5.计算:x3·x5-(2x4)2+x10÷x2.6.已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n的值②求:24m-6n的值考点四:零指数幂与负整数指数幂1. 下列各数中:①-22;②-(-2)2;③-2-2;④-(-2)-2.是负数的是( )A.①②③B.①②④C.②③④D.①②③④2. 已知某新型感冒病毒的直径约为0.000 000 823米,将0.000 000 823用科学记数法表示为( )A.8.23×10-6B.8.23×10-7C.8.23×106D.8.23×1073. 若式子(x+0.5)0=1成立,则x的取值范围是_ __.4. 100克淡盐水中含有0.000 5克盐,用科学记数法表示0.1克这种淡盐水中含盐_ __克.5. 若式子(x+0.5)0=1成立,则x的取值范围是__ __.考点五:整式的乘法1. 下列计算正确的是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(6xy2-4x2y)·3xy=6xy2-12x3y2C.(-x)·(2x+x2-1)=-x3-2x2+1D.(-3x2y)(-2xy+3yz+1)=6x3y2-9x2y2z-3x2y2. 如图,长方形花园ABCD中,AB=a,AD=b,花园中建有一条长方形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )A.bc-ab+ac+b2B.a2+ab+bc-acC.ab-bc-ac+c2D.b2-bc+a2-ab3. 已知3x·(x n+5)=3x n+1-8,那以x=_ .4. 已知m+n=mn,则(m-1)(n-1)=__ __.5.计算:(1)(a+1)(a-1)-(a-2)2.(2)(x-3y)2-(5xy2)2÷xy3.(3)(3-2x+y)(3+2x-y).。
第一章 整式的乘除自我评估(二)(满分100分)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列计算中,结果等于a 8的是( ) A .a 2•a 4B .(a 3)5C .a 4+a 4D .(a 4)22.计算:(﹣2xy 3)2=(﹣2)2•x 2(y 3)2=4x 2y 6,其中第一步运算的依据是( ) A .幂的乘方法则 B .分配律C .积的乘方法则D .同底数幂的乘法法则3.下列不能用平方差公式运算的是( ) A .(x +1)(x ﹣1) B .(﹣x +1)(﹣x ﹣1)C .(x +1)(﹣x +1)D .(x +1)(1+x )4.随着北斗系统全球组网的步伐,北斗芯片的研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持.目前,该芯片工艺已达22纳米(即0.000 000 022米),则数据0.000 000 022用科学记数法表示为( ) A .0.22×10﹣7B .2.2×10﹣8C .22×10﹣9D .22×10﹣105. 对于等式(a +b )2=a 2+b 2,甲、乙、丙三人有不同的看法:甲:无论a 和b 取何值,等式均不能成立.乙:只有当a =0时,等式才能成立.丙:当a =0或b =0时,等式成立.则下列说法正确是( ) A .只有甲正确 B .只有乙正确 C .只有丙正确D .三人说法均不正确 6. 如果(x +1)(3x +a )的乘积中不含x 的一次项,那么a 为( ) A .3B .﹣3C .31D .﹣31 7.如图1-①,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图1-②所示的图形,正好是边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图形能解释的等式是( ) A .(x ﹣1)2=x 2﹣2x +1 B .(x +1)(x ﹣1)=x 2﹣1C .(x +1)2=x 2+2x +1D .x (x ﹣1)=x 2﹣x图1 图28.若a (x m y 4)3÷(3x 2y n )2=2x 5y 4,则a ,m ,n 的值为( ) A .a =6,m =5,n =0 B .a =18,m =3,n =0 C .a =18,m =3,n =1D .a =18,m =3,n =49.已知a=3100,b=475,c=750,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a 10.如图2,两个正方形的边长分别为a 和b ,如果a ﹣b =2,ab =26,那么阴影部分的面积是( ) A .30B .34C .40D .44二、填空题(本大题共6小题,每小题3分,共18分)11. 已知一个正方体的棱长是4×103米,则它的体积是 立方米.12. 设M =(x ﹣2)(x ﹣5),N =(x ﹣3)(x ﹣4),则M N .(填<,=或>) 13. 如果a =0.52,b =﹣5﹣2,c =(﹣5)0,那么a ,b ,c 三个数的大小为__________. 14.若单项式﹣8x a-1与41xy b的积为﹣2x 4y 6,则3(ab )9÷(ab )4÷(ab )3的值为 . 15.现定义运算“△”,对于任意有理数a ,b ,都有a △b =a 2﹣ab +b ,例如:3△5=32﹣3×5+5=﹣1,由此算出(x ﹣1)△(2+x )= .16. 若(2a+b )2=17,(a-2b )2=8,则3a 2+3b 2的值为_____________. 三、解答题(本大题共6小题,共52分) 17.(每小题3分,共9分)计算: (1)(3x 2y )3•(﹣15xy 3)÷(﹣9x 4y 2);(2)1022- 101×99(用简便方法计算);(3)(2x ﹣y ﹣3)(2x +y +3).18.(7分)先化简,再求值:[a 3+(2a ﹣b )(2a +b )﹣4(a +b )2+5b 2]÷31a ,其中a =2,b =1.19.(8分)(1)已知3×9m ×27m =311,求m 的值; (2)已知3m =6,9n =2,求32m-4n 的值.20.(8分)在计算(2x +a )(x +b )时,甲错把b 看成了6,得到的结果是2x 2+8x ﹣24;乙错把a 看成了﹣a ,得到的结果是2x 2+14x +20. (1)求出a ,b 的值;(2)在(1)的条件下,计算(2x +a )(x +b )的结果.21.(10分)图3是某单位办公用房的平面结构示意图(长度单位:米),图形中的四边形均是长方形或正方形.(1)请分别求出会客室和会议厅的占地面积是多少平方米? (2)如果x+y=5,xy=6,求会议厅比会客室大多少平方米?22.(10分)数学活动课上,老师准备了若干张如图4-①所示的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为a 、宽为b 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图4-②所示的大正方形.(1)请用两种不同的方法求图②大正方形的面积.方法1:_____________________;方法2:____________________.(2)观察图②,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系:___________________;(3)根据(2)中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x-2020)2+(x-2022)2=34,求(x-2021)2的值.图4附加题(共20分,不计入总分)1.(6分)如图1,在长方形ABCD中放入一个边长为8的大正方形ALMN和两个边长为6的小正方形(正方形DEFG和正方形HIJK).三个阴影部分的面积满足2S3+S1﹣S2=2,则长方形ABCD的面积为()A.100 B.96 C.90 D.86图12. (14分)把完全平方公式(a±b)2=a2±2ab+b2适当地变形,可解决很多数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,ab=1,所以(a+b)2=9,2ab=2.所以a2+b2+2ab=9,2ab=2,解得a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=6,x2+y2=20,求xy的值;(2)请直接写出下列问题的答案:①若2m+n=3,mn=1,则2m-n=______________;②若(4-m)(5-m)=6,则(4-m)2+(5-m)2=__________________;(3)如图2,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形,设AB=4,两正方形的面积和S 1+S 2=12,求图中阴影部分的面积.第一章 整式的乘除自我评估(二)参考答案一、1.D 2. C 3. D 4. B 5. C 6. B 7. B 8. D 9. A 10.A提示:如图,因为a-b=2,ab=26,所以a 2-2ab+b 2=4,所以a 2+b 2=4+2ab=4+52=56. S 阴影部分=S 三角形ABC +S 三角形CDM +S 三角形AEF +S 三角形G HM =2×21(a-b )·a+2×21b·b=a (a-b )+b 2=a 2+b 2-ab=56-26=30.二、11.6.4×1010 12. < 13. c >a >b 14. 1200 15.﹣2x +5 16. 15 三、17.解:(1)原式=27x 6y 3•(﹣15xy 3)÷(﹣9x 4y 2)=[27×(﹣15)÷(﹣9)]•x 6+1﹣4y 3+3﹣2=45x 3y 4.(2)原式=(100+2)2-(100+1)(100-1)=1002+2×2×100+22-(1002-1)=1002+400+4-1002+1=405.(3)原式=[2x ﹣(y +3)][2x +(y +3)]=(2x )2﹣(y +3)2=4x 2﹣(y 2+6y +9)=4x 2﹣y 2﹣6y ﹣9.18.解:原式=[a 3+4a 2﹣b 2﹣4(a 2+2ab +b 2)+5b 2]÷31a =(a 3+4a 2﹣b 2﹣4a 2﹣8ab ﹣4b 2+5b 2)÷31a=(a 3﹣8ab )÷31a =3a 2﹣24b .当a =2,b =1时,原式=3×22﹣24×1=3×4﹣24=12﹣24=﹣12. 19.解:(1)因为3×9m ×27m =3×32m ×33m =311,所以31+2m+3m =311.所以1+2m+3m=11,解得m=2.(2)因为3m =6,9n =2,所以32n =2.所以32m-4n =(3m )2÷(32n )2=62÷22=36÷4=9.20.解:(1)甲错把b 看成了6,(2x +a )(x +6)=2x 2+12x +ax +6a =2x 2+(12+a )x +6a =2x 2+8x ﹣24.所以12+a =8,解得a =﹣4.乙错把a 看成了﹣a ,(2x ﹣a )(x +b )=2x 2+2bx ﹣ax ﹣ab =2x 2+(﹣a +2b )x ﹣ab =2x 2+14x +20.所以2b ﹣a =14.把a =﹣4代入,得b =5.(2)当a =﹣4,b =5时,(2x +a )(x +b )=(2x ﹣4)(x +5)=2x 2+10x ﹣4x ﹣20=2x 2+6x ﹣20.21.解:(1)会客室:(x-y )(2x+y-x-y )=(x-y )x=x 2-xy.会议厅:(2x+y )(2x+y-x )=(2x+y )(x+y )=2x 2+2xy+xy+y 2=2x 2+3xy+y 2.答:会客室的占地面积是(x 2-xy )平方米,会议厅的占地面积是(2x 2+3xy+y 2)平方米. (2)2x 2+3xy+y 2-(x 2-xy )=2x 2+3xy+y 2-x 2+xy=x 2+4xy+y 2. 由x+y=5,得(x+y )2=25,所以x 2+2xy+y 2=25. 又因为xy=6,所以x 2+4xy+y 2=25+2×6=37(平方米). 答:会议厅比会客室大37平方米. 22.解:(1)(a+b )2 a 2+b 2+2ab (2)(a+b )2=a 2+b 2+2ab(3)①由(a+b )2=a 2+b 2+2ab ,可得ab=21[(a+b )2-(a 2+b 2)],所以当a+b=5,a 2+b 2=11时,ab=21×(52-11)=7. ②设x-2021=a ,则x-2020=a+1,x-2022=a-1.(x-2020)2+(x-2022)2=(a+1)²+(a-1)²=a²+2a+1+a²-2a+1=2a²+2=34,解得a²=16,即(x-2021)2=16.附加题1.C 提示:设长方形ABCD 的长为a ,宽为b ,则由已知及图形可得:S 1的长为8﹣6=2,宽为b ﹣8,故S 1=2(b ﹣8);S 2的长为8+6﹣a =14﹣a ,宽为6+6﹣b =12﹣b ,故S 2=(14﹣a )(12﹣b );S 3的长为a ﹣8,宽为b ﹣6,故S 3=(a ﹣8)(b ﹣6).因为2S 3+S 1﹣S 2=2,所以2(a ﹣8)(b ﹣6)+2(b ﹣8)﹣(14﹣a )(12﹣b )=2.所以2(ab ﹣6a ﹣8b+48)+2b ﹣16﹣(168﹣14b ﹣12a+ab )=2.所以ab ﹣88=2,所以ab =90. 2.解:(1)因为x+y=6,所以(x+y )2=36,即x 2+2xy+y 2=36. 又因为x 2+y 2=20,所以20+2xy=36,解得xy=8. (2)①±1提示:因为2m+n=3,mn=1,所以(2m-n )2=(2m+n )2-8mn=32-1=1,解得2m-n=±1. ②13提示:设A=4-m ,B=5-m ,则A•B=6,A-B=-1.所以A 2+B 2=(A-B )2+2AB=1+12=13,即(4-m )2+(5-m )2=13. (3)设AC=x ,BC=y ,则S 1=x 2,S 2=y 2. 因为S 1+S 2=12,所以x 2+y 2=12. 又因为AB=4=x+y ,所以S 阴影=xy=21[(x+y )2-(x 2+y 2)]=21×(42-12)=2. 答:图中阴影部分面积为2.。
期中考试冲刺卷二一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2021·5173,π,49 3.14-27 ) A .1个 B .2个 C .3个D .4个 2.(2021·重庆巫溪·七年级期末)下列各点中,在第四象限的点是( )A .()2,0-B .()2,3-C .()1,2-D .()1,4--3.(2022·四川成都·七年级期末)如图,小明手持手电筒照向地面,手电筒发出的光线CO 与地面AB 形成了两个角,∠BOC =8∠AOC ,则∠BOC 的度数是( )A .160°B .150°C .120°D .20°4.(2022·湖南株洲·八年级期末)一个正方形的面积是18,估计它的边长的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间5.(2022·福建泉州·八年级期末)举反例说明“若x y >,则22x y >”是假命题,可以举的例子是( ) A .2x =,3y =B .3x =,2y =C .2x =-,3y =-D .12x =,13y = 6.(2022·山东枣庄·八年级期中)下列说法中,错误的是( ).A .4的算术平方根是2B .8的立方根是2±C 813±D .立方根等于-1的实数是-1 7.(2022·山东济南·八年级期末)已知530a b --,那么a b -=( )A .2B .3C .-2D .88.(2020·浙江宁波·七年级期中)如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有( )A.①②B.①③C.①②④D.①③④9.(2022·陕西西安·八年级期末)在平面直角坐标系中,点A的坐标为(﹣4,3),AB=5,AB∥y轴,则点B的坐标为()A.(1,3)B.(﹣4,8)C.(1,3)或(﹣9,3)D.(﹣4,8)或(﹣4,﹣2)10.(2022·江苏苏州·七年级期末)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°)按如图所示方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是()A.38°B.45°C.58°D.60°11.(2022·山西省运城市实验中学八年级期末)如图,数轴上的A、B、C、D四点中与表示数3接近的是().A.点A B.点B C.点C D.点D12.(2021·全国·七年级期中)根据表中的信息判断,下列语句中正确的是()x1515.115.215.315.415.515.615.715.815.9162x225228.01231.04234.09237.16240.25243.36246.49249.64252.81256A25.281 1.59=B.235的算术平方根比15.3小C.只有3个正整数n满足15.515.6n<D .根据表中数据的变化趋势,可以推断出216.1将比256增大3.1913.(2021·山东青岛·八年级期中)一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )A .6cmB .12cmC .18cmD .24cm14.(2021·河北沧州·七年级期中)如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,CH =2cm ,EF =4cm ,下列结论:①BH //EF ;②AD =BE ;③DH =CH ;④∠C =∠BHD ;⑤阴影部分的面积为6cm 2.其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2022·江苏·射阳县第六中学七年级期末)如图,想在河堤两岸搭建一座桥,搭建方式最短的是线段 _____.16.(2022·江苏泰州·七年级期末)如图,下列不正确的是__________(填序号)①如果ADE B ∠=∠,那么∥DE BC ;②如果AED C ∠=∠,那么∥DE BC ;③如果ADE C ∠=∠,那么∥DE BC ;④如果DFB C ∠=∠,那么DF EC ∥;⑤如果DFB AED ∠=∠,那么DF AC ∥.17.(2022·河北沧州·八年级期末)若[]a 表示数a 的整数部分,例如[]3π=,则24⎡=⎣ ______.18.(2021·上海市西南模范中学七年级期末)平面直角坐标系中,已知点A (-2,-1),点B (1,3),过点A 且垂直于y 轴的直线上有一点C ,且ABC 的面积为8,则点C 的坐标为________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·浙江省余姚市第四中学七年级期中)在数轴上表示下列各数,并用“<”连接起来.4.5--,0,42(1)-327-.20.(2022·吉林·东北师大附中明珠学校七年级期末)在下列解题过程的空白处填上恰当的内容(推理的理由或数学表达式)已知:如图,∠1+∠2=180°,∠3=∠4.求证:EF ∥GH .证明:∵∠1+∠2=180°(已知),∠AEG =∠1(______)∴∠AEG +∠______=180°,∴AB ∥CD (______),∴∠AEG =∠EGD (______),∵∠3=∠4(已知),∴∠3+∠AEG =∠4+∠______(等式的性质),即∠FEG =∠______,∴EF ∥GH (______).21.(2022·福建·福州华伦中学七年级期末)如图,不在同一直线上的三点A ,B ,C .(1)(尺规作图,保留作图痕迹)按下列要求作图;①分别作直线BC ,射线BA ,线段AC ;②在线段BA 的延长线上作AD AC AB =-.(2)在你所作的图形中,若:3:2CAD CAB ∠∠=,求CAD ∠的度数.22.(2022·浙江杭州·七年级期末)已知222A a b =-+,21B a b =--+.(1)求32A B -;(2)若a ,b 120a b +-=,求32A B -的值.23.(2021·云南·普洱市思茅区第四中学七年级期中)已知a 的平方根是5±24b +的立方根是2,3c c = (1)求,,a b c 的值;(2)求2a b c ++的算术平方根.24.(2021·福建·泉州七中七年级期中)如图,粗线①A C B →→和细线②A D E F G H B →→→→→→是泉州公交车从青少年宫A 到侨乡体育馆B 的两条行驶路线.(1)判断两条线的长短:粗线① 细线②.(填“>”“<”或“=”)(2)小丽坐出租车由侨乡体育馆B 到青少年宫A ,假设出租车的收费标准为起步价8元,3千米以后按每千米1.2元计费,用代数式表示出租车行驶()3x x >千米时的费用.(3)如果(2)中的这段路程长5千米,小丽身上的10元钱够不够小丽坐出租车由侨乡体育馆到青少年宫呢?请说明理由.25.(2021·北京广渠门中学教育集团七年级期中)在平面直角坐标系xOy 中,已知点A 的坐标为(4,1),点B 的坐标为(1,﹣2),BC ⊥x 轴于点C .(1)在平面直角坐标系xOy 中描出点A ,B ,C ,并写出点C 的坐标 ;(2)若线段CD 是由线段AB 平移得到的,点A 的对应点是C ,则点B 的对应点D 的坐标为 ;(3)求出以A ,B ,O 为顶点的三角形的面积;(4)若点E 在过点B 且平行于x 轴的直线上,且△BCE 的面积等于△ABO 的面积,请直接写出点E 的坐标. 26.(2021·山东烟台·期末)已知直线1l 、2l ,直线3l 与直线1l 、2l 分别交于点C 和点D ,在直线3l 上有动点P (点P 与点C 、D 不重合),点A 在直线1l 上,点B 在直线2l 上.(1)如图①,如果点P 在C 、D 之间运动时,且满足∠1+∠3=∠2,请写出1l 与2l 之间的位置关系并说明理由;(2)如图②,如果12l l ∥,点P 在直线1l 的上方运动时,请写出∠1,∠2与∠3之间的数量关系并说明理由;(3)如图③,如果12l l ∥,点P 在直线2l 的下方运动时,请直接写出∠P AC 、∠PBD 、∠APB 之间的关系(不需说明理由).。
2020-2021学年度北师大版七年级数学下册期中综合复习优生提升模拟测试题2(附答案)1.若2x+m与x+3的乘积中不含x的一次项,则m的值为()A.﹣6B.0C.﹣2D.32.(2m+3)(﹣2m﹣3)的计算结果是()A.4m2﹣9B.﹣4m2﹣9C.﹣4m2﹣12m﹣9D.﹣4m2+12m﹣9 3.如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD的面积为()A.4B.C.5D.64.用每张长6cm的纸片,重叠1cm粘贴成一条纸带,如图,纸带的长度y(cm)与纸片的张数x之间的函数关系式是()A.y=6x﹣1B.y=6x+1C.y=5x+2D.y=5x+1 5.甲、乙两个工程队同时开始维修某一段路面,一段时间后,甲队被调往别处,乙队独自完成了剩余的维修任务.已知乙队每小时维修路面的长度保持不变,甲队每小时维修路面30米.甲、乙两队在此路段维修路面的总长度y(米)与维修时间x(时)之间的函数图象如图所示,下列说法中(1)甲队调离时,甲、乙两队已维修路面的总长度为150米;(2)乙队每小时比甲队多维修20米:(3)乙队一共工作2小时;(4)a=190.正确的有()个.A.1B.2C.3D.46.已知:如图①,长方形ABCD中,E是边AD上一点,且AE=6cm,AB=8cm,点P从B出发,沿折线BE﹣ED﹣DC匀速运动,运动到点C停止.P的运动速度为2cm/s,运动时间为t(s),△BPC的面积为y(cm2),y与t的函数关系图象如图②,则下列结论正确的有()①a=7 ②b=10③当t=3s时△PCD为等腰三角形④当t=10s时,y=12cm2A.1个B.2个C.3个D.4个7.如图,直线AB与CD相交于点O,OB平分∠DOE,若∠BOD=30°,则∠AOE的度数是()A.90°B.120°C.150°D.170°8.如图所示,AB∥CD,EF⊥BD于E,∠CFE=130°,则∠ABG的度数为()A.35°B.40°C.45°D.50°9.如图,有以下四个条件:其中不能判定AB∥CD的是()①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;A.①B.②C.③D.④10.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C 11.如果x2﹣10x+m是一个完全平方式,那么m的值是.12.已知:(x+y)2=12,(x﹣y)2=4,则x2+3xy+y2的值为.13.计算:=.14.计算:2020×2018﹣20192=.15.10月30日,钟南山院士表示,从全球视角来看,第二波新冠肺炎疫情已经开始,我们切不可掉以轻心,要做好日常防护.导致新冠肺炎的新冠病毒比细菌小很多,平均直径仅为0.000000098m.这个数用科学记数法表示为m.16.若2020m=6,2020n=4,则20202m﹣n=.17.如果乘坐出租车所付款金额y(元)与乘坐距离x(千米)之间的函数图象由线段AB、线段BC和射线CD组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为元.18.若∠A的两边与∠B的两边分别平行,∠A比∠B的3倍小60°,则∠B=.19.如图,若直线l1∥l2,∠α=∠β,∠1=30°,则∠2的度数为.20.如图,AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=40°,那么∠BED的度数为.21.某学习小组学习了幂的有关知识发现:根据a m=b,知道a、m可以求b的值.如果知道a、b可以求m的值吗?他们为此进行了研究,规定:若a m=b,那么T(a,b)=m.例如34=81,那么T(3,81)=4.(1)填空:T(2,64)=;(2)计算:;(3)探索T(2,3)+T(2,7)与T(2,21)的大小关系,并说明理由.22.先化简,再求值:(a+b)(a﹣b)+(a+b)2﹣a(2a﹣3b),其中,b=2.23.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.24.对于一个图形,通过两种不同的方法计算它们的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)类似图1的数学等式,写出图2表示的数学等式;(2)若a+b+c=10,ab+ac+bc=35,用上面得到的数学等式求a2+b2+c2的值;(3)小明同学用图3中的x张边长为a的正方形,y张边长为b的正方形,z张边长为a、b的长方形拼出一个面积为(a+7b)(9a+4b)的长方形,求(x+y+z)的值.25.已知:如图,∠A=∠ABC=90°,∠1+∠BFE=180°,那么BD∥EF吗?为什么?26.如图,已知AB∥CD∥PN,∠ABC=50°,∠CPN=150°,求∠BCP的度数.27.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.(1)求证:∠ABE+∠C﹣∠E=180°.(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.参考答案1.解:(2x+m)(x+3)=2x2+(m+6)x+3m,∵2x+m与x+3的乘积中不含x的一次项,∴m+6=0,解得:m=﹣6.故选:A.2.解:(2m+3)(﹣2m﹣3)=﹣(2m+3)(2m+3)=﹣(2m+3)2=﹣4m2﹣12m﹣9,故选:C.3.解:设AB=a,AD=b,由题意得,8a+8b=24,2a2+2b2=12,即a+b=3,a2+b2=6,∴ab===,即长方形ABCD的面积为,故选:B.4.解:纸带的长度y(cm)与纸片的张数x之间的函数关系式是y=6x﹣(x﹣1)=5x+1,即y=5x+1.故选:D.5.解:(1)由图象知,甲队调离时,甲、乙两队已维修路面的总长度为150米,故(1)正确;(2)∵甲、乙队共同工作3小时共维修150米,甲队维修3×30米=90米,乙队每小时维修路面(150﹣90)÷3米=20米,所以乙队每小时比甲队少维修10米:故(2)错误;(3)由图象知,甲、乙两队共同工作3小时,乙又工作2小时,乙工作5小时,故(3)错误;(4)a=150+20×2=190,故(4)正确.综上所述,正确的有:(1)(4)共2个.故选:B.6.解:当P点运动到E点时,△BPC面积最大,结合函数图象可知当t=5时,△BPC面积最大为40,∴BE=5×2=10.∵•BC•AB=40,∴BC=10.则ED=10﹣6=4.当P点从E点到D点时,所用时间为4÷2=2s,∴a=5+2=7.故①正确;P点运动完整个过程需要时间t=(10+4+8)÷2=11s,即b=11,②错误;当t=3时,BP=AE=6,又BC=BE=10,∠AEB=∠EBC(两直线平行,内错角相等),∴S△BPC≌S△EAB,∴CP=AB=8,∴CP=CD=8,∴△PCD是等腰三角形,故③正确;当t=10时,P点运动的路程为10×2=20cm,此时PC=22﹣20=2,△BPC面积为×10×2=10cm2,④错误.∴正确的结论有①③.故选:B.7.解:∵OB平分∠DOE,∴∠BOE=∠BOD,∵∠BOD=30°,∴∠BOE=30°,∴∠AOE=180°﹣∠BOE=180°﹣30°=150°.故选:C.8.解:在△DEF中,∠1=180°﹣∠CFE=50°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=40°.∵AB∥CD,∴∠ABG=∠D=40°.故选:B.9.解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.10.解:A、∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3,故本选项正确.B、∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故本选项正确.C、∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD,故本选项错误.D、由AC∥DE可得∠4=∠C,故本选项正确.故选:C.11.解:∵x2﹣10x+m是一个完全平方式,∴m=25.故答案为:25.12.解:∵(x+y)2=12,(x﹣y)2=4,∴x2+2xy+y2=12①,x2﹣2xy+y2=4②,①+②得2x2+2y2=16,∴x2+y2=8,①﹣②得4xy=8,∴xy=2,∴x2+3xy+y2=8+3×2=14.故答案为14.13.解:====(﹣1)×=﹣.故答案为:﹣.14.解:2020×2018﹣20192=(2019+1)(2019﹣1)﹣20192=20192﹣12﹣20192=﹣1故答案为:﹣1.15.解:0.000000098m=9.8×10﹣8m.故答案为:9.8×10﹣8.16.解:因为2020m=6,2020n=4,所以20202m﹣n=(2020m)2÷2020n=62÷4=36÷4=9.故答案为:9.17.解:乘坐该出租车8(千米)需要支付的金额为:14+(30.8﹣14)÷(10﹣3)×(8﹣3)=26(元).故答案为:26.18.解:设∠B的度数为x,则∠A的度数为3x﹣60°,∵∠A的两边与∠B的两边分别平行,∴∠A=∠B,或∠A+∠B=180°,当∠A=∠B时,即x=3x﹣60°,解得x=30°,∴∠B=30°;当∠A+∠B=180°时,即x+3x﹣60°=180°,解得x=60°,∴∠B=60°;综上所述,∠B的度数为30°或60°.故答案为:30°或60°.19.解:延长AB交l2于E,∵∠α=∠β,∴AB∥CD,∵l1∥l2,∴∠3=∠1=30°,∴∠2=180°﹣∠3=150°.故答案为:150°.20.解:∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∵ED∥AC,∴∠CAE+∠DEA=180°,∴∠DEA=180°﹣40°=140°,∵∠AED+∠AEB+∠BED=360°,∴∠BED=360°﹣140°﹣90°=130°.故答案为:130°.21.解:(1)∵26=64,∴T(2,64)=6;故答案为:6.(2)∵,(﹣2)4=16,∴=﹣3+4=1.(3)相等.理由如下:设T(2,3)=m,可得2m=3,设T(2,7)=n,根据3×7=21得:2m•2n=2k,可得m+n=k,即T(2,3)+T(2,7)=T(2,21).22.解:原式=(a+b)(a﹣b)+(a+b)2﹣a(2a﹣3b)=a2﹣b2+a2+2ab+b2﹣2a2+3ab=5ab,当a=﹣,b=2时,原式=5×(﹣)×2=﹣5.23.解:(1)∵a﹣b=1,∴(a﹣b)2=a2+b2﹣2ab=1,∵a2+b2=13,∴13﹣2ab=1,∴ab=6;(2)∵a2+b2=13,ab=6,∴(a+b)2=a2+b2+2ab=13+12=25,∴a+b=5或﹣5,∵a2﹣b2﹣8=(a+b)(a﹣b)﹣8,∴当a+b=5时,(a+b)﹣8=﹣3;当a+b=﹣5时,(a+b)﹣8=﹣5﹣8=﹣13.24.解:(1)∵图2中正方形的面积有两种算法:①(a+b+c)2;②a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=102﹣2×35=30故答案为:30.(3)由题可知,所拼图形的面积为:xa2+yb2+zab,∵(a+7b)(9a+4b)=9a2+4ab+63ab+28b2=9a2+67ab+28b2,∴x=9,y=28,z=67x+y+z=9+28+67=104.故答案为:104.25.解:∵∠A=∠ABC=90°,∴AD∥BC,∴∠1=∠DBF,∵∠1+∠BFE=180°,∴∠DBF+∠BFE=180°,∴BD∥EF.26.解:∵AB∥CD∥PN,∴∠BCD=∠ABC=50°,∠DCP=180°﹣∠CPN=180°﹣150°=30°,∴∠BCP=∠BCD﹣∠DCP=50°﹣30°=20°.27.(1)证明:过点E作EK∥AB,如图1所示:∴∠ABE=∠BEK,∵AB∥CD,∴EK∥CD,∴∠CEK+∠C=180°∴∠ABE+∠C﹣∠E=∠BEC+∠CEK+∠C﹣∠BEC=∠CEK+∠C=180°;(2)解:∵BF、EG分别平分∠ABE、∠BEC,∴∠ABF=∠EBF,∠BEG=∠CEG,设∠ABF=∠EBF=α,∠BEG=∠CEG=β,∵BH∥EG,∴∠HBE=∠BEG=β,∴∠FBH=∠FBE﹣∠HBE=α﹣β,由(1)知,∠ABE+∠C﹣∠BEC=180°,即2α+∠C﹣2β=2(α﹣β)+∠C=180°,∴2∠FBH+∠C=180°;(3)解:∵CN、BF分别平分∠ECD、∠ABE,∴∠ABF=∠EBF,∠ECN=∠DCN,设∠ABF=∠EBF=x,∠ECN=∠DCN=y,由(1)知:∠ABE+∠C﹣∠E=180°,即∠E=2(x+y)﹣180°,过M作PQ∥AB∥CD,则∠PMF=∠ABF=x,∠QMN=∠DCN=y,∴∠FMN=180°﹣∠PMF﹣∠QMN=180°﹣(x+y),∴∠E+∠FMN=x+y=130°,∴∠E=2(x+y)﹣180=2×130°﹣180°=80°.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯第一章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分) 1.下列运算中,正确的是( C ) A .7a +a =7a 2 B .a 2·a 3=a 6 C .a 3÷a =a 2D .(ab )2=ab 22.计算(a 2)3+a 2·a 3-a 2÷a -3的结果是( D )A .2a 5-aB .2a 5-1aC .a 5D .a 63.下列运算中,利用完全平方公式计算正确的是( C ) A .(x +y )2=x 2+y 2 B .(x -y )2=x 2-y 2 C .(-x +y )2=x 2-2xy +y 2D .(-x -y )2=x 2-2xy +y 24.绿色植物靠吸收光量子来进行光合作用,已知每个光量子的波长约为688纳米,1纳米=0.000 000 001米,则每个光量子的波长可用科学记数法表示为( B )A .6.88×10-11米 B .6.88×10-7米 C .0.688×10-3米D .0.688×10-6米5.小亮在计算(6x 3y -3x 2y 2)÷3xy 时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( C )A .2x 2-xyB .2x 2+xyC .4x 4-x 2y 2D .无法计算6.要使(x 2-3x +4)(x 2-ax +1)的展开式中含x 2项的系数为-1,则a 应等于( A ) A .-2 B .2 C .-1D .-47.已知a =8131,b =2741,c =961,则a 、b 、c 的大小关系是( A ) A .a >b >c B .a >c >b C .a <b <cD .b >c >a8.计算⎝⎛⎭⎫ -32 2020·⎝⎛⎭⎫ 23 2021的结果是( D ) A .-1 B .-23C .1D .239.如图所示,用边长为c 的一个小正方形和直角边长分别为a 、b 的四个直角三角形,恰好能拼成一个新的大正方形,其中a 、b 、c 满足等式c 2=a 2+b 2,由此可验证的乘法公式是( A )A .a 2+2ab +b 2=(a +b )2B .a 2-2ab +b 2=(a -b )2C .(a +b )(a -b )=a 2-b 2D .a 2+b 2=(a +b )210.已知a =120x +20,b =120x +19,c =120x +21,那么代数式a 2+b 2+c 2-ab -bc -ac的值是( B )A .4B .3C .2D .1二、填空题(每小题4分,共28分) 11.计算:(a 2b 3-a 2b 2)÷(ab )2= b -1 .12.若x 2-4x -4=0,则2(x -1)2-(x +1)(x -1)的值为 7 . 13.已知x +1x =2,则x 2+1x2= 2 .14.利用完全平方公式计算:1022+982= 20 008 . 15.已知x 满足22x +2-22x +1=32,则x = 2 . 16.四个数a 、b 、c 、d 排列成⎪⎪⎪⎪⎪⎪ab cd ,我们称之为二阶行列式,规定它的运算法则为⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x = 1 . 17.如图,两个正方形的边长分别为a 和b ,如果a -b =4,ab =32,那么阴影部分的面积是 24 .三、解答题(一)(每小题6分,共18分) 18.计算:(1)(2a 2b )3-3(a 3)2b 3; 解:原式=5a 6b 3.(2)(x +y )m +n ·(x +y )m +2n÷(x +y )m -n ;解:原式=(x +y )m+4n.(3)⎝⎛⎭⎫12-x ⎝⎛⎭⎫14+x 2⎝⎛⎭⎫x +12+x 4; 解:原式=116.(4)(π-3.14)0+2-2+(-3)2-⎝⎛⎭⎫12-2.解:原式=614.19.已知a 、b 满足(a +b )2=1,(a -b )2=25,求a 2+b 2+ab 的值.解:因为(a +b )2-(a -b )2=4ab ,(a +b )2-(a -b )2=1-25,所以4ab =1-25,所以ab =-6,所以a 2+b 2+ab =(a +b )2-ab =1-(-6)=1+6=7.20.先化简,再求值:(x 2y 3-2x 3y 2)÷⎝⎛⎭⎫-12xy 2-[2(x -y )]2,其中x =3,y =-12. 解:原式=-2xy +4x 2-4x 2+8xy -4y 2=6xy -4y 2.当x =3,y =-12时,原式=6×3×⎝⎛⎭⎫-12-4×⎝⎛⎭⎫-122=-9-1=-10. 四、解答题(二)(每小题8分,共24分)21.有一道题:“化简求值:(2a +1)(2a -1)+(a -2)2-4(a +1)(a -2),其中a =2.”小明在解题时错误地把“a =2”抄成了“a =-2”,但显示计算的结果是正确的,你能解释一下,这是怎么回事吗?解:(2a +1)(2a -1)+(a -2)2-4(a +1)(a -2)=4a 2-1+a 2-4a +4-4a 2+4a +8=a 2+11.当a =-2时,a 2+11=15;当a =2时,a 2+11=15.所以当a =2或a =-2时,结果相等.22.已知3a =4,3b =10,3c =25. (1)求32a 的值; (2)求3c+b -a的值;(3)试说明:2b =a +c . (1)解:32a =(3a )2=42=16. (2)解:3c+b -a=3c ·3b ÷3a =25×10÷4=62.5.(3)证明:因为32b =(3b )2=102=100,3a +c =3a ×3c =4×25=100,所以32b =3a +c ,所以2b =a +c .23.观察以下等式: (x +1)(x 2-x +1)=x 3+1; (x +3)(x 2-3x +9)=x 3+27; (x +6)(x 2-6x +36)=x 3+216; ……(1)按以上等式的规律,填空:(a +b )( a 2-ab +b 2 )=a 3+b 3; (2)利用多项式的乘法法则,说明(1)中的等式成立;(3)利用(1)中的公式化简:(x +y )(x 2-xy +y 2)-(x +2y )(x 2-2xy +4y 2). 解:(2)(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3. (3)原式=(x 3+y 3)-(x 3+8y 3)=-7y 3. 五、解答题(三)(每小题10分,共20分)24.如图1,我们在2020年5月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14-6×20=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为24;(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论;(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”.若某个十字星中心的数在第32行,且其相应的“十字差”为2019,求这个十字星中心的数.(直接写出结果)解:(2)“十字差”为k2-1=(k+1)(k-1).证明如下:设十字星中心的数为x,则十字星左右两数分别为x-1、x+1,上下两数分别为x-k、x+k(k≥3).故“十字差”为(x-1)(x +1)-(x-k)(x+k)=x2-1-x2+k2=k2-1.(3)设正中间的数为a,则上下两数分别为a-62、a+64,左右两数分别为a-1、a+1.根据题意,得(a-1)(a+1)-(a-62)(a+64)=2019,即2a=1948,解得a=974.即这个十字星中心的数为974.25.图1是由4个长为m、宽为n的长方形拼成的,图2是由这四个长方形拼成的正方形,中间的空隙(阴影部分)恰好是一个小正方形.(1)用m、n表示图2中小正方形的边长;(2)用两种不同的方法表示出图2中阴影部分的面积;(3)观察图2,利用(2)中的结论,写出代数式(m+n)2、(m-n)2、mn之间的等量关系;(4)根据(3)中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a-b)2的值.解:(1)图2中小正方形的边长为m-n.(2)(方法一)S阴影=(m-n)(m-n)=(m-n)2;(方法二)S阴影=(m+n)2-4mn.(3)因为图中阴影部分的面积不变,所以(m-n)2=(m+n)2-4mn.(4)由(3)知,(a-b)2=(a+b)2-4ab.因为a+b=7,ab=5,所以(a-b)2=72-4×5=49-20=29.一天,毕达哥拉斯应邀到朋友家做客。
2021学年北师大版七年级数学下册《第1章整式的乘除》期末复习能力达标训练(附答案)1.计算﹣6a3b2÷2a2b的结果是()A.﹣3ab2B.﹣3ab C.3ab D.3ab22.若x m y n÷x3y=4x2y,则m,n满足()A.m=6,n=1B.m=6,n=0C.m=5,n=0D.m=5,n=2 3.小亮在计算(6x3y﹣3x2y2)÷3xy时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是()A.2x2﹣xy B.2x2+xy C.4x4﹣x2y2D.无法计算4.计算:﹣3a6b2c÷9a2b的结果是()A.﹣a3b2c B.﹣3a4bc C.﹣3a3b2c D.﹣a4bc5.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y26.化简(﹣a)2a3所得的结果是()A.a5B.﹣a5C.a6D.﹣a67.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1B.x=1C.x≠0D.x≠18.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣b2C.b(a﹣b)=ab﹣b2D.ab﹣b2=b(a﹣b)9.已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣310.计算(25x2+15x3y﹣5x)÷5x()A.5x+3x2y B..5x+3x2y+1C.5x+3x2y﹣1D.5x+3x2﹣111.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.﹣1B.1C.3D.512.若5x=18,5y=3,则5x﹣2y=.13.若x2+mx+16是完全平方式,则m的值是.14.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为.15.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则a※b+(b﹣a)※b=.16.若(x﹣3)(x2+px+q)的结果不含x2和x项,则p+q=.17.我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)时,发现直接运算很麻烦,如果在算式前乘以(2﹣1),即1,原算式的值不变,而且还使整个算式是能用乘法公式计算.即:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)=232﹣1.请用上述方法算出(5+1)(52+1)(54+1)(58+1)(516+1)(532+1)的值为.18.如图,两个正方形的边长分别为a,b,若a+b=10,ab=20,则四边形ABCD的面积为.19.若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b的值.20.先化简,再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.21.先化简,再求值:(a+2b)(a﹣2b)+(a+2b)2+(2ab2﹣8a2b2)÷2ab,其中a=1,b =2.22.先化简,再求值:(x﹣5)(x+1)+(x+2)2,其中x=﹣2.23.计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y =324.先化简,再求值:(2x﹣y)2﹣(x﹣3y)(x+3y)+4(xy﹣y2),其中x=﹣2,y=1.25.规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)=,(﹣2,﹣32)=;②若,则x=.(2)若(4,5)=a,(4,6)=b,(4,30)=c,试说明下列等式成立的理由:a+b=c.参考答案1.解:﹣6a3b2÷2a2b=﹣3ab,故选:B.2.解:∵x m y n÷x3y=4x2y,∴m﹣3=2,n﹣1=1,解得:m=5,n=2.故选:D.3.解:正确结果为:原式=6x3y÷3xy﹣3x2y2÷3xy=2x2﹣xy,错误结果为:原式=6x3y÷3xy+3x2y2÷3xy=2x2+xy,∴(2x2﹣xy)(2x2+xy)=4x4﹣x2y2,故选:C.4.解:﹣3a6b2c÷9a2b=﹣a4bc.故选:D.5.解:A、(x﹣y)2=x2﹣2xy+y2,故本选项错误;B、(a+2)(a﹣3)=a2﹣a﹣6,故本选项错误;C、(a+2b)2=a2+4ab+4b2,故本选项正确;D、(2x﹣y)(2x+y)=4x2﹣y2,故本选项错误;故选:C.6.解:(﹣a)2a3=a2•a3=a5.故选:A.7.解:由题意可知:x﹣1≠0,x≠1故选:D.8.解:(a+b)(a﹣b)=a2﹣b2,故选:A.9.解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故选:A.10.解:(25x2+15x3y﹣5x)÷5x=5x+3x2y﹣1.故选:C.11.解:(1+x)(1+y)=x+y+xy+1,则当x+y=3,xy=1时,原式=3+1+1=5.故选:D.12.解:原式====2.故答案是:2.13.解:∵x2+mx+16是一个完全平方式,∴x2+mx+16=(x±4)2,=x2±8x+16.∴m=±8,故答案为:±8.14.解:∵矩形面积为m2+8m,一边长为m,∴邻边长为:(m2+8m)÷m=m+8,故答案为m+8.15.解:a※b+(b﹣a)※b,=ab+a﹣b+b(b﹣a)+b﹣a﹣b,=b2﹣b.16.解:原式=x3﹣3x2+px2﹣3px+qx﹣3q=x3+(p﹣3)x2+(q﹣3p)x﹣3q,根据题意,令p﹣3=0,q﹣3p=0,解得:p=3,q=9,∴p+q=12,故答案为:12.17.解:(5+1)(52+1)(54+1)(58+1)(516+1)(532+1)=(5﹣1)(5+1)(52+1)(54+1)(58+1)(516+1)(532+1)=×(564﹣1)=.故答案为:.18.解:根据题意可得,四边形ABCD的面积=(a2+b2)﹣﹣b(a+b)=(a2+b2﹣ab)=(a2+b2+2ab﹣3ab)=[(a+b)2﹣3ab];代入a+b=10,ab=20,可得:四边形ABCD的面积=(10×10﹣20×3)÷2=20.故答案为:20.19.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.20.解:原式=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=时,原式=2.21.解:原式=a2﹣4b2+a2+4ab+4b2﹣4ab+b=2a2+b,∵a=1,b=2,∴原式=2a2+b=4.22.解:(x﹣5)(x+1)+(x+2)2=x2+x﹣5x﹣5+x2+4x+4=2x2﹣1,当x=﹣2时,原式=8﹣1=7.23.解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.24.解:原式=4x2+y2﹣4xy﹣(x2﹣9y2)+4xy﹣4y2=4x2+y2﹣4xy﹣x2+9y2+4xy﹣4y2=3x2+6y2,当x=﹣2,y=1时,原式=3×(﹣2)2+6×12=12+6=18.25.解:(1)①因为53=125,所以(5,125)=3;因为(﹣2)5=﹣32,所以(﹣2,﹣32)=5;②由新定义的运算可得,x﹣4=,因为(±2)﹣4==,所以x=±2,故答案为:①3,5;②±2;(2)因为(4,5)=a,(4,6)=b,(4,30)=c,所以4a=5,4b=6,4c=30,因为5×6=30,所以4a•4b=4c,所以a+b=c.。
七年级下期中考试数学试卷一、精心选一选.(本大题共10个小题,每小题3分,共30分.1.下列运算正确的是().A.a5+a5 =a10B.a6×a4=a24C.a0÷a-1=a D.(a2)3=a5的是()2.下列关系式中,正确..A.(a-b)2=a2-b2B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+b2D.(a+b)2=a2+ab+b23.大象是世界上最大的陆栖动物,它的体重的百万分之一相当于()的体重A. 袋鼠B. 啄木鸟C. 蜜蜂D. 小鸡4.如果一个角的补角是130°,那么这个角的余角的度数是()A. 20°B. 40° C . 70° D .130°5. 下列哪组数能构成三角形( )A、4,5,9B、8,7,15C、5,5,11D、13,12,206.如果一个等腰三角形的一边为4㎝,另一边为5㎝,则它的周长为( )A、14B、13C、14或13D、、无法计算7.下列说法中,正确的是( )A.内错角相等.B.同旁内角互补.C.同角的补角相等.D.相等的角是对顶角.8.以长为3,5,7,10的四条线段中的三条为边,能构成三角形的个数为()A .1B .2C .3D .49.如图1,下列条件中,能判定DE ∥AC 的是 ( ) A. ∠EDC=∠EFC B.∠AFE=∠ACD C. ∠1=∠2 D.∠3=∠410.已知x a =3,x b =5,则x 2a -b =( )A.53B.56C.59D. 1二、细心填一填(每小题3分,共计24)11. 有两根长3㎝、4㎝的木棒,选择第三根木棒组成三角形,则第三根木棒第范围是____________________________。
12.若等腰三角形的一个角为40°,则另两个角为__________________。
13.纳米技术是一门新兴技术,纳米是一个长度单位,1纳米等于1米的 十亿分之一,即“1纳米=10-9米”,则2500纳米是____________米。
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某学习小组做了一个试验:从一幢100m高的楼顶随手放下一只苹果(此试验在安全的环境下进行),测得有关数据如下:下落时间t(s)1234下落高度ℎ(m)5204580则下列说法错误的是()A. 苹果每秒下落的高度不变B. 苹果每秒下落的高度越来越长C. 苹果下落的速度越来越快D. 可以推测,苹果落到地面的时间不超过5秒2.下列图形中,∠1与∠2是同旁内角的是()A. B.C. D.3.x n−1⋅()=x n+1,括号内应填的代数式是()A. x n+1B. x n−1C. x2D. x4.冠状病毒的直径约为80∼120纳米,1纳米=1.0×10−9米.若用科学记数法表示110纳米,则正确的结果是()A. 1.1×10−9米B. 1.1×10−8米C. 1.1×10−7米D. 1.1×10−6米5.如果x2+kx+4恰好是另一个整式的平方,那么k的值为()A. 2B. 4C. −4D. ±46.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A. ∠1=∠2B. ∠2=∠3C. ∠2+∠4=180∘D. ∠1+∠4=180∘7.一跳远运动员跳落沙坑时的痕迹如图所示,则表示运动员成绩的是()A. 线段AP1的长B. 线段BP1的长C. 线段CP2的长D. 线段CP3的长8.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的关系为()A. y=20xB. y=40xC. y=10+30xD. y=10x+309.张大伯出去散步,从家走了20min,到了一个离家900m的阅报亭,看了10min报纸后,用了15min返回到家,如图图象中能表示张大伯离家时间与距离之间关系的是()A. B.C. D.10.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是()A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ11.如图,2条直线相交最多有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,...,按照此规律,n条直线相交最多有()个交点.A. n(n−1)2B. n(n+1)2C. (n−1)(n+1)2D. 无法确定12.若(−2x+a)(x−1)展开后的结果中不含x的一次项,则()A. a=1B. a=−1C. a=−2D. a=213.a表示两个相邻整数的平均数的平方,b表示这两个相邻整数平方的平均数,那么a与b的大小关系是()A. a>bB. a≥bC. a≤bD. a<b14.如图所示,同位角共有()A. 6对B. 8对C. 10对D. 12对15.一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S(千米)和行驶时间t(小时)的关系的是()A. B. C. D.卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.鸡蛋每个0.8元,那么所付款y(元)与所买鸡蛋个数x(个)之间的函数解析式是______.17.如图,点O在直线l上,当∠1与∠2满足条件时,OA⊥OB.18.用科学记数法表示0.0000109为__________________.19.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有______个交点.20.根据图中的程序,当输入x=3时,输出的结果y=.三、解答题(本大题共7小题,共80.0分)a),其中a、b21.(8分)先化简,再求值:[(a−b)2+(2a+b)(1−b)−b]÷(−12满足|a+1|+(2b−1)2=0.22.(8分)如图,已知∠AOB=50°,OC平分∠AOB.(1)请在图中∠AOB的外部画出它的一个余角∠BOD;(2)求∠COD的度数.23.(10分)王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?24.(12分)已知a x⋅a y=a5,a x÷a y=a.(1)求x+y和x−y的值;(2)求x2+y2的值.25.(12分)如图所示,l1,l2,l3相交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.26.(14分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订立月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1与y2分别与x之间的数量关系图象(两条射线)如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租个体车主的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算27.(16分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是;(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对: ①; ②; ③;(3) ①如果∠AOD=160∘,那么根据可得∠BOC=; ②如果∠AOD=4∠EOF,求∠EOF的度数.答案1.A2.C3.C4.C5.D6.D7.B8.D9.C10.D11.A12.C13.D14.C15.B16.y=0.8x17.∠1+∠2=90∘18.1.09×10−519.4520.2a),21.解:原式=(a2−2ab+b2+2a−2ab+b−b2−b)÷(−12a),=(a2−4ab+2a)÷(−12=−2a+8b−4,∵|a+1|+(2b−1)2=0,又∵|a+1|≥0,(2b−1)2≥0,∴a=−1.b=1,2∴原式=2+4−4=2.22.解:(1)如图:(2)∵∠AOB=50°,OC平分∠AOB,∴∠AOC=∠BOC=25°,又∵∠AOB与∠BOD互余,∴∠AOB+∠BOD=90°,∴∠BOD=90°−50°=40°,∴∠COD=∠COB+∠BOD=25°+40°=65°.故答案为:65°.23.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.24.解:(1)x+y=5,x−y=1.(2)x2+y2=13.25.解:设∠1=∠2=x∘,则∠3=8x∘.由∠1+∠2+∠3=180∘,得10x=180.解得x=18.所以∠1=∠2=18∘.所以∠4=∠1+∠2=36∘.26.解:(1)每月行驶的路程小于1500千米时,租个体车主的车合算.(2)每月行驶的路程等于1500千米时,两家车的费用相同.(3)由2300>1500可知,如果这个单位估计每月行驶的路程为2300千米,那么这个单位租出租车公司的车合算.27.解:(1)∠EOF,∠BOD,∠AOC(2)(答案不唯一) ①∠AOC=∠EOF ②∠AOC=∠BOD ③∠DOE=∠AOF(3) ①对顶角相等160∘ ②因为∠AOC=∠EOF,所以∠AOD=4∠EOF=4∠AOC.又因为∠AOC+∠AOD=180∘,所以5∠AOC=180∘.所以∠EOF=∠AOC=36∘.。
2020-2021学年七年级数学下册第一章 整式的乘除 单元测试题(时间:120分钟 满分:150分)A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案填在下面的答题框内)1.计算(13)0×2-2的结果是( )A.43B .-4C .-43D.142.下列计算正确的是( ) A .a 2·a 3=a 6B .a 7÷a 3=a4C .(a 3)5=a 8D .(ab)2=ab 23.计算106×(102)3÷104的结果是( ) A .103B .107C .108D .1094.空气的密度为0.001 29 g/cm 3,0.001 29这个数用科学记数法可表示为( ) A .0.129×10-2B .1.29×10-2C .1.29×10-1D .1.29×10-35.下列运算正确的是( ) A .4a 2-(2a)2=2a 2B .(-a 2)·a 3=a 6C .(-2x 2)3=-8x 6D .(-x)2÷x =-x6.已知a +b =3,ab =2,则a 2+b 2的值为( ) A .6B .5C .4D .37.若(-2x+a)(x-1)展开后的结果中不含x的一次项,则( )A.a=1 B.a=-1 C.a=-2 D.a=28.某同学在计算-3x2乘一个多项式时错误的计算成了加法,得到的答案是x2-x+1,由此可以推断正确的计算结果是( )A.4x2-x+1 B.x2-x+1C.-12x4+3x3-3x2D.无法确定9.数N=212×59是一个( )A.10位数B.11位数C.12位数D.13位数10.观察下列各式及其展开式(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;…请你猜想(a+b)10展开式第三项的系数是( )A.36 B.45 C.55 D.66二、填空题(本大题共4个小题,每小题4分,共16分,答案写在题中的横线上)11.计算:832+83×34+172=_________.12.若正方形边长由a cm减小到(a-2)cm,则面积减小了_________.cm2(用含a的式子表示).13.若3m =9n =2,则3m +2n=_________.14.如果表示3xyz ,表示-2a b c d,则×÷3mn 2=_________.三、解答题(本大题共6个小题,共54分) 15.(12分)计算:(1)(-3x 2y)2·6xy 3÷9x 3y 4;(2)(2x -y)2·(2x +y)2;(3)-12+(π-3.14)0-(-13)-2+(-2)3;(4)(52x 3y 3+4x 2y 2-3xy)÷(-3xy).16.(6分)先化简,再求值:[(2x+y)(2x-y)-(2x-3y)2]÷(-2y),其中x=1,y=-2.17.(6分)已知a x·a y=a5,a x÷a y=a.(1)求x+y和x-y的值;(2)求x2+y2的值.18.(8分)黄老师在黑板上布置了一道题,小亮和小新展开了下面的讨论.根据上述情景,你认为谁说得对?为什么?19.(10分)小明想把一张长为60 cm、宽为40 cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.20.(12分)如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.(1)数表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数;(2)用含n的代数式表示:第n行的第一个数是_________.,最后一个数是n2,第n行共有_________.个数;(3)求第n行各数之和.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在题中的横线上) 21.已知(x -1)(x +2)=ax 2+bx +c ,则代数式4a -2b +c 的值为_________. 22.若正实数m ,n 满足等式(m +n -1)2=(m -1)2+(n -1)2,则mn =_________. 23.若a =2 0180,b =2 017×2 019-2 0182,c =(-45)2 017×(54)2 018,则a ,b ,c 的大小关系用“<”连接为_________.24.已知a -b =b -c =35,a 2+b 2+c 2=1,则ab +bc +ca 的值等于_________.25.我们知道,同底数幂的乘法法则为:a m·a n=am +n(其中m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:h(m +n)=h(m)·h(n),例如:若h(1)=1,则h(2)=h(1+1)=h(1)·h(1)=1×1=1.请根据这种新运算填空: (1)若h(1)=23,则h(2)=_________;(2)若h(1)=k(k ≠0),则h(n)·h(2018)=_________.(用含n 和k 的代数式表示,其中n 为正整数).二、解答题(本大题共3个小题,共30分)26.(10分)已知多项式x 2-3x +n 与多项式x 2+mx 的乘积的展开式中,不含x 2项和x 3项,试化简求值:[(2m +n)2-(2m +n)(2m -n)-6n]÷(-2n).27.(10分)在月历上,我们可以发现其中某些数满足一定的规律,如图是2020年4月份的月历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11-3×17=_________,20×22-14×28=_________.不难发现,结果都是_________.(1)请将上面三个空补充完整;(2)请利用所学的数学知识解释你发现的结论.28.(10分)学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A型卡片,6张C型卡片,则应取9张B型卡片才能用它们拼成一个新的正方形,新的正方形的边长是_________.(请用含a,b的代数式表示);(2)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可验证的等量关系为_________;(3)选取1张D型卡片,3张C型卡片按图3的方式不重叠地放在长方形MNPQ框架内,已知NP的长度固定不变,MN的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S1-S2,且S为定值,则a与b有什么关系?请说明理由.图1 图2 图3参考答案2020-2021学年七年级数学下册第一章整式的乘除单元测试题(时间:120分钟满分:150分)A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案填在下面的答题框内)1.计算(13)0×2-2的结果是(D)A.43B .-4C .-43D.142.下列计算正确的是(B) A .a 2·a 3=a 6B .a 7÷a 3=a4C .(a 3)5=a 8D .(ab)2=ab 23.计算106×(102)3÷104的结果是(C) A .103B .107C .108D .1094.空气的密度为0.001 29 g/cm 3,0.001 29这个数用科学记数法可表示为(D) A .0.129×10-2B .1.29×10-2C .1.29×10-1D .1.29×10-35.下列运算正确的是(C) A .4a 2-(2a)2=2a 2B .(-a 2)·a 3=a 6C .(-2x 2)3=-8x 6D .(-x)2÷x =-x6.已知a +b =3,ab =2,则a 2+b 2的值为(B) A .6B .5C .4D .37.若(-2x +a)(x -1)展开后的结果中不含x 的一次项,则(C) A .a =1B .a =-1C .a =-2D .a =28.某同学在计算-3x 2乘一个多项式时错误的计算成了加法,得到的答案是x 2-x +1,由此可以推断正确的计算结果是(C)A.4x2-x+1 B.x2-x+1C.-12x4+3x3-3x2D.无法确定9.数N=212×59是一个(A)A.10位数B.11位数C.12位数D.13位数10.观察下列各式及其展开式(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;…请你猜想(a+b)10展开式第三项的系数是(B)A.36 B.45 C.55 D.66二、填空题(本大题共4个小题,每小题4分,共16分,答案写在题中的横线上)11.计算:832+83×34+172=10_000.12.若正方形边长由a cm减小到(a-2)cm,则面积减小了(4a-4)cm2(用含a的式子表示).13.若3m=9n=2,则3m+2n=4.14.如果表示3xyz,表示-2a b c d,则×÷3mn2=-4m3n.三、解答题(本大题共6个小题,共54分) 15.(12分)计算:(1)(-3x 2y)2·6xy 3÷9x 3y 4; 解:原式=9x 4y 2·6xy 3÷9x 3y 4=54x 5y 5÷9x 3y 4 =6x 2y.(2)(2x -y)2·(2x +y)2; 解:原式=[(2x -y)·(2x +y)]2=(4x 2-y 2)2=16x 4-8x 2y 2+y 4.(3)-12+(π-3.14)0-(-13)-2+(-2)3;解:原式=-1+1-9-8=-17. (4)(52x 3y 3+4x 2y 2-3xy)÷(-3xy).解:原式=-56x 2y 2-43xy +1.16.(6分)先化简,再求值:[(2x +y)(2x -y)-(2x -3y)2]÷(-2y),其中x =1,y =-2.解:原式=[4x 2-y 2-(4x 2-12xy +9y 2)]÷(-2y) =(4x 2-y 2-4x 2+12xy -9y 2)÷(-2y) =(-10y 2+12xy)÷(-2y) =5y -6x.当x =1,y =-2时,原式=-10-6=-16.17.(6分)已知a x·a y=a 5,a x÷a y=a. (1)求x +y 和x -y 的值; (2)求x 2+y 2的值. 解:(1)x +y =5,x -y =1. (2)x 2+y 2=12[(x +y)2+(x -y)2]=12×(52+12) =13.18.(8分)黄老师在黑板上布置了一道题,小亮和小新展开了下面的讨论.根据上述情景,你认为谁说得对?为什么? 解:原式=4x 2-y 2+2xy -8x 2-y 2+4xy +2y 2-6xy=-4x2.∵这个式子的化简结果与y值无关,∴只要知道了x的值就可以求解,故小新说得对.19.(10分)小明想把一张长为60 cm、宽为40 cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.解:(1)(60-2x)(40-2x)=4x2-200x+2 400.答:阴影部分的面积为(4x2-200x+2 400)cm2.(2)当x=5时,4x2-200x+2 400=1 500.这个盒子的体积为1 500×5=7 500(cm3).答:这个盒子的体积为7 500 cm3.20.(12分)如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.(1)数表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数; (2)用含n 的代数式表示:第n 行的第一个数是(n -1)2+1,最后一个数是n 2,第n 行共有(2n -1)个数; (3)求第n 行各数之和.解:由(2)知第n 行的第一个数是(n -1)2+1=n 2-2n +2,最后一个数是n 2,第n 行共有(2n -1)个数,∴第n 行各数之和为n 2-2n +2+n 22·(2n -1)=2n 3-3n 2+3n -1.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在题中的横线上) 21.已知(x -1)(x +2)=ax 2+bx +c ,则代数式4a -2b +c 的值为0. 22.若正实数m ,n 满足等式(m +n -1)2=(m -1)2+(n -1)2,则mn =12.23.若a =2 0180,b =2 017×2 019-2 0182,c =(-45)2 017×(54)2 018,则a ,b ,c 的大小关系用“<”连接为c<b<a .24.已知a -b =b -c =35,a 2+b 2+c 2=1,则ab +bc +ca 的值等于-225.25.我们知道,同底数幂的乘法法则为:a m·a n=am +n(其中m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:h(m +n)=h(m)·h(n),例如:若h(1)=1,则h(2)=h(1+1)=h(1)·h(1)=1×1=1.请根据这种新运算填空: (1)若h(1)=23,则h(2)=49;(2)若h(1)=k(k ≠0),则h(n)·h(2018)=kn +2_018(用含n 和k 的代数式表示,其中n 为正整数).二、解答题(本大题共3个小题,共30分)26.(10分)已知多项式x2-3x+n与多项式x2+mx的乘积的展开式中,不含x2项和x3项,试化简求值:[(2m+n)2-(2m+n)(2m-n)-6n]÷(-2n).解:(x2-3x+n)(x2+mx)=x4+mx3-3x3-3mx2+nx2+mnx=x4+(m-3)x3+(-3m+n)x2+mnx.∵多项式x2-3x+n与多项式x2+mx的乘积的展开式中,不含x2项和x3项,∴m-3=0,-3m+n=0,解得m=3,n=9.原式=(4m2+4mn+n2-4m2+n2-6n)÷(-2n)=(4mn+2n2-6n)÷(-2n)=-2m-n+3.当m=3,n=9时,原式=-6-9+3=-12.27.(10分)在月历上,我们可以发现其中某些数满足一定的规律,如图是2020年4月份的月历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11-3×17=48,20×22-14×28=48.不难发现,结果都是48.(1)请将上面三个空补充完整;(2)请利用所学的数学知识解释你发现的结论.解:设选择的两组四个数的中间数字为x,则这四个数分别为x-1,x+1,x-7,x+7,根据题意,得(x-1)(x+1)-(x-7)(x+7)=x2-1-(x2-49)=x2-1-x2+49=48.28.(10分)学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A型卡片,6张C型卡片,则应取9张B型卡片才能用它们拼成一个新的正方形,新的正方形的边长是a+3b(请用含a,b的代数式表示);(2)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可验证的等量关系为(a-b)2=(a+b)2-4ab;(3)选取1张D型卡片,3张C型卡片按图3的方式不重叠地放在长方形MNPQ框架内,已知NP的长度固定不变,MN的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S1-S2,且S为定值,则a与b有什么关系?请说明理由.图1 图2 图3解:设MN长为x.S1=(a-b)[x-(a-b)]=ax-bx-a2+2ab-b2,S2=3b(x-a)=3bx-3ab,S=S1-S2=(a-4b)x-a2+5ab-b2.∵S为定值,∴S不随x的变化而变化.∴a-4b=0. ∴当a=4b时,S=-a2+5ab-b2为定值.。
七下数学期中综合复习卷二(第一章-第四章)一.选择题(共10小题,满分40分,每小题4分)
1.(4分)下列运算中,正确的是()
A.(a2)3=a6B.a2•a3=a6
C.a6÷a3=a2D.(a﹣2)(﹣2﹣a)=a2﹣4 2.(4分)下列各式能用完全平方公式计算的是()
A.(3a+2b)(3a﹣2b)B.(3a+2b)(2b﹣3a)
C.(3a﹣2b)(2b﹣3a)D.(3a﹣2b)(﹣3a﹣2b)
3.(4分)圆的周长公式为C=2πr,下列说法正确的是()
A. 常量是2
B. 变量是C、π、r
C. 变量是C、r
D. 常量是2、r 4.(4分)在下图中,正确画出AC边上高的是().
A B C D
5.(4分)全等图形是指两个图形()
A. 能够重合
B. 形状相同
C. 大小相同
D. 相等
6.(4分)若三角形的三边长分别为3,x,5,则x的值可以是()A.2B.5C.8D.11 7.(4分)如图,在下列给出的条件中,不能推出AB∥DC的条件是()A.∠B=∠DCE
B.∠BAD+∠D=180°
C.∠1=∠2
D.∠3=∠4
8.(4分)如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()
A.60°B.55°C.50°D.40°
9.(4分)如图,将长方形纸片ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠GHC=110°,则∠AGE等于()
A.55°B.45°C.40°D.25°
10.(4分)在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(h)后,与乙港的距离为y(km),y与x的函数关系如图所示,则下列说法正确的是()
A.甲港与丙港的距离是90km B.船在中途休息了0.5小时
C.船的行驶速度是45km/h D.从乙港到达丙港共花了1.5小时
第8题第9题第10题
二.填空题(共6小题,满分24分,每小题4分)
11.(4分)如果一盒圆珠笔有12支,售价24元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是.
12.(4分)已知x2+(m﹣1)x+25是完全平方式,则m的值为.
13.(4分)计算:=.
14.(4分)如图,△ABC中,DE∥BC,将△ADE沿DE翻折,使得点A落在平面内的A′处,若∠B=40°,则∠BDA′的度数是.
15.(4分)如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,
则甲的速度____乙的速度(用“>”“=”或“<”填空).
16.(4分)已知x2+3x﹣1=0,则x3+5x2+5x+18=__________________.
三.解答题(共9小题,满分86分)
17.(10分)(1)计算:(x﹣3)0+()﹣1;(2)化简:x(2x﹣y)+(3x3y+x2y2)÷(xy).
18.(8分)如图,已知点E、C在线段BF上,在BC上方作射线BN,使∠CBN=∠1,交CM 的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);
19.(8分)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,
其中x=﹣2,y=﹣1.
20.(8分)已知:|3﹣xy|+(x+y-2)2=0,求x2+y2+4xy的值
20.(8分)如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠EGF=35°,求∠EFG的度数.
21.(8分)如图,已知∠A=∠F,∠C=∠D,按图在括号内填写理由.
解:∵∠A=∠F(已知)
∴ AC∥DF ( )
∴ = ( )
又∵∠C=∠D (已知)
∴ = ()
∴ BD∥CE ( )
22.(10分)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示是小明从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.
(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;
(2)小明修车用了多长时间?
(3)小明修车以前和修车后的平均速度分别是多少?
24.(12分)对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的等式.例如:计算左图的面积可以得到等式(a+b)(a+2b)=a2+3ab+2b2.请解答下列问题:
(1)观察如图,写出所表示的等式:=;
(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7x﹣5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值
25.(14分)小明和小亮在研究一个数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P 与∠A,∠C的数量关系.
(1)如图1,小明是这样证明的:过点P作PQ∥AB
∴∠APQ=∠A()
∵PQ∥AB,AB∥CD.
∴PQ∥CD()
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是这样证明的:过点作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是.
(2)应用:在图2中,若∠A=120°,∠C=140°,则∠APC的度数为;
(3)拓展:在图3中,探索∠APC与∠A,∠C的数量关系,并说明理由.。