定积分的简单应用练习题
- 格式:doc
- 大小:98.50 KB
- 文档页数:2
定积分的简单应用(二)复习:〔1〕求曲边梯形面积的方法是什么?〔2〕定积分的几何意义是什么?〔3〕微积分根本定理是什么?引入:我们前面学习了定积分的简单应用——求面积。
求体积问题也是定积分的一个重要应用。
下面我们介绍一些简单旋转几何体体积的求法。
简单几何体的体积计算问题:设由连续曲线y f(x)和直线x a,x b及x轴围成的平面图形〔如图甲〕绕x轴旋转一周所得旋转体的体积为V,如何求V?分析:在区间[a,b]内插入n 1个分点,使a x0x1x2L x n1x n b,把曲线y f(x)〔a x b〕分割成n个垂直于x轴的“小长条〞,如图甲所示。
设第i个“小长条〞的宽是x i x i x i1,i 1,2,L,n。
这个“小长条〞绕x轴旋转一周就得到一个厚度是x i的小圆片,如图乙所示。
当x i很小时,第i个小圆片近似于底面半径为y i f(x i)的小圆柱。
因此,第i个小圆台的体积V i近似为V i f2(x i)x i该几何体的体积V等于所有小圆柱的体积和:V[f2(x1)x1 f2(x2)x2L f2(x n)x n]这个问题就是积分问题,那么有:bf2(x)dx b2(x)dxV fa a归纳:设旋转体是由连续曲线y f(x)和直线x a,x b及x轴围成的曲边梯形绕x轴旋转V b2(x)dx而成,那么所得到的几何体的体积为fa2.利用定积分求旋转体的体积1/5〔1〕找准被旋转的平面图形,它的边界曲线直接决定被积函数〔2〕分清端点〔3〕确定几何体的构造〔4〕利用定积分进行体积计算3.一个以y轴为中心轴的旋转体的体积假设求绕y轴旋转得到的旋转体的体积,那么积分变量变为y,其公式为V b2(y)dy ga类型一:求简单几何体的体积例1:给定一个边长为a的正方形,绕其一边旋转一周,得到一个几何体,求它的体积思路:由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。
课时提升作业(十五)定积分的概念与微积分基本定理、定积分的简单应用(25分钟 50分)一、选择题(每小题5分,共25分)1.(2014·陕西高考)定积分的值为( ) A.e+2B.e+1C.eD.e-1【解析】选C.=e.2.(2015·泉州模拟)直线y=2x+4与抛物线y=x2+1所围成封闭图形的面积是 ( )10163235A.B. C. D.3333 【解析】选 C.直线与抛物线在同一坐标系中的图象如图,则其围成的封闭图形的面积是31-⎰[(2x+4)-(x2+1)]dx=31-⎰(-x2+2x+3)dx=323132(x x 3x)133-++=-. 3.(2015·南昌模拟)已知函数f(x)=2 x ,2x 0,x 1,0x 2,⎧-≤≤⎨+<≤⎩则22-⎰f(x)dx 的值为( )A.43B.4C.6D.203【解析】选D.22-⎰f(x)dx=02-⎰x2dx+20⎰(x+1)dx3202118120x (x x)(0)(420).2032323=++=++⨯+-=-4.一质点运动时速度与时间的关系为v(t)=t2-t+2,质点做直线运动,则此质点在时间[1,2]内的位移为( )17141311A.B. C. D.6366【解析】选A.质点在时间[1,2]内的位移为21⎰(t2-t+2)dt=3221117(t t 2t)1326-+=. 5.由直线x+y-2=0,曲线y=x3以及x 轴围成的图形的面积为( )4553A. B. C. D.3464【解析】选D.由题意得3x y 20,y x ,+-=⎧⎨=⎩解得交点坐标是(1,1).故由直线x+y-2=0,曲线y =x3以及x 轴围成的图形的面积为1⎰x3dx+21⎰(2-x)dx=421211113x (2x x )0142424+-=+=. 【方法技巧】求平面几何图形面积的技巧求平面几何图形的面积,需根据几何图形的形状进行适当分割,然后通过分别求相应区间上的定积分求出各自的面积,再求和.二、填空题(每小题5分,共15分)6.已知t>0,若(2x-1)dx=6,则t 的值等于 .【解析】 (2x-1)dx=2xdx-1dx=22t t x xt t,-=-由t2-t=6得t=3或t=-2(舍去).答案:3【加固训练】设函数f(x)=ax2+b(a ≠0),若3⎰f(x)dx=3f(x0),则x0等于( ) A.±1B.2C.±3D.2【解析】选C.30⎰f(x)dx=30⎰(ax2+b)dx=331(ax bx)9a 3b 03+=+,所以9a+3b=3(a 20x +b),即20x =3,x0=±3,故选C.7.(2015·深圳模拟)由曲线y=sin x,y=cos x 与直线x=0,x=2π所围成的平面图形(图中的阴影部分)的面积是 .【解析】由图可得阴影部分面积S=240π⎰(cos x-sin x)dx=()2sin x cos x 4π+=2(2-1).答案:22-28.(2013·湖南高考)若x2dx=9,则常数T的值为.【解析】x2dx=33T11(x)T933==,所以T=3.答案:3三、解答题9.(10分)(2015·哈尔滨模拟)求由曲线y=x,直线y=x-2及y轴所围成的图形的面积.【解析】y=x与y=x-2以及y轴所围成的图形为如图所示的阴影部分,联立y x,y x2⎧=⎪⎨=-⎪⎩得交点坐标为(4,2),故所求面积为S=4⎰[x-(x-2)]dx=32242x16[x(2x)]323--=.【加固训练】设变力F(x)作用在质点M上,使M沿x轴正向从x=1运动到x=10,已知F(x)=x2+1且方向和x 轴正向相同,求变力F(x)对质点M所做的功.【解析】变力F(x)=x2+1使质点M沿x轴正向从x=1运动到x=10所做的功为W=101⎰F(x)dx=101⎰(x2+1)dx()3101(x x)342J.13=+=(20分钟40分)1.(5分)(2015·金华模拟)图中阴影部分的面积是()A.16B.18C.20D.22【解析】选B.由2y x4,y2x,=-⎧⎨=⎩得x2,y2=⎧⎨=-⎩或x8,y4,=⎧⎨=⎩则阴影部分的面积为S=222x⎰dx+82⎰(2x -x+4)dx3322228422211638 x(x x4x)18.0233233=+-+=+=2.(5分)若f(x)=()xf x4,x0,2cos 3tdt,x06->⎧⎪⎪π⎨+≤⎪⎪⎩⎰,则f(2 014)=.【解析】当x>0时,f(x)=f(x-4), 则f(x+4)=f(x),所以f(2 014)=f(2)=f(-2),又因为6π⎰cos 3tdt=11(sin 3t),633π=所以f(2 014)=f(-2)=2-2+13=712.答案:7 123.(5分)(2015·长沙模拟)如图,矩形OABC内的阴影部分是由曲线f(x)=sin x(x∈(0,π))及直线x=a(a∈(0,π))与x轴围成,向矩形OABC内随机投掷一点,若落在阴影部分的概率为14,则a的值是.【解题提示】利用定积分求出阴影部分面积,再利用几何概型求解.【解析】由已知S 矩形OABC=a ×6a =6,而阴影部分的面积为S=a0⎰sin xdx=(-cos x)a0 =1-cos a,依题意有OABCS11cos a 1,,S 464-==矩形即得:cos a=-12,又a ∈(0,π), 所以a=23π. 答案:23π4.(12分)汽车以54 km/h 的速度行驶,到某处需要减速停车,设汽车以等加速度-3 m/s2刹车,问从开始刹车到停车,汽车走了多远?【解析】由题意,得v0=54 km/h=15 m/s. 所以v(t)=v0+at=15-3t.令v(t)=0,得15-3t=0.解得t=5. 所以开始刹车5 s 后,汽车停车.所以汽车由刹车到停车所行驶的路程为s=5⎰v(t)dt=5⎰(15-3t )dt=253(15t t )02-=37.5(m).故汽车走了37.5 m. 5.(13分)(能力挑战题)如图所示,直线y=k x 分抛物线y=x-x2与x 轴所围图形为面积相等的两部分,求k 的值.【解析】抛物线y=x-x2与x 轴两交点的横坐标为 x1=0,x2=1,所以,抛物线与x 轴所围图形的面积S=10⎰(x-x2)dx=231x 11(x ).0236-= 由2y x x ,y kx,⎧=-⎨=⎩可得抛物线y=x-x2与y=kx 两交点的横坐标为x3=0,x4=1-k, 所以S 2=1k 0-⎰(x-x2-kx)dx()3231k 1k 11(x x )1k .0236--=-=-又知S=16,所以(1-k)3=12,于是3314k 1122==-. 【加固训练】曲线C:y=2x3-3x2-2x+1,点P(12,0),求过P 的切线l 与C 围成的图形的面积.【解析】设切点坐标为(x0,y0),y ′=6x2-6x-2, 则f ′(x0)=6x02-6x0-2,切线方程为y=(6x02-6x0-2)1(x )2-, 则y0=(6x02-6x0-2)01(x )2-, 即2x03-3x02-2x0+1=(6x02-6x0-2)·01(x )2-, 整理得x0(4x02-6x0+3)=0,解得x0=0,则切线方程为y=-2x+1.解方程组32y 2x 1,y 2x 3x 2x 1,=-+⎧⎨=--+⎩ 得x 0,y 1=⎧⎨=⎩或3x ,2y 2.⎧=⎪⎨⎪=-⎩ 由y=2x3-3x2-2x+1与y=-2x+1的图象可知S=32⎰[(-2x+1)-(2x3-3x2-2x+1)]dx=32⎰(-2x3+3x2)dx=2732.。
图3 定积分应用1、直角坐标系下平面图形面积的计算①连续曲线()(()0),y f x f x x a x b =≥==及及x 轴所围成的平面图形面积为()baA f x dx =⎰②设平面图形由上下两条曲线y f 上(x )及y f 下(x )及左右两条直线x a 及x b 所围成 则面积元素为[f 上(x ) f 下(x )]dx 于是平面图形的面积为: dxx f x f S b a ⎰-=)]()([下上③连续曲线()(()0),x y y c y d φφ=≥==及y 及y 轴所围成的平面图形面积为()dc A y dy φ=⎰④由方程1()x y φ=及2()x y φ=以及,y c y d ==所围成的平面图形面积为12[()()]d c A y y dy φφ=-⎰ 12()φφ>例1 计算两条抛物线2x y =及2y x =所围成的面积.解 求解面积问题,一般需要先画一草图(图3),我们要求的是阴影部分的面积.需要先找出交点坐标以便确定积分限,为此解方程组:⎩⎨⎧==22y x x y得交点(0,0)和(1,1).选取x 为积分变量,则积分区间为]1,0[,根据公式(1) ,所求的面积为一般地,求解面积问题的步骤为:(1) 作草图,求曲线的交点,确定积分变量和积分限.(2) 写出积分公式. (3) 计算定积分. 例2 计算抛物线y22x 及直线y x 4所围成的图形的面积解 (1)画图(2)确定在y 轴上的投影区间: [2 4](3)确定左右曲线4)( ,21)(2+==y y y y 右左ϕϕ(4)计算积分例3 求在区间[21,2 ]上连续曲线 y=ln x ,x 轴及二直线 x =21,及x = 2所围成平面区域(如图2)的面积 。
解:已知在[21,2 ]上,ln x ≤ 0 ; 在区间[ 1 , 2 ]上,ln x ≥0 ,则此区域的面积为: A = dx x ⎰221ln = dx x ⎰-221ln + dx x ⎰21ln例4 求抛物线 y 2=x 及x-2y-3=0所围成的平面图形(图 3)的面积 A 。
定积分的简单应用定积分是高中新增的数学的内容,是高等数学的基础。
它在初等数学中有着广泛的应用。
下面举例说明如下,供同学们学习时参考。
一.求函数表达式 例1设)(x f 连续,且⎰+=1)(2)(dtt f x x f ,求)(x f解:记⎰=10)(dtt f a ,则a x x f 2)(+=两端积分得:⎰⎰+=+=11221)2()(a dx a x dx x fa a 221+=,21-=a1)(-=∴x x f 。
二、计算平面图形的面积 例2计算正弦曲线y=sin 在[0,]上与轴所围成的平面图形的面积。
解:。
例3求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1) 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x x x x x x A 三、平行截面面积为已知的立体体积例4曲线()1522=-+y x 绕x 轴旋转一周,求旋转体的体积。
解:⎰--+=11222)15(dx x V π,⎰--=11221)15(dx x V π12V V V -=⎰--+=1122)15(dx x π⎰----1122)15(x π 211210220120ππππ=⋅=-=⎰-dx x四、求旋转体的体积例5求底圆半径为r ,高为h 的圆锥体的体积。
解:建立如右图坐标系,则圆锥体可看成是由直线,x hry =h x =及x 轴所围成三角形绕x 轴旋转一周而成,故圆锥体体积h r x hr x x h r V hh2003222π313πd )(π=⋅==⎰ 五、求函数利润问题 例6Oxy 22)2(-=x y2xy = xyO ),(r h215x y -+=215x y --=六、在物理中的应用例7汽车以每小时32公里速度行驶,到某处需要减速停车。
第四章DISIZHANG定积分§3定积分的简单应用课后篇巩固提升A组1.设f(x)在区间[a,b]上连续,则曲线f(x)与直线x=a,x=b,y=0围成的图形的面积为( )A.∫ba f(x)dx B.|∫f(x)badx|C.∫ba|f(x)|dx D.以上都不对f(x)在区间[a,b]上满足f(x)<0时,∫baf(x)dx<0,排除A;当围成的图形同时存在于x轴上方与下方时,∫baf(x)dx是两图形面积之差,排除B;无论什么情况C都正确.2.下列各阴影部分的面积S不可以用S=∫ba[f(x)-g(x)]dx求出的是( )S=∫ba[f(x)-g(x)]dx的几何意义是求函数f(x)与g(x)之间的阴影部分的面积,必须注意f(x)的图像要在g(x)的图像上方,对照各选项可知,D项中的f(x)的图像不全在g(x)的图像上方.故选D.3.如图,由函数f(x)=e x-e的图像,直线x=2及x轴围成的阴影部分的面积等于( )A.e2-2e-1B.e2-2eC.e 2-e 2D.e2-2e+1S=∫21f(x)dx=∫21(e x-e)dx=(e x-e·x)|12=e2-2e.4.直线y=2x,x=1,x=2与x轴围成的平面图形绕x轴旋转一周得到一个圆台,则该圆台的体积为( )A.28π3B.32π C.4π3D.3πV=∫21π·(2x)2dx=π∫214x2dx=4π·13x3|12=4π3(8-1)=28π3.5.如图所示,在边长为1的正方形OABC中,任取一点P,则点P恰好取自阴影部分的概率为( )A.14B.15C.16D.17{y=√x,y=x,得O(0,0),B(1,1).则S阴影=∫1(√x-x)dx=(23x 32-x 22)|01=23−12=16.故所求概率为S 阴影S 正方形=161=16.6.曲线y=cos x (π2≤x ≤3π2)与x 轴围成的平面图形的面积为 .解析由图可知,曲线y=cosx (π2≤x ≤3π2)与x 轴围成的平面图形的面积S=∫3π2π2cos xdx=-sin xπ23π2=(-sin3π2)−(-sin π2)=2.7.在同一坐标系中,作出曲线xy=1和直线y=x 以及直线y=3的图像如图所示,则阴影部分的面积为 . ∫113(3-1x )dx+∫31(3-x)dx=(3x-lnx)|131+(3x -12x 2)|13=3-(1-ln 13)+(9-12×32)−(3-12)=4-ln3.8.计算由y 2=x,y=x 2所围成图形的面积.,为了确定图形的范围,先求出这两条曲线的交点的横坐标.解方程组{y 2=x ,y =x 2,得出交点的横坐标为x=0或x=1.因此,所求图形的面积S=∫10(√x -x2)dx,又因为(23x 32-13x 3)'=x 12-x 2,所以S=(23x 32-13x 3)|01=23−13=13.9.求由曲线y=x 2+4与直线y=5x,x=0,x=4所围成的平面图形的面积.,如图所示.所求平面图形为图中阴影部分.解方程组{y =x 2+4,y =5x ,得交点为A(1,5),B(4,20).故所求平面图形的面积S=∫1(x 2+4-5x)dx+∫41(5x-x 2-4)dx=(13x 3+4x -52x 2)|01+(52x 2-13x 3-4x)|14=13+4-52+52×42-13×43-4×4-52+13+4=193.10.求抛物线y 2=2x 与直线y=4-x 围成的平面图形的面积.{y 2=2x ,y =4-x得抛物线和直线的交点为(2,2)及(8,-4).方法一:选x 作为积分变量,由图可得S=S A 1+S A 2.在A 1部分:由于抛物线的上部分方程为y=√2x ,下部分方程为y=-√2x ,所以S A 1=∫2[√2x -(-√2x )]dx=2√2∫20x 12dx=2√2·23x 32|02=163.S A 2=∫82[4-x-(-√2x )]dx =(4x -12x 2+2√23x 32)|28=383.所以S=163+383=18.方法二:∵y 2=2x,∴x=12y 2. 由y=4-x.得x=4-y,∴S=∫2-4(4-y -12y 2)dy=(4y -12y 2-16y 3)|-42=18.B 组1.如图,已知曲线y=f(x)与直线y=0,x=-32,x=2围成的图形面积为S 1=1,S 2=3,S 3=32,则∫2-32f(x)dx 等于( )A.112B.12C.-12D.72∫2-32f(x)dx=∫-1-32f(x)dx+∫1-1f(x)dx+∫21f(x)dx=S 1-S 2+S 3=1-3+32=-12.2.设直线y=1与y 轴交于点A,与曲线y=x 3交于点B,O 为原点,记线段OA,AB 及曲线y=x 3围成的区域为Ω.在Ω内随机取一点P,已知点P 取在△OAB 内的概率等于23,则图中阴影部分的面积为( )A.13B.14C.15D.16{y =1,y =x 3,解得{x =1,y =1. 则曲边梯形OAB 的面积为∫1(1-x 3)dx=(x -14x 4) 01=1-14=34.∵在Ω内随机取一个点P,点P 取在△OAB 内的概率等于23, ∴点P 取在阴影部分的概率等于1-23=13,∴图中阴影部分的面积为34×13=14.故选B.3.如图所示,直线y=kx 分抛物线y=x-x 2与x 轴所围成图形为面积相等的两部分,则k 的值为 .y=x-x 2与x 轴两交点横坐标为0,1,∴抛物线与x 轴所围成图形的面积为S=∫1(x-x 2)dx=(x 22-x 33)|01=16,抛物线y=x-x 2与直线y=kx 的两交点横坐标为0,1-k.∴S 2=∫1-k0(x-x 2-kx)dx=(1-k2x 2-x33)|01-k =16(1-k)3.又∵S=16,∴(1-k)3=12.∴k=1-√123=1-√432. 1-√4324.由直线y=x 和曲线y=x 3(x≥0)所围成的平面图形,绕x 轴旋转一周所得旋转体的体积为 .{y =x ,y =x 3(x ≥0),得{x =0,y =0,或{x =1,y =1.故所求体积V=∫1πx 2dx-∫10πx 6dx=π∫10x 2dx-π∫1x 6dx=π(13x 3|01-17x 7|01)=π(13-17)=4π21.5.已知函数f(x)=x 3-x 2+x+1,求其在点(1,2)处的切线与函数g(x)=x 2围成的图形的面积.(1,2)为曲线f(x)=x 3-x 2+x+1上的点,设过点(1,2)处的切线的斜率为k,则k=f'(1)=3×12-2×1+1=2,∴过点(1,2)处的切线方程为y-2=2(x-1),即y=2x.∴y=2x 与函数g(x)=x 2围成的图形如图.由{y =x 2,y =2x可得交点A(2,4). 又S △AOB =12×2×4=4,g(x)=x 2与直线x=2,x 轴围成的区域的面积S=∫20x 2dx=13x3|02=83,∴y=2x 与函数g(x)=x 2围成的图形的面积为S'=S △AOB -S=4-83=43.。
【高考数学】定积分的概念、基本定理及其简单应用1未命名一、单选题1.由曲线2y x = ,3y x =围成的封闭图形的面积为( ) A .13B .14C .112D .7122.由曲线y =直线2y x =-及y 轴所围成的平面图形的面积为( )A .6B .4C .103D .1633.若20sin a xdx π=⎰,则函数1()x f x ax e -=+的图象在1x =处的切线方程为( )A .20x y -=B .20x y +=C .20x y -=D .20x y +=4.二项式()()310mx m ->展开式的第二项的系数为-3,则22mx dx -⎰的值为( )A .3B .73C .83D .25.已知函数()())11001x x f x x ⎧+-≤≤=<≤,则()1-1x f x d ⎰的值为( ) A .1+2π B .1+24π C . 1+4π D .1+22π6.1(e )d x x x --=⎰A .11e --B .1-C .312e-+D .32-7.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( ) A .1112B .3316C .3516D .125488.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为( )A.6B .13C .23D .439.若2,a ln =125b -=,201cos 2c xdx π=⎰,则,,a b c 的大小关系( )A .a b c <<B .b a c <<C .c b a <<D .b c a <<10.平面直角坐标系中,过坐标原点O 作曲线:x C y e =的切线l ,则曲线C 、直线l 与y 轴所围成的封闭图形的面积为( )A .112e - B .2e C .12e -D .32e -11.正方形的四个顶点 分别在抛物线 和 上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是 ( )A .B .C .D .12.曲线4y x=与直线5y x =-围成的平面图形的面积为( ) A .152B .154C .154ln 24- D .158ln 22- 13.曲线()22f x x =,()22g x x x =-以及直线14x =所围成封闭图形的面积为( )A .132B .116C .18 D .1414.曲线 , 和直线 围成的图形面积是( ) A . B .C .D .15.()22310xk dx +=⎰,则k =( )A .1B .2C .3D .416.若1201ln 2,5,sin 4a b c xdx π-===⎰,则a ,b ,c ,的大小关系( ) A .a b c <<B .b a c <<C .c b a <<D .b c a <<17.已知()6cos 1x t dx π-=⎰,则常数t 的值为( )A .3π-B .1π-C .32π-D .52π-18.已知函数()f x 满足()()4f x f x =-,()524f x dx =⎰,则()51f x d x -⎰等于( )A .0B .2C .8D .不确定19.函数()1f x x=与两条平行线x e =,4x =及x 轴围成的区域面积是( ) A .2ln21-+B .2ln 21-C .ln 2-D .ln 220.由曲线y =x 2和曲线y =( )A .13B .310C .14D .1521.在812x ⎛⎫+ ⎪⎝⎭二项展开式中3x 的系数为m ,则()120x mx dx +=⎰( ) A .176B .206C .236D .26622.已知函数3,1()1,1x x f x x x⎧⎪=⎨≥⎪⎩<,(e 为自然对数的底数)的图象与直线x e =,x 轴围成的区域为E ,直线x e =与1y =围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为( ) A .58eB .18eC .43eD .12e23.曲线21:C y x =,22:4C y x x =-以及直线:2l x =所围成封闭图形的面积为( )A .1B .3C .6D .824.已知曲线cos y x =,其中30,2x π⎡⎤∈⎢⎥⎣⎦,则该曲线与坐标轴围成的面积等于( )A .1B .2C .52D .325.曲线2sin (0)y x x π=≤≤与直线1y =围成的封闭图形的面积为( ) A.43π B.23π C.43π D.23π 26.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .785427.用S 表示图中阴影部分的面积,若有6个对面积S 的表示,如图所示,()caS f x dx =⎰①;()caS f x dx =⎰②;()c a S f x dx =⎰③;()()b ca bS f x dx f x dx =-⎰⎰④;()()c b baS f x dx f x dx =-⎰⎰⑤;()()b cabS f x dx f x dx =-⎰⎰⑥.则其中对面积S 的表示正确序号的个数为( )A .2B .3C .4D .528.如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( )A .21π-B .2πC .22πD .221π-29.函数()2,? 0,2,x x f x x -≤=<≤,则()22f x dx -⎰的值为 ( ) A .6π+B .2π-C .2πD .830.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为()A .16B.6C .13D .2331.111d ex x ⎛⎫- ⎪⎝⎭⎰的值为( ) A .e 2-B .eC .e 1+D .e 1-32.已知412(1)x a x x ⎛⎫++- ⎪⎝⎭展开式中3x 项的系数为5,则0⎰=( ) A .2πB .πC .2πD .4π33.在4(1)(21)x x +-的展开式中,2x 项的系数为a ,则0(2)ax e x dx +⎰的值为( )A .1e +B .2e +C .23e +D .24e +34.1012x dx ⎫=⎪⎭⎰( ) A .14π+ B .12π+ C .124π+D .14π+35.已知,由抛物线2y x =、x 轴以及直线1x =所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S 的值为( )A .12B .13C .14D .2536.计算2131dx x ⎛⎫+ ⎪⎝⎭⎰的值为( ) A .ln21+ B .2ln 21+ C .3ln23+D .3ln 21+37.设曲线cos y x =与x 轴、y 轴、直线6x π=围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[]1,+∞上的单调递减,则实数k 的取值范围是( )A .[)0,+∞B .()0,∞+C .[)1,+∞D .()1,+∞38.设[](]2,0,1,(){1,1,e x x f x x x∈=∈(其中为自然对数的底数),则0()ef x dx ⎰的值为( )A .43B .54C .65D .39.若ln 2a =,125b -=,201cos 2c xdx π=⎰,则a ,b ,c 的大小关系()A .a b c <<B .b a c <<C .c b a <<D .b c a <<40.定积分)232sin x x dx -+⎰的值是( )A .πB .2πC .2π+2cos2D .π+2cos241.如图所示,阴影部分的面积为()A .()41f x dx -⎰B .()41f x dx --⎰C .()()3413f x dx f x dx --⎰⎰D .()()4331f x dx f x dx --⎰⎰42.在平面直角坐标系中,由坐标轴和曲线3cos 02y x x π⎛⎫=≤≤⎪⎝⎭所围成的图形的面积为( ) A .2 B .52C .3D .443.已知()12201,log 3,cos6a x dxbc π=-==⎰,则,,a b c 的大小关系是()A .a b c <<B .c a b <<C .a c b <<D .b c a <<44.定积分()1214d x x x --=⎰( )A .0B .1-C .23-D .2-45.由曲线22y x x =+与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .56D .2346.函数f x ()在区间[15]-, 上的图象如图所示,0()()xg x f t dt =⎰,则下列结论正确的是( )A .在区间04(,)上,g x ()先减后增且0g x <()B .在区间04(,)上,g x ()先减后增且0g x >()C .在区间04(,)上,g x ()递减且0g x >()D .在区间04(,)上,g x ()递减且0g x <() 47.若函数f (x)= +x ,则= A .B .C .D .48.已知225sin )a x dx -=⎰,且2am π=.则展开式212(1)m x x ⎛⎫-- ⎪⎝⎭中x 的系数为( ) A .12B .-12C .4D .-449.设,则的展开式中的常数项为A .20B .-20C .120D .-120二、填空题50.设抛物线C :22(0)y px p =>,过抛物线的焦点且平行于y 轴的直线与抛物线围成的图形面积为6,则抛物线的方程为________.51.若曲线y =x m =,0y =所围成封闭图形的面积为2m ,则正实数m =______.52.由曲线3y x =(x ≥0)与它在1x =处切线以及x 轴所围成的图形的面积为___________.53.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 54.定积分=⎰____________.55.若函数的图象如图所示,则图中的阴影部分的面积为 ;56.已知1a -=⎰,则61[(2)]2a x xπ+--展开式中的常数项为______.57.已知实数x ,y 满足不等式组2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,且z =2x -y 的最大值为a ,则1e a dx x ⎰=______.58.如图放置的边长为1的正方形 沿 轴滚动,点 恰好经过原点.设顶点 的轨迹方程式 ( ),则对函数 有下列判断: ①函数 是偶函数;②对任意的 ,都有 ; ③函数 在区间 上单调递减; ④.其中判断正确的序号是 .59.222(3)x sinx dx --=⎰______.60.由x 的正半轴、2y x =和4x =所围成的封闭图形的面积是______61.12xdx ⎰的值为________.62.0=⎰_________.63.(434sin x dx -⎰的值为__________.64.若04sin n xdx π=⎰,2⎛⎝nx 的展开式中常数项为________.65.如图,在平面直角坐标系xoy 中,将直线y 2x=与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积V 圆锥1=⎰π(2x )2dx 310|1212x ππ==据此类比:将曲线y =x 2(x ≥0)与直线y =2及y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =_____.66.若()12143a x dx --=⎰,则a =______. 67.直线x =0、直线y =e +1与曲线y =e x +1围成的图形的面积为_____. 68.(12x dx +=⎰________69.1||-1x e dx ⎰值为______.70.22sin )x dx -+=⎰___________71.已知数列{}n a 是公比120=⎰q x dx 的等比数列,且312a a a =⋅,则10a =________.72.33(sin cos x x dx -+=⎰______.73.设计一个随机试验,使一个事件的概率与某个未知数有关,然后通过重复试验,以频率估计概率,即可求得未知数的近似解,这种随机试验在数学上称为随机模拟法,也称为蒙特卡洛法。
定积分的简单应用
1、设235111111,,a dx b dx c dx x x x ===⎰⎰⎰,则下列关系式成立的是( ) A .235a b c << B .325b a c << C .523c a b << D .253a c b <<
2、由曲线sin ,cos y x y x ==与直线0,2x x π
==所围成的平面图形(图1中的阴影部分)
的面积是( )
A .1
B .
4π C .22
D .222- 3、设函数n a x x f )()(+=,其中()()
,300,cos 6/2
0-==⎰f f xdx n π则()x f 的展开式中4x 的系数为( )
4、曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )
5.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ) m m m m
6、设函数f (x )=ax 2+b (a ≠0),若∫30f (x )d x =3f (x 0),则x 0等于( )
A .±1 C .± 3 D .2
7、12
2)x x x dx --⎰(等于( ) A .2
4π- B. 2
2π- C. 12π- D. 14
π- 8.函数F (x )=⎠⎛0
x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323
C .有最小值-323,无最大值
D .既无最大值也无最小值
9、计算20π⎰
sin 2x d x =_________________;∫32⎝ ⎛⎭⎪⎫x +1x 2d x=___________________; ∫20|x -1|d x=_________________;20π⎰1-sin 2x d x=__________________. 10、若 11(2)3ln 2(1)a x dx a x
+=+>⎰,则a 的值是_____________ ; 11、.如图,在矩形ABCD 中,AB =2.AD =3,AB 中点为E ,点F ,G 分别在线段AD ,
BC 上随机运动,则∠FEG 为锐角的概率为 。
12、当x ∈R ,|x|<1时,有如右表达式:1+x +x 2+…+x n +…=11-x
. 两边同时积分得:∫1201dx +∫120xdx +∫120x 2dx +…+∫120x n dx +…=∫12011-x
dx , 从而得到如右等式:1×12+12×⎝⎛⎭⎫12+13×⎝⎛⎭⎫12+…+1n +1×⎝⎛⎭
⎫12+…=ln 2. 请根据以上材料所蕴含的数学思想方法,计算:C 0n ×12+12C 1n ×122+13C 2n ×123+…+1n +1C n n ×⎝⎛⎭
⎫12=__________. 13.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.
14.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P 的坐标.
15.一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度t t t v ++
-=1555)((单位:m/s )紧急刹车至停止。
求:
(I )从开始紧急刹车到火车完全停止所经过的时间;
(Ⅱ)紧急刹车后火车运行的路程。