量子力学课后习题
- 格式:doc
- 大小:187.50 KB
- 文档页数:5
量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当A50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。
[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。
这个公式就是斯忒蕃——玻耳兹曼公式。
其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------yy y y y ye e e e e e∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n n π故⎰∞=⨯=-0443159061ππy e dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当A50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。
[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。
这个公式就是斯忒蕃——玻耳兹曼公式。
其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------yy y y y ye e e e e e∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n n π故⎰∞=⨯=-0443159061ππy e dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。
证明:由普朗克黑体辐射公式:ννπνρννd e c h d kTh 11833-=, 及λνc=、λλνd cd 2-=得1185-=kThc ehc λλλπρ,令kT hcx λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x xe xe用图解法求得97.4=x ,即得97.4=kThcm λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长.解:010A 7.09m 1009.72=⨯≈==-mEh p h λ #1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
解:010A 63.12m 1063.1232=⨯≈===-mkTh mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k#1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q Ep的平面运动,轨道为椭圆,两半轴分别为22,2μωμEb E a ==,相空间面积为,2,1,0,2=====⎰n nh EEab pdq νωππ所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为()ϕω+=t A q sin速度为 ()ϕωω+='t A q cos ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为()()nh TA dt t A dt t A pdq T T==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=nνμωnh Tnh A E ===222, ,2,1,0=n(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dvλλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThc λ ,则上述方程为x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=h v ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学课后习题答案量子力学是物理学中一门重要的学科,它描述了微观粒子的行为和性质。
在学习量子力学的过程中,习题是不可或缺的一部分,通过解答习题可以巩固对该学科的理解和应用。
本文将为大家提供一些量子力学课后习题的答案,希望能对大家的学习有所帮助。
1. 请解释什么是量子力学中的“叠加态”?在量子力学中,叠加态是指一个量子系统处于多个可能状态的线性组合。
这意味着在特定的测量之前,量子系统可以同时处于多个不同的状态。
例如,一个电子可以处于自旋向上和自旋向下的叠加态。
只有在进行测量时,才会决定电子的自旋是向上还是向下。
2. 什么是量子力学中的“测量”?在量子力学中,测量是指对量子系统进行观察并获取其性质或状态的过程。
量子力学的基本原理之一是测量会导致量子系统的状态塌缩到一个确定的状态。
例如,在测量一个电子的自旋时,我们只能观察到它的自旋向上或自旋向下,而不是同时观察到两个状态。
3. 请解释什么是量子力学中的“不确定性原理”?不确定性原理是量子力学的一个基本原理,由海森堡提出。
它指出,在某些物理量(如位置和动量、能量和时间等)之间存在一种固有的不确定性关系,无法同时准确测量这些物理量的值。
换句话说,我们无法同时精确地知道一个粒子的位置和动量,或者一个系统的能量和时间。
4. 请解释什么是量子力学中的“波粒二象性”?波粒二象性是指微观粒子既可以表现出粒子性质,又可以表现出波动性质。
根据波动性,微观粒子可以像波一样传播,并且存在干涉和衍射现象。
根据粒子性,微观粒子具有离散的能量和动量,并且在测量时表现出局部性。
5. 请解释什么是量子力学中的“量子纠缠”?量子纠缠是指两个或多个量子系统之间存在一种特殊的关联关系,使得它们的状态无法独立描述。
当两个量子系统纠缠在一起时,它们的状态会相互依赖,无论它们之间的距离有多远。
这种纠缠关系在量子通信和量子计算中具有重要的应用。
以上是对一些量子力学课后习题的简要答案。
通过解答这些习题,我们可以更好地理解和应用量子力学的概念和原理。
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有[,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有@xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么>ep E μ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ:最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学科恩课后习题答案量子力学科恩课后习题答案量子力学是现代物理学的重要分支,研究微观粒子的行为和性质。
科恩是一位著名的量子力学教授,他的课程内容深入浅出,为学生提供了丰富的知识和习题。
本文将为读者解答一些量子力学科恩课后习题,帮助读者更好地理解量子力学的概念和原理。
1. 习题:描述薛定谔方程的基本原理是什么?答案:薛定谔方程是量子力学的基本方程,描述了微观粒子的波函数随时间的演化。
薛定谔方程的基本原理是根据哈密顿量和波函数的关系,通过解薛定谔方程得到粒子的波函数随时间的变化规律。
薛定谔方程的一般形式为:iħ∂ψ/∂t = Hψ,其中i是虚数单位,ħ是约化普朗克常数,∂/∂t表示对时间的偏导数,H是系统的哈密顿量。
2. 习题:什么是量子力学中的叠加态?答案:量子力学中的叠加态是指粒子处于多个可能的状态之间的叠加状态。
根据量子力学的叠加原理,一个粒子可以同时处于多个状态之间,直到被测量时才会坍缩到其中一个确定的状态。
叠加态可以用数学上的线性组合表示,例如:|ψ⟩= α|0⟩+ β|1⟩,其中|0⟩和|1⟩是两个可能的状态,α和β是复数系数。
3. 习题:什么是量子纠缠?答案:量子纠缠是指两个或多个粒子之间存在一种特殊的关联关系,无论它们之间有多远,它们的状态仍然是相互依赖的。
量子纠缠是量子力学的重要特性,它违背了经典物理学的局域性原理。
例如,当两个纠缠态的粒子之间进行测量时,它们的结果是彼此相关的,无论它们之间的距离有多远。
4. 习题:什么是量子隧穿效应?答案:量子隧穿效应是指粒子在经典力学下无法通过势垒的情况下,通过量子力学的特性,在势垒中出现的概率。
根据量子力学的波粒二象性,粒子不仅可以被视为粒子,还可以被视为波动。
当粒子遇到势垒时,根据波动性质,它有一定的概率穿过势垒并出现在势垒的另一侧。
这种现象在纳米技术和核物理学中具有重要应用。
5. 习题:什么是量子力学中的不确定性原理?答案:量子力学中的不确定性原理是由海森堡提出的,指出在某些物理量的测量中,无法同时准确测量这些物理量的取值。
一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。
对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。
试用测不准关系判断该模型是否合理。
解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。
二、选择题1. 一组正交、归一的波函数123,,,ψψψ。
正交性的数学表达式为 a ,归一性的表达式为 b 。
()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。
------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
一.微观粒子的波粒二象性1、在温度下T=0k 附近,钠的价电子能量约为3电子伏特,求其德布罗意波长。
2、求与下列各粒子相关的德布罗意波长。
(1)能量为100电子伏特的自由电子;(2)能量为0.1电子伏特的自由中子;(3)能量为0.1电子伏特,质量为1克的自由粒子; (4)温度T=1k 时,具有动能kTE 23=的氦原子,其中k 为玻尔兹曼常数。
3、若电子和中子的德布罗意波长等于oA 1,试求它们的速度、动量和动能。
4、两个光子在一定条件下可以转化为正负电子对,如果两电子的能量相等,问要实现这种转化,光子的波长最大是多少?5、设一电子为电势差U 所加速,最后打在靶上,若电子的动能转化为一光子,求当这光子相应的光波波长分别为5000oA (可见光)o A 1(x 射线),oA001.0(γ射线)时,加速电子所需的电势差各是多少?二.波函数与薛定谔方程1、设粒子的归一化波函数为 ),,(z y x ϕ,求 (1)在),(dx xx +范围内找到粒子的几率;(2)在),(21y y 范围内找到粒子的几率; (3)在),(21x x 及),(21z z 范围内找到粒子的几率。
2、设粒子的归一化波函数为 ),,(ϕθψr ,求:(1)在球壳),(dr rr +内找到粒子的几率;(2)在),(ϕθ方向的立体角Ωd 内找到粒子的几率; 3、下列波函数所描述的状态是否为定态?为什么?(1)Eti ix Eti ix ex ex t x---+=ψ)()(),(211ψψ[])()(21x x ψψ≠(2)tE i t E i ex ex t x 21)()(),(2--+=ψψψ)(21E E ≠(3)EtiEti ex ex t x)()(),(3ψψ+=ψ-4、对于一维粒子,设 xp i o e xπψ21)0,(=,求 ),(t x ψ。
5、证明在定态中,几率密度和几率流密度均与时间无关。
6、由下列两个定态波函数计算几率流密度。
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳070601341林丽云 070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
第一章 绪论
1. 在0K 附近,钠的价电子能量约为3电子伏,求其德布洛意波长。
2. 氦原子的动能是32
E kT =(k 为玻耳兹曼常数),求T =1K 时,氦原子的德布洛意波长。
3. 利用玻尔-索末菲的量子化条件,求 (1) 一维谐振子的能量;
(2) 在均匀磁场中作圆周运动的电子轨道的可能半径。
4. 两个光子在一定条件下可发转化为正负电子对。
如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 第二章 波函数和薛定谔方程
1. 证明在定态中,几率密度和几率流密度与时间无关。
2. 由下列两定态波函数计算几率流密度:
(1)11ikr e r
ψ=,(2)11ikr e r
ψ-=
3. 求粒子在一维无限深势阱 中运动的能级和波函数。
4. 证明(2.6-14)式中的归一化常数是
5. 求一维线性谐振子处于第一激发态时几率最大的位置。
6. 试求算符ˆix d
F
ie dx
=-的本征函数。
7. 如果把坐标原点取在一维无限深势阱的中心,求阱中粒子的波函
数和能级的表达式。
0,2
(),2
a x U x a x ⎧≤⎪⎪=⎨⎪∞≥
⎪⎩
⎩⎨
⎧≥≤∞<<=a x x a
x x V 或0,
0,0)(a
A 1='
第三章 量子力学中的力学量
1. 一维线性谐振子处于基态
,求: (1)势能的平均值; (2)动能的平均值; (3)动量的几率分布函数。
2. 氢原子处于基态()0,,r
a r ψθϕ-=
,求: (1)r 的平均值;
(2)势能2
e r
-的平均值;
(3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。
3. 一刚性转子转动惯量为I ,它的能量的经典表示式是2
2L H I
=,L 为
角动量。
求与此对应的量子体系在下列情况下的定态能量及波函数: (1)转子绕一固定轴转动; (2)转子绕一固定点转动。
4. 一维运动的粒子的状态是
⎩⎨
⎧=-0)(x
Axe x λψ 00<≥x x 其中0>λ,求
(1)粒子动量的几率分布函数; (2)粒子的平均动量。
5. 在一维无限深势阱中运动的粒子,势阱的宽度为a ,如果粒子的状
t i x e ωαπ
αψ22102
2--=
)
(x a Ax -=ψ
态由波函数 描写,A 为归一化常数,求粒子能量的几率分布和能量的平均值。
6. 设氢原子处于状态
),()(23),()(21),,(11211021ϕθϕθϕθψ--=
Y r R Y r R r
求氢原子的能量,角动量平方及角动量z 分量的可能值,这些可能值出现的几率和这些力学量的平均值。
7已知ˆF
和ˆG 是二个厄密算符,试证明: (1) G F K
ˆˆˆ+=也是厄密算符 (2) 也是厄密算符
8. 令ˆˆˆx y L L iL +=+ 和ˆˆˆx y
L L iL -=-,试证明 (1)[ˆˆ,z L L +]=ˆL +;(2)[ˆˆ,L L +-]=ˆ2z L
第四章 态和力学量的表象
1. 求动量表象中角动量x L ˆ的矩阵元和2ˆx L 的矩阵元。
2. 求一维无限深势阱中粒子的坐标和动量在能量表象中的矩阵元。
3. 求在动量表象中线性谐振子的能量本征函数。
4. 求线性谐振子哈密顿量在动量表象中的矩阵元。
5. 设已知在2ˆL 和ˆz L 表象中,算符ˆx L 和ˆy
L 和矩阵分别为 ⎪⎪⎪⎭⎫ ⎝⎛=010*******ˆ x L ,
⎪⎪⎪⎭⎫ ⎝⎛--=000002ˆi i i i L y 求它们的本征值和归一化的本征函数。
最后将矩阵ˆx L 和ˆy
L 对角化。
6.设厄米算符ˆA ,ˆB 满足22ˆˆ1A B ==,ˆˆˆˆ0AB BA +=,求在ˆA 表象中,算符ˆA
和ˆB 的矩阵表示。
)ˆˆˆˆ(ˆF G G F i M -=
第五章 微扰理论
1.如果类氢原子的核不是点电荷,而是半径为r 0、电荷分布均匀的小球,计算这种效应对类氢原子基态能量的一级修正。
2.设一体系未受微扰作用时只有两个能级:E 01和E 02,现在受到微扰
ˆH '的作用,微扰矩阵元为1221ˆˆH H a ''==,1122
ˆˆH H b ''==;a ,b 都是实数。
用微扰公式求其能量至二级修正。
3.有一粒子,其 Hamilton 量的矩阵形式为:0ˆˆˆH
H H '=+,其中
求能级的一级近似和波函数的0级近似。
4. 在某一选定的一组正交基下哈米顿算符由下列矩阵给出
(1)设c << 1,应用微扰论求H 本征值到二级近似; (2)求H 的精确本征值;
(3)在怎样条件下,上面二结果一致。
5.求线性谐振子偶极跃迁的选择定则。
第七章 自旋与全同粒子 1. 求证:x y z i σσσ=。
2. 在ˆz s
本征态()12
10z s χ⎛⎫
= ⎪⎝⎭
下,求22()()?x y S S ∆∆= 3. 在ˆz S 表象中,求ˆx S 和ˆy
S 的本征值和所属的本征函数。
4. 求自旋角动量在()γβαcos ,cos ,cos 方向的投影
⎪⎪
⎪⎭
⎫ ⎝⎛-=2000301c c c
H 1
00000
00
2000200020<<⎪⎪⎪⎭
⎫
⎝⎛='⎪⎪
⎪
⎭
⎫ ⎝⎛=αααH H
γβαcos ˆcos ˆcos ˆˆz
y x n S S S S ++=
的本征值和所属的本征函数。
5. 设氢原子状态是
⎪⎪⎪⎪⎭⎫
⎝⎛-=),()(23),()(2
110211121ϕθϕθψY r R Y r R (1)求轨道角动量z 分量z L 和自旋角动量z 分量z S 的平均值;
(2)求总磁矩ˆ
ˆˆ2e e M
L S μμ
=-- (SI ) 的z 分量的平均值(用玻尔磁子表示)。
(3) 一体系由三个全同的玻色子组成,玻色子之间无相互作用。
玻
色
子只有两个可能的单粒子态。
问体系可能的状态有几个?它们的波函数怎样用单粒子波函数构成?
7. 证明)
1(S χ,)
2(S χ,)
3(S χ和A χ组成正交归一系。
8. 设两电子在弹性中心力场中运动,每个电子的势能是
221
()2
U r r μω=。
如果电子之间的库仑能和()U r 可以忽略,求当一个电子处在基态,另一个电子处于沿x 方向运动的第一激发态时,两电子组成体系的波函数。