发电厂电气部分论文发电厂电气论文
- 格式:doc
- 大小:60.50 KB
- 文档页数:8
发电厂电气安装与调试的技术要求与要点论文(优秀范文5篇)第一篇:发电厂电气安装与调试的技术要求与要点论文1前言如今,伴随着我国经济发展速度的不断加快,电力事业在最近几年来获得了更大的发展空间与更多的发展机遇。
电力系统具有着较高的复杂性,不仅同人们的日常生活有着非常密切的关联,而且对我国社会经济水平的提高也带来了较大的促进作用。
在电力系统中,电气设备是其中一项重要的组成部分,其中包括变压器、发电机、断路器以及电力线路等,为了能够提高电气设备的实用性价值,减少使用问题,进一步提高电气设备的安装调试水平是非常有必要的。
2发电厂电气安装与调试的技术要求2.1设备试验电气设备所需要达到的一个重要指标即为绝缘性能,尤其是对于类似于发电厂这种电压负荷较高的场所来说,就对电气设备的绝缘性提出了更高的要求。
安装人员在完成电气设备的安装工作后,需要严格按照相关规定来开展绝缘实验操作,进一步确定检验设备在规定电压范围内所能够达到的绝缘效果,从根本上避免局部放电现象的出现,切实提高生产工作的安全等级。
需要注意的是,安装人员要根据监测对象的实际条件来选择绝缘试验的类别,目前比较常见的有绝缘强度实验与绝缘特性实验两种。
其中,绝缘强度实验又可以被分为交流耐压、直流耐压、冲击电压这三个小项目,其最主要的检测目的是确定设备在操作冲击波、雷电冲击波以及工频电压条件中的绝缘性能。
在开展耐压实验的过程中,操作人员需要对设备施加超负荷电压,以此来检测设备在此种强度下的绝缘状态。
在开展交流耐压实验以前,操作人员需要确定要实验对象的吸收比以及绝缘电阻等主要参数,如果在操作过程中发现了绝缘障碍或潮湿状况,操作人员需要立即进行修复操作与干燥处理。
绝缘特性实验大致可以被分为电阻试验、含水量试验以及损耗角正切值实验者三种,其主要适用于受检测对象的基本绝缘参数。
2.2继电保护装置继电保护是确保电力系统安全运行的基础保障,当电网在运营过程中发生异常现象后,继电保护装置可以有效控制住故障的进一步扩散,缩小故障的波及范围。
摘要发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。
在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。
在本次设计中,主要针对了一次接线的设计。
从主接线方案的确定到厂用电的设计,从短路电流的计算到电气设备的选择以及配电装置的布置,都做了较为详尽的阐述。
二次接线则以发电机的继电保护的设计为专题,对继电保护的整定计算做了深入细致的介绍。
设计过程中,综合考虑了经济性、可靠性和可发展性等多方面因素,在确保可靠性的前提下,力争经济性。
设计说明书中所采用的术语、符号也都完全遵循了现行电力工业标准中所规定的术语和符号。
毕业设计任务书1毕业设计题目胜利火力发电厂电气部分设计专题:发电机继电保护设计2毕业设计要求及原始资料1、凝气式发电机的规模(1)装机容量装机4台容量2×25MW+2×50MW,U N=10.5KV (2)机组年利用小时 T MAX=6500h/a(3)厂用电率按8%考虑(4)气象条件发电厂所在地最高温度38℃,年平均温度25℃。
气象条件一般无特殊要求(台风、地震、海拔等)2、电力负荷及电力系统连接情况(1)10.5KV电压级电缆出线六回,输送距离最远8km,每回平均输送电量4.2MW,10KV最大负荷25MW,最小负荷16.8MW,COSφ= 0.8,T max = 5200h/a。
(2)35KV电压级架空线六回,输送距离最远20km,每回平均输送容量为5.6MW。
35KV电压级最大负荷33.6MW,最小负荷为22.4MW。
COSφ=0.8, T max =5200h/a。
(3)110KV电压级架空线4回与电力系统连接,接受该厂的剩余功率,电力系统容量为3500MW,当取基准容量为100MVA时,系统归算到110KV母线上的电抗X*S = 0.083。
(4)发电机出口处主保护动作时间t pr1 = 0.1S,后备保护动作时间t pr2 = 4S。
发电厂电气部分论文高压开关行业的进步电力系统是一个很大的实时工作系统。
它的发电、变电、输电、用电是在同一瞬间完成的,随着电力系统的覆盖范围越来越广、电力机组的容量越来越大、供用电及电力系统安全性要求越来越高,需要电力系统能够用很完备的自动控制方式来协调。
要让先进的控制系统最终能够实现控制,配备较为新型的断路器、组合电器是提高运行可靠性的重要措施之一。
其中,高压断路器(高压开关是指主要用于关合与开断正常或故障电路、或用于隔离高压电源的电器设备。
)是电力系统中最重要的设备,它既要根据电网运行要求,将一部分电气设备或线路投入或退出运行状态转为备用或检修状态,又要在电气设备或线路发生故障时,通过继电保护装置动作高压断路器将故障部分从电网中迅速切除,保护电网的无故障部分得以正常运行。
因此,高压断路器及其运行可靠性直接关系到整个电力系统的安全运行和供电质量,在电力系统中起着十分重要的作用。
高压开关的发展也就显得至关重要。
从国际形势来看,世界上高压开关的生产主要集中在欧洲几大公司(如西门子、ABB、Alston 等)和日本几大公司(如三菱、东芝、日立等),它们的产品基本上代表了世界发展水平。
2004年法国Alston公司研制出了采用真空和SF6复合式灭弧室的145kv等级的高压断路器,降低了高压断路器的外形尺寸和操作功,提高开断能力,增强电气特性,缩短燃弧时间。
日本东芝公司生产的GIS封闭式组合电器紧实小型化,防止环境污染,操作安全,维护方便。
德国西门子公司在生产传统高压开关的同时研制出第二代热膨胀灭弧室和双向运动触头系统,对提高产品操作寿命有很大的益处。
随着紧凑型高压开关设备的兴起,欧洲几大公司如ABB、西门子、Alston都竞相推出此类产品,它比起普通空气绝缘开关设备可节省占地面积60%,又比GIS节省大量费用。
这些公司共有的特点是产品更新换代快,研究费用的投入比例较大,并且建立了强大的试验研究基地。
在国内方面,开关产品生厂商主要分布在东部沿海地区和陕西、甘肃、河北、河南等中西部地区;其中包括国内知名的“五大开”大型国有企业,即北京开关厂、平顶山天鹰集团有限责任公司、西安高压开关厂、上海华通开关厂、沈阳高压开关有限责任公司。
浅谈断路器的工作原理及使用方法岑华蒙(广西科技大学电气与信息工程学院电气工程与自动化101班,学号201000307027)摘要:断路器(本文指漏电型断路器)是电力供配电系统中不可缺少的主要保护电器之一,也是功能最完善的保护电器,其主要作用是作为短路、过载、漏电、过压以及欠电压保护。
关键词:断路器;工作原理;电流参数;范围;选型;安装0 引言在实际应用过程中,往往由于一些人员对断路器的选择或使用不当,从而使断路器的功能不能完好的体现,给施工用电安全埋下隐患或发生用电安全事故。
因此要完整准确地选择断路器、了解短路器的工作原理、理解断路器的各个电流参数的意义、分清短路器的使用范围及正确的安装是十分必要的。
1 断路器的工作原理断路器漏电保护的工作原理是由三个连续功能来实现的,这三个功能实质上是同时作用的,分别为:检测剩余电流、对剩余电流进行测量比较、启动脱扣装置将故障电路断开。
检测剩余电流是通过一个电流互感器,其初级绕组测量电路的相线电流和零线电流,绕组方向使相线电流和零线电流产生的磁场相互抵消。
泄漏电流的产生破坏了这种平衡,并且会在次级绕组上通过磁场感应产生一个电流,叫做剩余电流;对剩余电流测量比较是使用一个电子式或电磁式继电器,将剩余电流的电信号与预设值相比较。
在正常用电情况下,连接跳闸机构的金属杆被一块永磁铁吸住,同时零序电流也产生电磁力,它与弹簧产生的力同时也作用在连接跳闸机构的金属杆上,通电状态下永磁铁的磁力(涌磁铁的磁力决定了断路器的灵敏度)大于弹簧和电磁力的合力,即跳闸机构不会动作,电路是接通状态;启动脱扣器即跳闸:只要剩余电流产生的电磁力大到能够抵抗永磁铁的磁力,弹簧使金属杆旋转,触发断路器的脱扣装置以断开故障电路。
同时断路器可配备不同的继电器或脱扣器。
脱扣器是断路器一个重要的组成部分,而继电器则通过与断路器操作机构相连的欠电压脱扣器、分励脱扣器来控制断路器,由脱扣器来完成其相应的其它保护功能(如过载、短路等)。
火力发电厂电气部分设计论文摘要:本文主要探讨火力发电厂电气部分的设计,包括电气主接线设计、发电机与变压器的连接形式选择、发电厂厂用电设计、主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择,以及短路电流计算和部分高压电气设备的选择与校验。
论文旨在通过优化设计,提高发电厂电气系统的可靠性和经济性。
一、引言火力发电厂是电力工业的重要组成部分,其运行效率直接影响到电力供应的安全与稳定。
在火力发电厂的总体设计中,电气部分的设计至关重要。
本文将重点讨论火力发电厂电气部分的设计方案和关键技术问题。
二、火力发电厂电气部分设计的主要内容1.电气主接线设计电气主接线是火力发电厂的重要组成部分,其主要功能是保障电能输送的稳定性和安全性。
在进行主接线设计时,应考虑以下因素:(1)可靠性:应能满足正常运行时的安全可靠供电,并能在事故情况下尽量减少停电时间;(2)灵活性:应能适应各种运行方式,并便于切换操作;(3)经济性:应考虑建设成本和运行维护费用;(4)扩展性:应考虑未来负荷增长的需要,方便进行扩建。
2.发电机与变压器的连接形式选择发电机与变压器的连接形式主要有直接连接和通过断路器连接两种。
直接连接适用于容量较小、电压较低的发电机组,此种方式下发电机与变压器直接相连,结构简单、维护方便。
对于大容量、高电压的发电机组,采用断路器连接更为合适,因为这种方式可以通过断路器实现发电机的快速启动和停机,提高系统的稳定性。
3.发电厂厂用电设计厂用电系统是火力发电厂的重要组成部分,其设计的合理与否直接影响到发电厂的运行效率。
在进行厂用电设计时,应考虑以下因素:(1)供电可靠性:应保证重要负荷的供电不中断或少中断;(2)用电安全性:应保证人身和设备的安全;(3)节能环保:应采取措施降低能耗和减少对环境的影响;(4)可扩展性:应考虑未来发展的需要,方便进行扩建。
4.主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择主变压器是火力发电厂的核心设备,其容量和台数的选择需根据发电厂的总体规划、用电负荷、运行方式等因素综合考虑。
发电⼚电⽓部分毕业论⽂⽬录摘要……………………………………………...................... 第1章设计任务……………………………..................... 第2章电⽓主接线图………………………........................2.1 电⽓主接线的叙述……………………………..2.2 电⽓主接线⽅案的拟定.....................................2.3 电⽓主接线的评定.................................................. 第3章短路电流计算……………………….....................3.1 概述..................................................................3.2 系统电⽓设备电抗标要值的计算.................3.3 短路电流计算.................................................. 第4章电⽓设备选择……………………….....................4.1电⽓设备选择的⼀般规则……………………….4.2 电⽓选择的技术条件…………………………….4.2.1 按正常情况选择电器……………………….......4.2.2 按短路情况校验……………………………........4.3 电⽓设备的选择………………………………….4.3.1 断路器的选择……………………………….4.3.2 隔离开关的选择…………………………….4.3.2电流互感器的选择.........................................第5章设计体会及以后改进意见…………........................ 参考⽂献……………………………………….......................摘要由发电、变电、输电、和⽤电等环节组成的电能⽣产与消费系统,他的功能是将⾃然界的⼀次能源通过发电动⼒装置转化为电能,再经过输、变电系统及配电系统将电能供应到个负荷中⼼。
目录1 引言............................................ 错误!未定义书签。
2电气主接线的设计................................ 错误!未定义书签。
2.1 主接线的设计方案的选择.................... 错误!未定义书签。
2.3 发电机与主变压器选择...................... 错误!未定义书签。
3厂用电接线设计.................................. 错误!未定义书签。
3.1 站用电压等级的确定........................ 错误!未定义书签。
3.2 厂用电接线设计方案论证及确定.............. 错误!未定义书签。
3.3 高压厂用变压器和高备变压器的选择.......... 错误!未定义书签。
4短路电流计算.................................... 错误!未定义书签。
4.1 短路电流计算概述.......................... 错误!未定义书签。
4.2 元件电抗计算.............................. 错误!未定义书签。
4.3 各短路点短路电流计算...................... 错误!未定义书签。
5电气设备配置.................................... 错误!未定义书签。
5.1 隔离开关的配置............................ 错误!未定义书签。
5.2 电压互感器的配置.......................... 错误!未定义书签。
5.3 电流互感器的配置.......................... 错误!未定义书签。
5.4 避雷器、避雷针的配置...................... 错误!未定义书签。
长春工程学院毕业设计(论文)目录1 引言 (1)2电气主接线的设计 (2)2.1 主接线的设计方案的选择 (2)2.3 发电机与主变压器选择 (4)3厂用电接线设计 (6)3.1 站用电压等级的确定 (6)3.2 厂用电接线设计方案论证及确定 (6)3.3 高压厂用变压器和高备变压器的选择 (8)4短路电流计算 (9)4.1 短路电流计算概述 (9)4.2 元件电抗计算 (10)4.3 各短路点短路电流计算 (11)5电气设备配置 (18)5.1 隔离开关的配置 (18)5.2 电压互感器的配置 (18)5.3 电流互感器的配置 (18)5.4 避雷器、避雷针的配置 (19)5.5 接地刀闸或接地器的配置 (19)5.6 自动装置的配置 (20)6电气设备的选择与校验 (20)6.1 电气设备选择与校验 (20)6.2 母线选择 (29)7 高压配电装置的设计 (30)7.1 高压配电装置的选型 (30)7.2 高压配电装置设计 (31)总结 (32)参考文献 (33)致谢 (34)1引言目前电力与我们生活息息相关,电力作为最重要的能源之一。
如何经济有效的开发和利用电力能源是关系国计民生的关键。
随着我国经济的飞速发展,电能的需求量也日益增加。
目前电力生产主要以火力发电和水力发电两种形式,相比之下,水力发电成本低廉且没有火力发电带来的环境污染。
很多优点决定水电能源在今后相当长的时间是解决能源危机的首选。
然而我国电力在技术水平上还很落后,这就需要我们在设计中,能够开拓创新,开发出新技术、新设备。
以提高电能在发送过程中的安全可靠系数,以保证电能高质量、高水平的输送。
此次设计是某水电厂的电气部分设计。
电气设计工作是工程建设的关键环节。
做好设计工作,对工程建设的工期、质量、投资费用和建成投产后的运行安全可靠性和生产的综合经济效益,起着决定性的作用。
本次设计:本期工程规模为2×300MW燃煤机组,在布置上不堵死再扩建的可能。
发电⼚电⽓部分⼤学毕设论⽂年级: 2005级学习形式及层次:学院: 电⽓信息学院专业: 电⼒系统及⾃动化题⽬: 发电⼚(变电所)电⽓部分设计指导⽼师: 学⽣姓名: 完成⽇期:发电⼚(变电所)电⽓部分毕业设计任务书⼀、原始资料:1、发电⼚(变电所)类型:皂⾓湾⽔电站2、发电机组(变压器)台数与容量:2×15MW3、设计年利⽤⼩时数4000⼩时4、电⼒负荷:(1)、低压负荷:⼚⽤电率1.1% ,待建电站邻近1km处有⼀已建电站,可做备⽤⼚⽤电源。
(2)、⾼压负荷:110 kV 电压级,出线1 回,为II 级负荷,最⼤输送容30 MW,cos? = 0.8 ;4、设计电⼚(变电所)接⼊电⼒系统情况:(1)、待设计发电⼚接⼊系统电压等级为110 kV,距系统110 kV 发电⼚20 km;出线回路数为 1 回;5、环境条件:海拔< 1000m;本地区污秽等级2 级;地震裂度< 7 级;最⾼⽓温36°C;最低温度?2.1°C;年平均温度 18°C;最热⽉平均地下温度20°C;年平均雷暴⽇T=56 ⽇/年;其他条件不限。
⼆、设计内容:参照设计指⽰书。
(毕业设计正⽂⽬录)前⾔----------------------------------------------------------------------------------------------------4 第⼀章发电⼚电⽓主接线设计----------------------------------------------------------6 第⼀节主接线的⽅案概述----------------------------------------------------------6第⼆节初步拟定供选择的主接线⽅案-----------------------------------------9第三节主接线的⽅案的技术经济⽐较----------------------------------------10第四节⼚⽤电源接线及坝区供电⽅式----------------------------------------12第⼆章短路电流计算------------------------------------------------------------------------12 第⼀节短路电流计算概述--------------------------------------------------------13第⼆节短路电流计算-----------------------------------------------------------------13第三章导体、电器设备选择及校验---------------------------------------------------21 第⼀节导体、设备选择概述-------------------------------------------------------21第⼆节导体的选择与校验-------------------------------------------------------22第三节电器设备的选择与校验------------------------------------------------24第四节导体和电⽓设备的选择成果表----------------------------------------34第五章继电保护、⾃动装置、测量表计及同期系统的配置规划------------------------------------------38第六章过电压保护和接地-----------------------------------------------------------------46参考⽂献---------------------------------------------------------------------------------------------48 附图:⼀、主接线⽅案⽐较图⼆、电⽓主接线图三、继电保护配置图四、⾃动装备配置图五、计算机监控系统图六、⾼压配电装置平⾯布置图七、⾼压配电装置剖⾯图(⼀)⼋、⾼压配电装置剖⾯图(⼆)前⾔⼀、本毕业设计的⽬的与要求:本毕业设计是电⽓⼯程及其⾃动化专业学⽣在完成本专业教学计划的全部课程教学、课程设计、⽣产实习、毕业实习的基础上,进⼀步培养学⽣综合运⽤所学理论知识与技能,解决实际问题能⼒的⼀个重要环节。
黄台发电厂电气部分设计网络教育学院本科生毕业论文(设计)题目:黄台发电厂电气部分设计I黄台发电厂电气部分设计内容摘要火力发电厂的电气设备可分为电气一次设备和电气二次设备,在火力发电厂电气部分设计中,一次回路的设计是主体,它是保证供电可靠性。
经济性和电能质量的关键,并直接影响着电气部分的投资。
对发电厂进行电气部分的设计有着很好的实践和指导意义,电气设计包括很多方面,其中,电气主接线是发电厂变电所的主要环节,电气主接线直接影响运行的可靠性、灵活性,它的拟定直接关系着整个变电所电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式的确定,是变电站电气部分投资大小的决定性因素。
本次论文选黄台发电厂作为设计对象,做有关这个发电厂的电气设计。
论文从黄台发电厂的现状以及研究意义入手,首先对发电厂电气设计的主要内容进行了总体概括,包括发电厂的总体分析及主变选择、发电厂的总体分析及主变选择、电气主接线的设计和选择、短路计算以及电气设备的选择等;之后又分别详细地介绍了发电厂的总体分析以及主变选择,对主变的容量、台数、以及电缆的选择等进行了计算;通过分析和计算对该发电厂的电气主接线进行了设计和选择;接着又进行了短路计算并介绍了短路计算的相关目以及有关电气设备选择及校验的相关原则和知识;最后全文进行了总结和概括,有一定的实际指导意义。
关键词:电气设计;变电所;电气主接线;电流计算II黄台发电厂电气部分设计目录内容摘要 (II)目录 (1)1 绪论 (3)1.1发电厂的发展现状与趋势 (3)1.2黄台发电厂的研究背景 (3)1.3 本次论文的主要工作 (4)2 电气设计的主要内容 (5)2.1发电厂的总体分析及主变选择 (5)2.1.1 黄台火力发电厂现状 (5)2.1.2 黄台发电厂的主变选择 (5)2.2电气主接线的选择与设计 (6)2.3短路电流计算 (6)2.4电气设备选择及校验 (6)2.4.1 电气设备选择的一般原则 (7)2.4.2 电气设备的选择条件 (7)3 发电厂的总体分析及主变选择 (10)3.1发电厂的总体情况分析 (10)3.2主变压器容量的选择 (10)3.3主变压器台数的选择 (10)3.4电缆选用原则 (11)4 电气主接线设计 (12)4.1 引言 (12)4.2 电气主接线设计的原则和基本要求 (12)4.3 电气主接线设计说明 (13)4.3.1系统连接 (13)4.3.2主接线方案论证 (14)5 短路电流计算 (16)5.1短路计算的目的 (16)1黄台发电厂电气部分设计5.2发电厂短路电流计算 (16)6 结论 (21)参考文献 (22)2黄台发电厂电气部分设计1 绪论1.1发电厂的发展现状与趋势火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能,并由升压变压器将发电机出口电压升高后,经输电线路将电能输送到用户或电网中。
电力系统规划及发电厂电气部分设计摘要:本设计主要研究电力系统规划及发电厂电气部分专题设计。
第一步是电源规划,依据系统的负荷容量、备用容量、和调峰容量,确定电厂的装机容量和台数。
初步拟选电力网络接线,制定发电厂、变电所的主接线方式并选择系统的主变压器,进而通过经济方案的比较,确定电力网络接线。
然后,简化系统网络图,进行短路电流计算,根据计算结果,选择系统高压侧的断路器、隔离开关、电流互感器、电压互感器等电气设备。
最后,是计算系统在各种运行方式下的潮流分布并检测在各运行方式下电压是否满足要求,采取调压措施使系统运行在安全运行范围内。
在厂用电设计中,主要内容有厂用电的接线方式和厂用变压器的选择、配电装置设计以及防雷接地规划。
关键词:电力系统主变压器短路电流潮流分布厂用电中图分类号:TM 02 文献标识码:B0引言电力是国国民经济的基础,对国民经济发展的发展起到非常重要的作用。
电力系统规划是一项具有战略意义的工作,是电力工业实现快速、稳定、持续发展的重要保障。
规划的效益是最大的效益,规划的节约是最大的节约。
全面、长远的电力发展规划和电力系统规划设计,不仅直接影响到国民经济各行业的发展及其经济性,还关系到电力工业本身投资使用的合理性与能源资源利用的经济性,是电网安全可靠和经济运行的重要保证,是电力行业可持续发展的前提。
本设计包括的知识比较广泛,因此对于我们专业理论知识的复习和巩固有很大帮助,同时也是基于工程研究探索的实践基础上的应用和延伸,对应用已学知识的灵活性具有重要意义。
1 电源规划1.1 负荷之间的关系(1)用电负荷:根据现有负荷情况,考虑变电所的负荷、厂用电、水电厂近区负荷、火厂直配线路上的负荷及和系统之间的功率。
(2)供电负荷:用电负荷加上输送该功率而产生的功率损耗。
(3)发电负荷:指满足系统的供电负荷以及发电机直配负荷需求时需要发电机发出的功率,等于系统供电负荷加上厂用电负荷。
(4)负荷的增长:本毕业设计中认为水平年末比年初增长10%,而年中比年初下降3%。
电厂电气论文发电厂电气论文:电气二次技术在发电厂的应用实例摘要:文章例举某电厂巧妙利用电气二次技术实现厂用6 kV公用段的快速切换功能,说明电气二次技术在发电企业发挥着重要作用。
关键词:电气二次;快速切换;发电厂电力系统发展至今天,已经到了高度自动化阶段。
许多发电企业的主机系统甚至辅机系统都已实现了集控化。
这样大大减轻了电厂运行人员的工作量,使人力资源得以更高效率的利用。
同时,自动控制专业技术也得以更好的发挥作用。
火力发电企业的自动控制技术主要表现为电气二次技术和热控二次技术两类。
两者分别担负着电气系统和热力系统的监视、控制、保护、测量等任务。
这里着重阐述前者。
电气二次技术虽然在电气设备运行中起辅助作用,但是合理利用二次技术可以有效解决一些生产实际问题,甚至可以弥补某些电气一次系统的缺陷和不足。
而且利用二次技术解决问题有着投资小、用时短、易实现、效果好等优点。
反之,二次设备运行状况不良或二次技术运用不合理,也会导致一些重大事故或隐患的发生。
这里例举一个巧妙利用电气二次技术巧妙解决生产实践中的难题的典型案例。
1问题的提出某火力发电厂厂用6 kV公用系统主要担负着输煤、化学制水等系统的供电工作,分为A、B两段。
两段的工作电源开关LOBCA01(以下简称A01)和LOBCB01(以下简称B01)分别由两台高压公用变压器低压侧接引;两段的备用电源开关LOBCA02(以下简称A02)和LOBCB02(以下简称B02)分别引自启动备用变压器低压侧的两个不同分支;同时A、B段间设有联络开关LOBCA03(以下简称A03)。
正常工作方式为A、B段分别由各自工作电源带,联络开关断开。
当一台高公变停运时,其所带公用段的负荷的第一备用电源为另一台高公变(即合入联络开关),第二备用电源为启备变(即合入备用电源开关)。
所以对于每一段,存在4种运行方式倒换操作:A段:A01→A03(停机时工作倒联络);A01→A02(停机时工作倒备用);A03→A01(开机时联络倒工作);A02→A01(开机时备用倒工作);B段:B01→A03(停机时工作倒联络);B01→B02(停机时工作倒备用);A03→B01(开机时联络倒工作);B02→B01(开机时备用倒工作)。
摘要發電廠是電力系統的重要組成部分,也直接影響整個電力系統的安全與運行。
在發電廠中,一次接線和二次接線都是其電氣部分的重要組成部分。
在本次設計中,主要針對了一次接線的設計。
從主接線方案的確定到廠用電的設計,從短路電流的計算到電氣設備的選擇以及配電裝置的佈置,都做了較為詳盡的闡述。
二次接線則以發電機的繼電保護的設計為專題,對繼電保護的整定計算做了深入細緻的介紹。
設計過程中,綜合考慮了經濟性、可靠性和可發展性等多方面因素,在確保可靠性的前提下,力爭經濟性。
設計說明書中所採用的術語、符號也都完全遵循了現行電力工業標準中所規定的術語和符號。
畢業設計任務書1畢業設計題目火力發電廠電氣部分設計專題:發電機繼電保護設計2畢業設計要求及原始資料1、凝氣式發電機的規模(1)裝機容量裝機4臺容量2×25MW+2×50MW,U N=10.5KV(2)機組年利用小時 T MAX=6500h/a(3)廠用電率按8%考慮(4)氣象條件發電廠所在地最高溫度38℃,年平均溫度25℃。
氣象條件一般無特殊要求(颱風、地震、海拔等)2、電力負荷及電力系統連接情況(1)10.5KV電壓級電纜出線六回,輸送距離最遠8km,每回平均輸送電量4.2MW,10KV最大負荷25MW,最小負荷16.8MW,COSφ = 0.8,T max = 5200h/a。
(2)35KV電壓級架空線六回,輸送距離最遠20km,每回平均輸送容量為5.6MW。
35KV電壓級最大負荷33.6MW,最小負荷為22.4MW。
COSφ=0.8, T max =5200h/a。
(3)110KV電壓級架空線4回與電力系統連接,接受該廠的剩餘功率,電力系統容量為3500MW,當取基準容量為100MVA時,系統歸算到110KV母線上的電抗X*S = 0.083。
(4)發電機出口處主保護動作時間t pr1 = 0.1S,後備保護動作時間t pr2 = 4S。
3畢業設計主要任務:3、發電廠電氣主接線設計4、廠用電的設計5、短路電流計算6、導體、電纜、架空線的選擇7、高壓電器設備8、的選擇9、電氣設備10、的佈置設計11、發電廠的控制與信號設計12、(專題)發電機的繼電保護設計目錄第一章電廠電氣主接線設計1-1 原始資料分析 (7)1-2 主接線方案的擬定 (8)1-3 主接線方案的評定…………………………………101-4 發電機及變壓器的選擇……………………………11第二章廠用電設計2-1 負荷的分類與統計…………………………………132-2 廠用電接線的設計…………………………………162-3 廠用變壓器的選擇…………………………………18第三章短路電流計算3-1 概述……………………………………………193-2 系統電氣設備標麼電抗計算………………………203-3 短路電流計算………………………………………23第四章導體、電纜、架空導體的選擇4-1 導體的選擇……………………………………………4-2 電纜的選擇4-3 架空導線的選擇第五章高壓電器設備的選擇5-1 斷路器與電抗器的選擇5-2 隔離開關的選擇5-3 互感器的配置第六章電氣設備的佈置設計6-1 概述6-2 屋內配電裝置6-3 屋外配電裝置6-4 發電機與配電裝置的連接第七章發電廠的控制與信號設計7-1 發電廠的控制方式7-2 斷路器的控制與信號7-3 中央信號裝置7-4 發電廠的弱電控制第八章發電機的繼電保護設計(專題)8-1 概述8-2 縱聯差動保護8-3 橫聯差動保護8-4 低電壓起動的過電流保護8-5 過負荷保護8-6 定子繞組單相接地保護8-7 發電機保護總接線圖說明結束語參考文獻第一章發電廠電氣主接線設計第二章1-1 原始資料分析設計電廠總容量2×25+2×50=150MW,在200MW以下,單機容量在50MW以下,為小型凝汽式火電廠。
目录设计任务书(置于目录前) (1)摘要 (3)引言 (4)1系统与负荷资料分析 (5)2电气主接线 (6)2.1主接线方案的选择 (6)2.2 主变压器的选择与计算 (9)2.3厂用电接线方式的选择 (11)2.4 主接线中设备配置的的一般规则 (13)3短路电流的计算 (14)3.1短路计算的一般规则 (14)3.2短路电流的计算 (15)3.3短路电流计算表 (16)4电气设备的选择 (17)4.1电气设备选择的一般规则 (17)4.2电气选择的条件 (17)4.3电气设备的选择 (20)4.4电气设备选择的结果表 (22)5*配电装置 (23)5.1配电装置选择的一般原则 (23)5.2配电装置的选择及依据 (25)结束语 (26)参考文献 (27)附录Ⅰ:短路计算 (28)附录Ⅱ:电气设备的校验 (33)附录3:设计总图 (39)1、系统与负荷资料分析根据原始资料,本电厂是中型发电厂,比较靠近负荷中心。
本电厂要向本地区的各工厂企业供电,还要与220KV系统相连,并担负着向市区供电,保障市区人民生产和生活用电的责任。
由于本厂的地理位置优越,一般情况下都容易获得燃料,能确保本地区以及附近的工厂、市区的正常供电,还可以向220KV提供电能。
由资料我们可知,本电厂以110KV的电压等级向用户送电。
这里有两电压等级,分别是110KV,有8回出线;220KV,有10回出线,全部负荷有Ⅰ、Ⅱ、Ⅲ级负荷。
1.1 220KV电压等级架空线10回,I级负荷,最大输送200MW,T MAX=6000h/a;cos =0.85。
出线回路数大于4回且为I级负荷,应采用双母带旁路或一台半。
1.2 110KV电压等级架空线8回,Ⅰ级负荷,最大输送180MW,T MAX=6000h/a;cos =0.85。
出线回路数大于4回且为I级负荷,为使其出线断路器检修时不停电,应采用双母分段或双母带旁路,以保证其供电的可靠性和灵活性。
2x600MW火力发电厂电气部分设计毕业论文目录摘要 (I)引言 (II)第一部分 (1)1 设计任务书 (1)1.1原始资料 (1)1.2设计任务 (1)1.2.1说明书 (1)1.2.2计算书 (1)1.2.3绘制图纸 (2)1.3设计要求 (2)1.4参考文献 (2)1.5设计进程 (3)1.6 厂用容量 (4)2 变压器的选择及厂用/备用变压器的选择 (5)2.1 主变压器的选择 (5)2.2主变压器容量和台数的确定 (5)2.2.1 主变压器容量的确定 (5)2.2.2单元接线的主变压器 (5)2.2.3连接两种升高电压母线的联络变压器 (6)2.3 变压器型式的选择 (6)2.3.1相数的选择 (6)2.3.2绕组数的确定 (6)2.3.3绕组接线的组别的确定 (7)2.3.4调压方式的确定 (7)2.4 厂用变压器的确定 (7)2.4.1 厂用变压器的结构 (7)2.4.2 分裂变压器的运行方式 (8)3 电气主接线的设计 (9)3.1电气主接线的概念与基本要求 (9)3.1.1运行的可靠性 (9)3.1.2 具有一定的灵活性 (10)3.1.3 操作应尽可能简单、方便 (10)3.1.4经济上合理 (10)3.2 电气主接线设计依据 (11)3.2.1 电气主接线的设计步骤 (11)3.3 发电机-变压器组单元接线 (11)3.4主变压器和发电机中性点接地方式 (11)3.4.1 主变压器中性点接地方式 (11)3.4.2 发电机中性点接地方式 (11)3.5 母线接线 (12)3.6 比较两种接线方案 (13)4 厂用电接线 (14)4.1 厂用电基本接线形式及运行方式 (14)4.2 厂用电基本接线形式 (14)4.3 厂用电源的引接 (15)4.3.1. 高压厂用工作电源的引接 (15)4.3.2 低压厂用工作电源引接 (16)4.3.3 备用电源引接方式 (16)5 短路电流计算 (17)5.1 短路电流计算的主要目的 (17)5.2 短路电流计算一般规定 (17)5.2.1 计算的基本情况 (17)5.2.2 接线方式 (17)5.2.3 计算容量 (17)5.2.4 短路种类 (18)5.2.5 短路计算点 (18)5.2.6 短路计算方法 (18)5.3 计算步骤 (20)5.4 三相等值网络的计算 (21)5.5 电路元件参数的计算 (21)5.6 网络变换 (21)5.6.1两支路有源网络等值变换 (21)5.6.2 Y/Δ等值变换 (22)5.7 计算电抗 (23)5.7.1 短路点短路电流周期分量有效值的计算 (23)5.7.2 短路的冲击电流 (23)5.8 等值电源的计算 (24)5.8.1 按个别变化计算 (24)5.8.2 按同一变化计算 (24)5.9 三相电流周期分量计算 (24)5.10 冲击电流的计算 (24)6 电气设备选择 (25)6.1 电气设备选择的一般原则 (25)6.1.1 一般原则 (25)6.1.2 技术条件 (25)6.1.3 环境条件 (25)6.1.4 环境保护 (25)6.2 选择方法 (26)6.2.1按正常工作条件选择 (26)6.2.2 按短路状态校验 (27)6.3 高压断路器的选择 (27)6.4 隔离开关的选择 (29)6.4.1隔离开关的主要用途 (29)6.4.2隔离开关种类和型式的选择 (29)6.5 电流互感器的选择 (30)6.5.1 一次回路额定电压和电流的选择 (30)6.5.2 二次额定电流的选择 (30)6.5.3 电流互感器种类和型式的选择 (30)6.5.4 电流互感器准确级和额定容量的选择 (30)6.5.5 热稳定和动稳定校验 (30)6.6 电压互感器的选择 (31)6.6.1 一次回路电压的选择 (31)6.6.2 二次回路电压的选择 (31)6.6.3 种类和型式的选择 (31)6.6.4 容量和准确级选择 (31)7 母线的选择 (32)7.1 裸导体的选择 (32)7.2 导体材料、类型和敷设方式 (32)7.2.1 导体截面选择 (33)7.2.2 电晕电压校验 (33)7.2.3 热稳定校验 (33)7.2.4 硬导体的动稳定校验 (34)7.3屋外配电装置的布置原则 (35)8 高压配电装置 (37)8.1 设计原则 (37)8.2 设计要求 (37)8.3 配电装置型式选择 (37)8.4 220KV配电装置的选择 (38)9 继电保护和自动装置的设计规划 (40)9.1 继电保护配置 (40)9.1.1 发电机保护 (40)9.1.2 变压器保护 (42)9.1.3 并联电抗器保护 (43)9.1.4 220kV线路保护 (43)9.1.5 母线和断路器失灵保护 (44)9.2 自动装置配置 (44)10 防雷保护 (46)10.1 避雷器的配置原则 (46)10.1.1 避雷针接地的主要要求: (46)10.2 避雷线的保护围 (46)10.2.1 避雷线的保护围计算 (46)10.2.2 避雷线的要求 (47)10.3 入浸雷的防护 (48)10.3.1 入浸雷防护措施 (48)10.3.2 避雷器的配置要求 (48)10.3.3 避雷器的配置原则 (48)10.3.4 避雷器参数选择 (48)10.4 防雷接地 (49)10.5避雷针的设计 (49)10.5.1 单支避雷针保护围 (49)10.5.2 两支等高避雷针联合保护围 (49)10.5.3 三支等高针的保护围 (50)10.6 避雷器的设计 (50)10.7 避雷器的选择: (50)10.7.1 避雷器的持续运行电压Uby (51)10.7.2 避雷器的额定电压Ube (51)第二部分计算书 (53)1变压器的选择计算 (53)1.1 常用负荷的设计 (53)1.2 600MW发电机的选择 (54)1.3 变压器的选择计算 (55)1.4 高压厂用变压器的选择计算 (56)1.5 高压厂用备用变压器的选择计算 (57)2短路电流的计算 (58)2.1 系统正序阻抗图 (58)2.2 参数计算 (58)2.2.1 短路点d1 (59)2.2.2 短路点d2 (62)2.2.3 短路点d3 (66)2.3 计算数据列表如下: (70)3高压电气设备的选择 (71)3.1 断路器的选择 (71)3.1.1 220KV侧断路器的选择计算 (71)3.1.2 6KV侧断路器的选择 (73)3.2 隔离开关的选择(220KV侧) (75)3.3 电流互感器的选择 (76)3.3.1 220KV侧电流互感器的选择 (76)3.3.2 6KV侧电流互感器的选择 (77)3.4 电压互感器的选择(220KV侧) (78)3.5 厂用高压开关柜的选择 (79)3.5.1 厂用10KV开关柜 (79)3.5.2 10KV开关柜五防措施 (80)3.5.3 型号的选择 (80)4母线的选择计算 (81)4.1 220KV母线选择计算 (81)4.1.1 按最大持续工作电流选择 (81)4.1.2 电晕电压校验 (81)4.1.3 热稳定校验 (82)4.2 发电机20KV出口封闭母线选择 (83)4.2.1 600MW发电机出线分相封闭母线接线图 (83)4.2.2600MW发电机出口全连式自冷离相封闭母线技术参数: (84)5防雷保护计算 (85)5.1 避雷针的布置图 (85)5.2 避雷针高度的确定 (85)总结 (87)致谢 (88)参考资料 (89)附录 (90)第一部分1 设计任务书1.1原始资料1、本电厂为凝汽式火力发电厂,安装2台600MW凝汽式火力发电机组。
发电厂电气论文院系: 信息与控制专业: 电气工程及及其自动化姓名: 顾蓉班级: 电气一班学号: 20131393036摘要电力系统以发电、变电、输电、配电和用电等环节组成的电能生产与消费的一个完整的系统。
它主要是将自然界的一次能源通过发电动力装置转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。
电气主接线也称为电气主系统一次接线,它是发电厂、变电所电气设计的主体,也是电力系统网络的重要组成部分。
电气主接线反映了发电机、变压器、线路、断路器和隔离开关等有关电气设备的数量、各回路中电气设备的连接关系及发电机、变压器与输电线路、负荷间以怎样的方式连接,直接关系到电力系统的可靠性、灵活性和安全性,直接影响发电厂、变电所电气设备的选择,配电装置的布置,保护与控制方式选择和检修的安全与方便性。
而且电能的使用已经渗透到社会、经济、生活的各个领域,而在我国电源结构中火电设备容量占总装机容量的75%。
本文是对配有6台300MW汽轮发电机的大型火电厂电气一次部分的初步设计,主要完成了整个电气一次部分主接线的设计。
包括电气主接线的形式的比较、选择;主变压器、高压厂用变压器台数、容量和型号的选择;短路电流计算和高压电气设的选择与校验; 以及相关的配电装置设计及选择。
关键词:发电厂,主接线,变压器,电气设备一、应用背景1.1课题背景由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。
由于电源点与负荷中心多数处于不同地区,也无法大量储存,电能生产必须时刻保持与消费平衡。
因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了电力系统的结构和运行。
据此,电力系统要实现其功能,就需在各个环节和不同层次设置相应的信息与控制系统,以便对电能的生产和输运过程进行测量、调节、控制、保护、通信和调度,确保用户获得安全、经济、优质的电能。
1 引言近年,我国电力工业发展迅速,电力供给能力显著增强。
“十五”期间全国发电装机新增近2亿千瓦,创历史最高水平,2006年又新增装机容量1亿千瓦,总容量超过6亿千瓦,今年投产规模仍将保持在7000万千瓦以上,全国电力供给紧张的局面已经得到全面缓解。
但是,我国电力工业结构不合理的矛盾仍十分突出,特别是能耗高、污染重的小火电机组比重过高。
因此,电力工业将“上大压小”、加快关停小火电机组放在了“十一五”期间工作的首位[9]。
据测算,火电机组容量的不同,反映在煤耗和污染物排放量上差异很大。
大型高效发电机组每千瓦时供电煤耗为290克--340克,中小机组则到达380克--500克。
5万千瓦机组其供电煤耗约440克/千瓦时,发同样的电量,比大机组多耗煤30--50%。
与此同时,小火电机组排放二氧化硫和烟尘排放量分别占电力行业总排放量的35%和52%。
国家发改委能源局局长赵小平算了一笔账,“现有的小机组假设能够完全由大机组替代,一年可节能9000万吨标准。
目前全国10万千瓦及以下小火电机组占火电装机比重到达29.4%,这些小火电绝大部分是在我国电力供给较为紧张的“八五”、“九五”期间建设的,主要分布于经济发达地区和煤炭资源丰富的省份。
加速关停小火电机组,一方面是保证节能降耗指标的完成,另一方面有助于保障大机组的开工率,促进电力产业结构改造升级。
关停小火电机组是从国家大局出发,优化电力工业结构的重要举措,对提高电力工业的整体质量和效益,促进电力工业可持续发展具有十分重要的意义。
发电厂二期工程电气部分设计①装机容量:装机两台,总容量600MW;②机组年利用小时数: Tmax=6000小时③气象条件:发电厂所在地最高气温32℃,年平均气温5.65℃,最大风速25m/s④厂用电率:按6%考虑⑤ 220kV电压等级,架空线路2回与系统相连,系统电抗以100MVA为基准折算到220k 设计基本要求:①确定发电厂电气主接线的最正确方案〔包括主变压器型式、容量的选择〕;②确定发电厂厂用电接线的最正确方案;③计算短路电流;④事故保安负荷计算、电气设备的配置方案;⑤电气设备的选择与校验;⑥绘制有关图纸〔电气主接线图、配电装置平面图与断面图等〕;2 电气主接线2.1 概述主接线设计必须结合电力系统和发电厂的具体情况,全面分析有关因素,正确处理它们之间的关系,最后合理确定主接线的方案[5]。
发电厂电气部分论文发电厂电气论文发电厂电气自动化中断路器状态在线监测的实现摘要:介绍了发电厂电气监控系统ECS的结构和功能,详细讨论了对断路器的电寿命和机械寿命进行在线监测的有关问题,最后指出增加对断路器的工作状态的在线监测功能是ECS的发展方向。
关键词:监控;状态检修;在线监测新一代发电厂电气自动化技术(ECS)涵盖了发电厂机组和厂用电保护与监控、网络站监控以及其他的电气自动装置的监控与信息集成,并可以与DCS接口实现一体化控制。
目前ECS系统实现的监控功能主要包括模拟量、开关量、脉冲量的采集,开关的遥控,SOE,保护事件,录波,远方通信等,也包括继电保护及自动装置的远方整定管理、防误闭锁及操作票等应用功能。
这些功能基本覆盖了运行人员对电气系统的日常操作和管理,但随着监控技术的发展,两项新功能将融入电气监控系统:一项是电气运行的视频监控,另一项是高压电气设备的工作状态在线监测。
本文以高压断路器的工作状态在线监测为例,分析了在ECS系统的监控功能中实现对高压设备,例如断路器的电寿命、机械性能等状态指标的在线监测,从而将对电气系统的紧急控制从故障后保护动作,发展为以发现潜在故障特征为目标的预防性控制,这对于提高发电厂电气设备的安全运行十分有益。
在发电厂的一次设备中,就单台设备而言,断路器是仅次于发电机、变压器的大型电力设备,但就需用数量和所占电站设备的投资大小而言,它又排在二者之前。
它的动作可靠性直接关系着系统的安全与稳定,许多重大设备损坏或系统解列停电事故都是开关操作失常所致。
目前,内蒙古兴安热电有限责任公司的高压断路器基本尚处于定期维护阶段,这种传统的计划检修往往造成巨大的人力、财力浪费,并可能对生产造成冲击。
采用基于设备工作状态的在线采集监视的状态检修是今后设备维护和检修的发展方向。
所谓“状态检修”就是要通过种种手段对正在运行中的设备进行健康水平的评估或诊断,进而有针对性地采取相应措施,以最大限度地延长设备的检修周期及使用寿命,增强其运行的可靠性。
对断路器实施状态检修能减少停电时间,消除不必要的人力、财力浪费,避免因拆装不当所造成的设备事故或人身伤害。
因此,对断路器健康状态的在线监测与诊断是电力工业不可回避的重大课题。
同时,也只有在对运行中的大量断路器实施在线监测与诊断,摸索和积累大量第一手资料后,才能制造出智能型带诊断功能的免维修断路器。
而推行状态检修的关键在于在线监测系统对设备健康状况的诊断。
在电气自动化系统的测控装置或保护测控一体化装置中增加高压断路器实时状态监测功能是必要的、可行的。
其工作原理主要是根据断路器开断电流与开断次数、辅助电路线圈电流和其机械特性等状态信息进行综合判断,以诊断其电寿命状态和常规机械故障。
能适用于装有少油或多油、SF6及真空三大类不同电压等级的断路器,能同时对一个系统内所有断路器的触头电寿命及主要机械故障和辅助电路进行实时监测与诊断,实时给出明确的状态信息。
该功能可提高断路器运行的可靠性,进而提高电厂运行的安全性,克服定期维修的盲目性,减少检修次数,降低检修费用,最大限度地延长检修周期,提高设备的投运率,为实现状态检修提供科学依据和决策建议。
一、电气监控系统的结构和功能发电厂的电气部分可分为电气网控部分和机组电气部分(包括厂用电和发变机组保护监控)。
其中机组电气部分直接关系到发电厂的生产与运行;网控部分是发电厂与输电网发生联系的部分。
发电厂电气监控系统直接完善了DCS/FCS系统的监控范围和自动化程度,该技术的应用将大大提高发电厂运行的自动化水平。
电气监控系统的基本功能包括以下几项。
1.实现电厂电气自动化(ECS)并完全纳入DCS系统(1)实现发电厂厂用电自动化,使用保护测控一体化智能装置实现厂用6kV、380V及公共部分的继电保护、监控、信息管理和设备维护,并经ECS系统融入DCS。
(2)实现发电厂网络站自动化(NCS),实现对升压站的监控和远动功能,并实现NCS与DCS的接口(例如AGC部分)。
(3)实现对发变组保护、发变组录波、发电机励磁、同期、电度表等的监控和管理,并经ECS系统纳入DCS。
(4)实现对厂用电快切、UPS、直流系统等的监控和管理,并经ECS系统纳入DCS。
(5)实现在DCS的操作员站上对电厂所有电气部分进行控制和设备管理,DCS系统也可以授权在ECS操作员站上实现电气操作。
(6)实现电厂电气系统的防误闭锁及操作。
(7)实现电气设备工作状态的在线监测。
2.断路器的在线监测目前断路器在线监测的主要内容包括以下四个方面。
(1)触头电寿命。
(2)操作回路的完整性。
(3)绝缘特性。
(4)机械特性。
3.目前技术所能满足的在线监测和状态评估要实现对断路器及气体绝缘组合电器(GIS)的电气和机械性能的在线监测和状态评估,目前的技术能够实现以下几项。
(1)断路器触头磨损的评估,即触头的电寿命。
下文将详细讨论触头电寿命的计算。
(2)断路器机械故障的评估。
机械特性的停电、不揭盖的测量已较为成熟,但在线监测难度较大。
采用在线监测方法应考虑其得失利弊及经济性。
电气回路的完整性可以在保护装置中实现。
(3)真空泡的真空度的测量。
目前仅仅停留在对原理的探讨上,如果一定要实现在线监测,尚无经济而安全的方法。
(4)目前,在线监测GIS机械振动或局部放电已有望实现。
二、断路器触头电寿命的分析方法发电厂内断路器的状态监测通常包括真空、SF6、少油或多油断路器三大类不同电压等级的断路器。
对断路器电寿命的诊断传统方法是累计开断电流和开断次数。
但当被测电流相差很大时,因烧损机理不同,同样的累计电流量所造成的灭弧室烧损量却相差很大。
仅考虑累计开断电流和累计开断次数是不够的,合理的办法是把开断电流的大小、每次累计触头烧损量作为电寿命判别的依据。
1.断路器电寿命的检修判据通过对少油、SF6和真空断路器电磨损的分析可知,断路器每次开断电流时都会产生电弧,电弧是使断路器电气寿命减少、电气性能劣化的直接原因,其中断路器触头的烧损是断路器电寿命减少的决定性因素,触头的电磨损又取决于开断电弧的能量,即开断电流和燃弧时间。
大量试验及运行经验证明,虽然燃弧时间的长短对于单次开断而言是随机的,在一定范围内变化,但当开断次数达到一定值后,其平均燃弧时间则是趋近的。
也就是说,从断路器电磨损累计效应和统计平均的角度看,随机因素对燃弧时间分散性的影响是可以忽略不计的,只用开断电流作断路器的电磨损标示是可行的。
笔者认为,利用触头磨损公式直接计算每次开断的磨损量,并累计,把触头累积磨损量作为判断断路器电寿命的标示量,是目前较为科学的方法。
从各种规范标准及推导的电磨损公式和曲线中,断路器触头的电磨损量m是一个绝对量,与燃弧电流有关。
但由于断路器生产厂家并不提供其断路器的总允许磨损量和触头磨损公式,所以无法以它来判断断路器的开断后触头的实际磨损量与当时的电寿命状态。
实际中,断路器生产厂家提供的是断路器的开断次数与相应开断电流的关系曲线,即N—Ib曲线。
此曲线由厂家通过等效开断试验获得,它是以断路器的开断能力来衡量断路器触头磨损及其电寿命状态的。
因此,采用相对电磨损和相对电寿命的概念,以便利用N—Ib曲线来标示断路器触头的磨损情况与电寿命状态。
设额定开断电流下单次开断的电磨损为M,其对应的允许开断次数为N,从统计平均和累计效应的角度看,可认为断路器的允许总磨损量为N×M;同样,设任意开断电流下单次开断的电磨损为m,根据断路器厂家提供的N—Ib曲线,可知任意大小开断电流所对应的允许开断次数Nb,则断路器的允许磨损总量也可表示为Nb×m。
引入相对电磨损的概念,可得到断路器在任意开断电流下开断的单次电磨损量相对于触头允许磨损总量的相对磨损量为:也就是说,只要测得了断路器的实际开断电流,通过N-Ib曲线就可得到相应的允许开断次数,进而也就得出了以相对值表示的本此开断引起的触头磨损量。
2.断路器的机械寿命的监测断路器机械寿命的在线监测由分布式的保护测控装置监测断路器的分合闸线圈的电流波形进行分析判别。
分合闸线圈是控制断路器动作的关键元件,应用电流传感器可以方便地测出其电流波形,如图1所示。
此电流波形蕴含着多种信息,图1中T0为分合命令到达时刻,T1为铁芯开始运行时刻,T2代表铁芯触动操作机构的负载而显著减速或停止运行的时刻,T3可视作开关辅助a接点断开线圈电路时刻,T1-T0与控制电源及线圈电阻有关,T2-T1的变化表征电磁铁铁芯运行机构有无卡涩及脱扣释能机械负载变动情况,T3-T2或T3-T0可以反映操作传动系统运动的情况。
电流波形上I1、I2、I0还可以反映电源电压、线圈电阻及电磁铁铁芯运行的速度信息。
分析以上参数的变化可诊断断路器部分机械故障趋势,尤其是拒分、拒合等故障。
采用上述算法可以在测控装置或保护测控一体化装置中实现对断路器的在线监控功能,从而在ECS系统中增加电厂电气设备的状态监控。
三、结论在发电厂电气自动化系统中增加关于高压电气设备的工作状态在线监测功能是电气监控系统的发展方向,无论是发电厂的电气监控还是输电网的电气监控都努力增加对事故的预防性监控措施,其中关于高压电力设备的工作状态的在线监测是一项相对独立的监控技术。
本文讨论了如何在发电厂电气监控系统(ECS)中实现断路器的工作状态在线监测功能,本文详细讨论了断路器的触头电寿命的在线估算以及断路器机械性能的在线分析,探讨了利用现有的分布式保护测控装置,通过增加传感环节,利用算法实现对断路器状态的在线监测,从而使ECS能够监测并管理电厂电气设备的寿命,并最终实现状态检修。
这对于提高发电厂电气设备的安全运行十分有益。