基因工程制药论文3900字_基因工程制药毕业论文范文模板
- 格式:doc
- 大小:36.50 KB
- 文档页数:11
基因工程技术对药物发展的影响的论文基因工程技术对药物发展的影响的论文摘要:当前,基因工程在理论研究与实际生产方面都取得了很大的成就,对于人类社会的发展以及社会经济的发展都起到了很大的促进作用。
所以,加强基因工程技术在药物发展方面的研究是非常重要的。
基于此,文章就基因工程技术对药物发展的影响进行分析。
关键词:基因工程技术;药物发展;影响;1 国内外基因工程技术的发展历程在基因工程起步的过程中,其所花费了大约有四十多年的时间,对其的发展历程,一共可以分成三个阶段。
其中,第一个阶段为理论准备阶段,在这一个阶段当中,其发现了遗传物质DNA,对DNA 的结构有了新的认知,并进行遗传密码的破译;在第二阶段当中,对基因的重组进行了不断地试验,在第三个阶段当中,被称为是基因工程技术的诞生阶段。
其中, 1973年被称为是基因工程诞生的元年。
2 基因工程技术对人类生存发展的积极影响2。
1 基因工程技术对人类医疗方面的影响基因工程早医学领域的当中的应用,其是通过基因工程技术来对有生物活性的蛋白质与肤类进行制备,并且将其发展成为基因治疗与基因诊断的重要手段。
利用基因工程技术,可以对人体中的激素进行抽取,然后在工业生产中进行大规模的应用,然后提取一些人类所需要的各种激素。
在基因工程的不断发展过程当中,通过科学技术的应用,可以对人体当中具有的生理功能、药用功能的生物物质进行一定的制备,由于在人体当中其含量比较少,所以通过科学的方法可以将传统方式当中费时、耗资等问题进行有效地解决。
在当前的应用过程中,胰岛素疫苗、乙肝疫苗等在市场中得到了广泛的应用,通过基因工程技术所生产出来的生物制品相比于天然物料而言具有经济方面的.优势,并且也能够取得较好的社会效益。
2。
2 基因工程技术对工业领域的影响在轻工产品当中应用基因工程技术,可以大规模的高效的对食品添加剂进行生产,而在传统的诱变育种方法当中其是不能达到这种效果的。
在日用产品的生产过程中,基因工程技术得到了广泛的应用,例如防治印染、食品制造以及皮革加工等等。
基因工程制药的研究论文基因工程制药的研究论文第1篇:基因工程制药技术的探讨基因工程在生物制药领域的主要应用是基因工程制药。
基因工程制药是指人们按照一定的医学目标,将特定的外源基因导入宿主的基因组成,由宿主产生特定蛋白药物的一种制药方式。
1基因操作技术1.1基因大分子分离技术基因大分子分离技术实际上是指基因组DNA和质粒(plasmidDNA)的分离。
基因组DNA分离的方法主要有PCR扩增技术、Southern杂交等。
其中,基因文库是建立在DNA 重组基础上的,它不同于基因克隆和基因库,主要是指将某种重组的DNA序列在某宿主体内进行克隆增值。
质粒分离的方法主要包括酸酚法、质粒DNA释放法和去污裂解法等。
质粒通常被用作基因工程中的表达载体或克隆载体。
1.2技术PCR技术是一种在细胞外模拟DNA复制过程的核酸扩增技术。
PCR技术可以分为定量PCR技术和定性PCR技术。
定量PCR 技术是以实时PCR为代表,其基本原理是将荧光标记分子引入PCR反应体系中,以此实现对反应过程中每一时刻的荧光信号积累的实时检测,并计算PCR的产物量,或借助标准曲线法实现对初始模板量的计算。
PCR技术分为反转录PCR、反向PCR、锚定PCR和多重PCR。
反转录PCR(RT-PCR)是一种利用极少量的mRNA来构建庞大数量的cDNA文库的方法。
1.3基因芯片技术基因芯片实际上是生物芯片中的一种。
该技术主要包括样品的制备、核酸方阵的构建和杂交、杂交图谱的检测和读出。
根据用途的不同,又可以将基因芯片技术分为诊断芯片技术、测序芯片技术和表达谱芯片技术。
其中,表达谱芯片技术作为一种应用最广泛的技术,它不仅可以用于药物的研究和筛选,还可以应用于分析基因的供能和探讨疾病的发生机制等方面。
就该技术的具体应用而言,它主要包括以下两方面:①确定药靶基因。
将正常的人体细胞与病变或异常的细胞作对比,并找出其中的差异,从而确定药靶基因。
②实时监测药物治疗前后的基因状态。
基因工程技术在制药领域的应用和发展第一篇:基因工程技术在制药领域的应用和发展基因工程技术在制药领域的应用和发展吴苏亚(南京中医药大学,08药学一班,042008118)摘要:基因工程技术又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
经过30多年来的进步与发展,已成为生物技术的核心内容。
本文简述了近年来基因工程技术在制药技术的应用和发展。
其中主要从基因工程制药和基因工程药物的治疗进展两方面来呈现基因工程技术在制药领域的杰出贡献以及在整个生物领域的强大生命力和广阔的应用前景。
关键词:基因工程技术,基因工程制药,基因工程药物Genetic engineering applications in the pharmaceutical sectorand developmentWu Suya Abstract: The genetic engineering technique known as gene splicing and recombinant DNA technology, is based on the theoretical basis of molecular genetics, molecular biology and microbiology, as a means of modern methods of genes from different sources according to pre-designed blueprint, in the in vitro Hybrid DNA molecules into living cells and then to change the genetic characteristics of the original bio, access to new varieties, production of new products.After 30 years of progress and development, has become the core of biotechnology.This paper describes the genetic engineering technology in recent years in the pharmaceutical technology and development.Mainly from the pharmaceutical and genetic engineering, geneticengineering of drugs both to render the treatment of advanced genetic engineering technology in the pharmaceutical field, and outstanding contribution to the field in the biological application of strong vitality and broad prospects.Key words: genetic engineering, genetic engineering, pharmaceuticals, genetic engineering drugs 所谓基因工程是指将所得的目的基因节基因、载体相结合,然后将它引进受体细胞,使之进行复制并产生相应基因产物的技术。
摘要:在现代生物技术日益发展的今天,新兴生物技术产业迅速崛起,不断发展壮大。
人们对生活的要求越来越高,对身体也越来越在乎,故而药物治疗也越来越重要。
其中以基因工程药物所占比例最高,本文主要阐述个人对基因工程药物的理解以及基因工程在我国的开发和发展。
关键字:基因药物、临床应用、基因药物品种导论:基因药物又称生物技术药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,或者表达的目的蛋白质纯化及做成制剂。
目酌人类60%以上的生命科学成果集中应用于医药工业。
这些药物包括细胞因子、菌苗、疫苗、毒素、抗原、血清、DNA重组产品、体外诊断试剂等等,在预防、诊断、控制乃至消灭传染病,保护人类健康,延长生命过程中发挥着越来越重要的作用。
基因工程药物引入医药产业,由此引起了医药工业的重大变革,使得基因工程药物产业成为最活跃、发展最快的产业之一。
正文:一.基因工程药物品种的开发(1)利用基因工程细菌等表达人类一些重要基因片段,可产生具生理活性的肽类和蛋白质类药物。
这一技术可以大量廉价生产以前不敢想象的医药产品。
如应用传统的技术方法提取生长激素抑制素(Somatostatin)一毫克需要用十万只羊的下丘脑,所要耗费的资金大约等于经由人造卫星从月球上搬回一公斤石头。
而用基因工程方法生产这一激素只需十公升大肠杆菌培养液,其价格大约为每毫克0.3美元。
这就是基因工程这一高技术的诱人之处,有着难以估量的社会效益和经济效益。
(2)应用基因工程技术建立新药的筛选模型。
在新药研究开发中日益广泛使用的各种酶、受体筛选模型所需的靶酶和受体往往来自动物体内,因而数量有限而不利于采用机器人进行大量筛选。
应用基因重组技术将一些靶酶的活性中心或受体的配体、亚基等在微生物中大量表达可以解决这一难题。
据报道,最近β-肾上腺受体,5-HT受体和毒蕈碱M[,1]受体等已在大肠杆菌或酵母菌中表达成功,并已证实这些受体的功能与来自哺乳动物组织的受体完全相同。
基因工程( 文献综述)(梁贵钦综述郭慧婷审校)摘要基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。
所谓基因工程是在分子水平上对基因进行操作的复杂技术。
它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。
关键词DNA 细胞人体健康引言基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
基因工程技术为基因的结构和功能的研究提供了有力的手段。
一.基因工程的起源1866年,奥地利遗传学家孟德尔神父根据豌豆杂交实验发现生物的遗传基因规律,提出遗传因子概念。
1980年科学家首次培育出世界第一个转基因动物转基因小鼠。
近二十多年来, 基因工程成为科学研究的焦点之一, 并且取得了长足的进展。
狭义上仅指基因工程,将一种生物体的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传,表达出新产物或新性状。
广义上包括传统遗传操作中的杂交技术、现代遗传操作中的基因工程和细胞工程。
是指DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
二.各国基因工程研究情况英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。
如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。
德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。
第1篇一、引言随着科学技术的不断发展,基因工程已经成为当今生物科学领域的前沿技术。
基因工程在医学领域的应用日益广泛,尤其是基因工程特效药的研究与开发,为人类疾病的治疗带来了新的希望。
本文将针对基因工程特效药方案进行探讨,分析其研究背景、技术路线、应用前景等方面。
二、研究背景1. 疾病治疗需求随着人口老龄化、环境污染等因素的影响,人类面临着越来越多的疾病威胁。
传统药物治疗存在疗效有限、副作用大等问题,迫切需要开发新的治疗手段。
基因工程特效药作为一种新兴的治疗方法,具有靶向性强、疗效显著、副作用小等优点,成为解决这一问题的有力途径。
2. 基因工程技术的进步近年来,基因工程技术取得了显著的成果,如基因编辑、基因治疗等。
这些技术的突破为基因工程特效药的研发提供了强有力的技术支持。
三、技术路线1. 基因靶点识别首先,通过生物信息学、分子生物学等方法,筛选出与疾病相关的基因靶点。
基因靶点的识别是基因工程特效药研发的关键环节,直接影响药物的疗效和安全性。
2. 基因表达调控针对已识别的基因靶点,设计并构建表达载体,通过基因编辑技术实现对基因表达的调控。
基因表达调控主要包括以下几个方面:(1)基因沉默:通过构建siRNA或shRNA表达载体,抑制目标基因的表达,达到治疗疾病的目的。
(2)基因激活:通过构建基因启动子、增强子等调控元件,提高目标基因的表达水平,实现治疗疾病的效果。
(3)基因敲除:通过基因编辑技术,彻底去除目标基因,达到治疗疾病的目的。
3. 基因载体构建将基因表达调控元件与目标基因连接,构建基因载体。
基因载体是基因工程特效药的核心组成部分,其设计应考虑以下因素:(1)靶向性:基因载体应具有特异性靶向疾病细胞的能力,减少对正常细胞的损伤。
(2)安全性:基因载体应具有良好的生物相容性和生物降解性,降低副作用。
(3)稳定性:基因载体应具有良好的稳定性,保证基因在体内的持续表达。
4. 基因工程特效药制备通过生物发酵、组织培养等方法,制备基因工程特效药。
基因工程论文五篇范文第一篇:基因工程论文基因工程科技又称基因拼接技术和DNA重组技术,以下是小编为大家准备的基因工程论文,希望对大家有帮助!基因工程论文:浅谈基因工程在农业生产中的应用摘要:基因工程在农业生产上已经被十分广泛地应用。
基因技术的突破,使科学家们得以传统育种专家难以想象的方式,改良动植物,大大提高了经济效益。
关键词:基因;应用基因在农业生产上的应用已经非常广泛,但其中的道理未必广为人知。
那么所谓基因到底是什么呢?它是控制生物性状的基本单位,记录着生物生殖繁衍的遗传信息。
并且通过修改基因能改变一个有机体的部分或全部特征。
它的作用主要是以转基因技术和基因克隆技为核心。
通过它们改良动植物的品种,从而大大提高经济效益。
那么下面我们就谈谈它们是怎样为人类服务的呢?一、转基因技术转基因技术就是按照人们预先设计的生物蓝图,把所需要的基因从一种生物的细胞提取出来,在体外进行“外科手术”,然后把所需要的基因导入另一种生物的细胞中,从而有目的地改造生物的遗传特性,创造出符合人类需要的新品种。
转基因技术能培养出多种快速生长的转基因鱼、转基因羊、产奶量高的转基因牛等,还能培育出抗旱、抗涝、抗盐碱、抗枯萎病和抗除草剂的转基因作物,还培育出抗虫作物,科学家将杀虫基因转入植物体内后,植物体内就能合成霉素蛋白,产生这种霉素蛋白基因的作物有烟草、马铃薯、番茄、棉花和水稻等,其中效益最大的是抗虫棉。
二、基因克隆技术“多莉的诞生”意味着人类可以利用动物的一个组织细胞,像翻录磁带或复印文件一样,大量生产出相同的生命体。
利用它可以拯救濒临灭迹的物种,或是复制一些优良品种等等。
然而在进一步细想克隆,却也着实让人深虑。
首先,若是无节制地“复制”某种物种,就会打破自然界的生态平衡,破坏优胜劣汰的自然法则,给自然界带来了混乱。
其次,从理论上说“克隆”哺乳动物的成功,即为“克隆”人类准备了前提条件,再经过技术的不断改善,毫无疑问,不久以后就能“克隆”出人。
浅议基因工程制药的相关研究在当今科技飞速发展的时代,基因工程制药无疑是一颗璀璨的明星。
它不仅为人类健康带来了前所未有的希望,也为医药领域开辟了全新的道路。
基因工程制药,简单来说,就是利用基因工程技术来生产药物。
这一技术的出现,彻底改变了传统制药的模式。
传统制药往往依赖于从天然物质中提取有效成分,或者通过化学合成的方法来制备药物。
然而,这些方法存在着诸多局限性,比如天然物质中有效成分含量低、提取困难,化学合成过程复杂、成本高昂且可能产生环境污染等。
基因工程制药则巧妙地解决了这些问题。
它通过对生物体的基因进行改造和重组,使其能够大量生产我们所需要的药物成分。
这就好比是给生物体下达了一个特定的“生产指令”,让它们成为高效的“药物工厂”。
那么,基因工程制药是如何实现的呢?首先,科学家们需要确定所要生产的药物的基因序列。
这就像是找到了打开宝藏的钥匙。
然后,通过一系列复杂的技术手段,将这个基因插入到合适的载体中,比如细菌、酵母或者哺乳动物细胞。
这些载体就像是一辆辆“运输卡车”,能够将基因带到目标生物体中,并使其得以表达。
以胰岛素的生产为例。
在过去,胰岛素主要是从动物的胰腺中提取,不仅产量有限,而且成本高昂,还可能引起过敏反应。
而通过基因工程技术,我们可以将人的胰岛素基因导入大肠杆菌中,让大肠杆菌大量生产胰岛素。
这样生产出来的胰岛素与人自身产生的胰岛素结构完全一致,效果好,安全性高,极大地满足了糖尿病患者的治疗需求。
基因工程制药的优势是显而易见的。
它能够生产出结构复杂、难以通过化学合成的药物,比如蛋白质类药物和多肽类药物。
这些药物在治疗癌症、心血管疾病、免疫系统疾病等方面发挥着重要作用。
同时,基因工程制药还能够提高药物的产量和纯度,降低生产成本,为广大患者带来了实惠。
然而,基因工程制药也并非一帆风顺,它面临着一些挑战和问题。
首先是技术方面的难题。
虽然基因工程技术已经取得了巨大的进步,但在基因的导入、表达调控等环节仍存在一些不确定性和困难。
基因工程制药论文3900字_基因工程制药毕业论文范文模板基因工程制药论文3900字(一):医药高职“基因工程制药”课程的双语教学论文摘要实施双语教学是适应我国高等教育国际化趋势的发展需要。
本文立足培养具备国际竞争力的医药技术型人才的角度出发,阐述了高职院校“基因工程制药”实行双语教学的必要性,从教学模式、教学方法及考核形式等方面进行了浅析。
旨在为其他专业课程开展双语教学提供有益参考,为现代职业教育的发展引领方向。
关键词高职院校双语教学基因工程制药适应社会需要为目标、培养高技能型人才是高职教育的主要任务和特点。
当前我国经济发展进入新常态,发展机遇带来更新的经济增长点,“十三五”规划纲要中将加快构建现代职业教育体系作为重点思想,对高素质技能型人才的培养提出了更高要求。
在“一带一路”新的国内外经济环境下,双语教学是我国本科院校教学改革中的一大亮点,双语教学的有效实施培养出了一批专业知识扎实,外语应用能力强的高素质人才。
目前,少数高职院校在政策激励下,响应市场之需求,结合自身情况开展双语教学的教学改革,并取得初步成效。
“基因工程制药”是生物制药专业的主要专业特色课程之一,是现代生物技术制药发展的核心,知识和技术更新尤为迅速。
为了使学生能更好地掌握基因工程制药相关知识,培养具有国际化视野高素质医药创新人才。
本文针对医药高职院校核心专业课程“基因工程制药”实行双语教学的必要性进行阐述,并从提高双语教学教师素质、教学模式、教学方法及考核形式等方面进行浅析。
1“基因工程制药”实行双语教学的必要性“双语教学(bilingualteaching)”的定义就是在教学过程中,用两种语言作为教学媒介语,学习和掌握学科专业知识。
双语教学一方面可以提高学生的英语水平,另外一方面可以培养学生利用英语学习专业知识和提高解决专业问题的能力。
如今的生物技术正迅速地改变着我们的生产和生活方式。
“基因工程制药”涵盖了研发基因工程药物的基本理论和相关研制技术比如免疫球蛋白,细胞因子和干扰素等新药的原理、方法、技术路线。
基因工程论文蛋白药物论文:基因工程蛋白药物发展概况【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。
【关键词】基因工程蛋白药物发展概况基因工程制药是随着生物技术革命而发展起来的。
1980 年,美国通过bayh-dole 法案,授予科学家 herbert boyer 和 stanley cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。
1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。
生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。
生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。
当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。
随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。
研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。
而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。
利用基因工程技术(重组dna技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。
基因工程实验论文3900字_基因工程实验毕业论文范文模板基因工程实验论文3900字(一):虚拟仿真技术在基因工程实验教学中的应用论文摘要:基因工程是现代生物技术的核心,其实验课程所涵盖的技术体系是生命科学研究领域及现代生物技术公司高端从业人员必备技能。
但因实验内容多,实验原理比较抽象、实验操作烦琐复杂,周期长等因素,在有限的课时内学生的实验成功率偏低,教学任务完成质量较差。
为此本研究将虚拟仿真技术(VR)引入实验教学中,通过模拟真实的试验场景,学生能够体会全新的、身临其境实验授课方式,并通过在线软件支持学生课后在任意时间地点反复进行虚拟实验操作。
通过问卷、采访以及实际运用等方式证明了VR技术在基因工程实验教学中取得了预期的教学效果。
关键词:VR;基因工程;实验教学VR(VirtualReality),即虚拟现实,在20世纪80年代初提出来的,是指借助计算机及最新传感器技术创造的一种崭新的人机交互手段[1,2]。
而基于VR技术的实验教学可以综合应用虚拟现实、多媒体、人机交互、数据库以及网络通信等技术,营造一个以学生为主体,激发主动学习兴趣,高度互动、动手实作、虚拟实验、过程可视的新颖教学环境,体现“实验室无处不在”的理念[3]。
能避免传统教学中的“试验时间,场所固定”“实验仪器和耗材昂贵”“学生及试验可控性差”“结果错误无法进行后续试验”“学时有限无法完成”等缺点。
基因工程是于20世纪70年代在分子生物学和分子遗传学综合发展基础上诞生的一门崭新的生物技术科学[4]。
它是利用重组技术,在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内进行无性繁殖,使重组基因在细胞内表达,产生出人类需要的生物产品,或者改造、创造新的生物类型。
该技术是整个现代生物工程的核心工程,已成为相关研究领域及现代生物技术公司高端从业人员必备技能。
这也是生命科学相关专业学习和掌握的关键内容。
基因工程技术论文目前,基因工程已经被广泛应用于农业、畜牧业、医药及环保等领域。
下面是店铺整理了基因工程技术论文,有兴趣的亲可以来阅读一下!基因工程技术论文篇一基因工程技术的应用摘要:20世纪70年代,人类建立了DNA重组技术,基因工程从此得到迅速发展。
目前,基因工程已经被广泛应用于农业、畜牧业、医药及环保等领域。
本文简单介绍基因工程在这些领域的发展与应用。
关键词:基因工程 DNA重组应用发展现状沃森(Waston)和克里克(Crick)在1953年提出DAN的双螺旋模型,奠定了基因工程的理论基础。
20世纪70年代发展起来的DNA重组技术,促进了基因工程的迅速发展。
通过基因工程,人类可以按照自己的意愿,利用DNA的重组技术在体外对基因进行改造和重组,最后将重组后的基因导入受体细胞内,从而按照人类的意愿改造生物的遗传信息。
基因工程目前已被广泛地应用于农业、畜牧业、医药及环保等领域。
1.基因工程在农业上的应用传统育种主要是通过有性杂交产生变异,可通过选择固定优良变异,在提高作物产量、提高作物的抗逆性等方面做出重要贡献。
但是,传统育种方法只能近缘杂交,不能远缘杂交,因此可利用的资源越来越少,传统育种面临着越来越大的挑战。
基因工程克服了传统方法不能远缘杂交的问题,在育种方面贡献巨大。
人类可以通过植物基因工程技术,培育出符合人们需要的、具有更高价值的作物[1-2]。
基因工程在农业上的应用可谓硕果累累,基因工程可提高农作物的抗逆能力(如抗病、抗虫、抗干旱、抗除草剂等)、改良农作物的品质以及可利用植物生产药物等。
提高抗逆性的原理是:从某些生物中分离出具有抗病、杀虫活性、抗干旱、抗除草剂的基因,并将其导入作物中并表达,使其具有抗逆性。
荷兰和以色列两国的科学家从草莓细胞线粒体中提取一种酶基因,将其导入拟南芥菜中,使转基因拟南芥菜产生两种能吸引害虫天敌的化合物,从而达到杀虫的目的。
西红柿很容易腐烂,运输和储藏很不方便,因此都是在西红柿未完全成熟时就摘取下来,在运输过程中再催熟,降低了西红柿的口感。
第 30 卷 第 5 期 玉林师范学院学报(自然科学) Vol.30 No.52009 年 JOURNAL OF YULIN NORMAL UNIVERSITY (Natural Science)基因工程药物的研究热点及发展方向□黄雅琼1,石德顺2(1. 玉林师范学院 化学与生物系 副教授 博士,广西,玉林 537000) (2. 广西大学 动物繁殖研究所 研究员 博士,广西,南宁 530005) 【摘 要】随着现代生物技术的突飞猛进,基因工程药物在现代生物制药产业中的地位越来越重要。
基因工程药物已经成研究生命攸关的关键课题。
本文对基因工程药物的研究热点和发展方向颇为关注,并展望了基因工程药物美好的发展前景.【关键词】基因工程药物;研究;热点;发展方向;前景【中图分类号】Q789【文献标识码】 A 【文章编号】1004-4671(2009)05-0067-03项目资助:玉林师范学院重点项目立项(2009YJZK01)Hot Topics and Developmental Direction of GeneticallyEngineered PharmaceuticsHUANG Ya-qiong 1,SHI De-shun 2(1. Ph. D., Associate Professor, Dept. of Chemistry & Biology, Yulin Normal University, Yulin, Guangxi 537000)(2. Ph. D., Researcher, Institute of Animal Reproduction, Guangxi University, Nanning, Guangxi 530005)Abstract: With the rapid development of modern biology technology, Genetically Engineered Pharmaceutics plays an important part in the modern biopharmaceutical industry. The Genetically Engineered Pharmaceutics has gradually become a crucial research subject currently. Therefore, we attempt to expound the hot topics and focused developmental direction of it. Furthermore, its developmental prospects are also viewed in this paper.Key words: Genetically Engineered Pharmaceutics;research;hot topics;direction;prospects**1 前言四大科学支柱:微电子、生物技术、新型材料和航天技术[1]的现代科学技术在当今取得了世人瞩目的成就,而其中以生物技术的发展科学成就尤其突出,成绩斐然. 随着现代生物技术的发展,基因工程药物和人民群众的生产和生活息息相关,关联到人们的生活质量、生存状态和生命意义.面对人们对美好生活渴望和对生活质量的日益提高的内在追求,面对国内制药行业对基因工程药物技术行业发展的迫切需要,面对当今社会科学技术发展的时代要求,基因工程药物在制药业中所占的比例越来越高. 《国家中长期科学和技术发展纲要(2006-2020)》[2]指出,未来15年,中国要在玉林师范学院学报2009 年第 5 期生物技术领域切实掌握一批前沿技术,包括靶标发现、动植物品种与药物分子设计、基因操作和蛋白质工程、基于干细胞的人体组织工程和新一代工业生物技术(包括生物催化和生物转化)等. 随着我国的基因工程药物研究深入,为满足经济和文化建设的发展需要, 遵循科学实践发展观的需求,与时俱进,与国际先进技术缩小差距,基因工程药物与现代科研技术密切结合,将逐渐进入国际市场. 基因工程药物在治病救人和防治疑难重症及抗癌等方面发挥着巨大贡献.2 基因工程药物基因工程药物是指用现代基因重组高科技对基因进行克隆,通过重组DNA导入大肠杆菌、酵母或动物细胞成功构建工程菌株或细胞株,在工程菌株、细胞中所表达生产的新型药物包括细胞因子、多肽类激素、溶血栓药物、疫苗、抗体、反义RNA及基因治疗药物等等多种难治疾病的基因工程药物.3 基因工程药物研究的热点随着基因工程药物的发展,转基因技术研究的深入,转基因技术在制药业中具有广阔的发展前景,我国的基因制药行业已初具规模[3]. 随着后基因组时代的逐步深入,生物反应器、反义核酸技术、RNAi技术和siRNA等基因技术的不断完善,采用小分子干扰手段进行基因治疗极具发展潜力. 使用现代生物学、医学、药学最先进的技术设备和方法生产基因工程药物,治疗遗传疾病和肿瘤等病症引起了全世界更多研究者的高度重视.发展和完善生物药物制剂、大分子药物吸收、转运机理研究和给药系统研究、代谢工程—组合生物学与新药研发、糖生物学和糖基化工程与新药研究等成为最热门的研究热点. 基因工程药物的生物机理和传导机制及生物信息组学和代谢功能的研究受到了高度关注. 而且,生物信息学和功能基因组学,特别是蛋白质组学、药物基因组学与基因药物研究发展关系十分密切. DNA芯片技术、构建生物分子库以研制新药、定点突变、DNA洗牌技术和计算机辅助新蛋白质设计等基因工程药物技术的发展前景广阔,医学应用价值深远.4 基因工程药物研究未来的发展方向基因工程药物目前的研究方向是通过关键技术的突破性研究,研发具有自主知识产权,对治疗人类重大疾病能够产生确切的疗效,毒副作用较小,可以进行大型规模化生产,质量较为稳定的、功能可控的基因工程药物,并且在原有基因工程药物的基础上,开发系列制剂,满足不同患者的需求,扩大临床治疗效果和应用范围.基因工程药物的未来的发展方向是将针对危害人类健康的重大疾病(创伤修复、心脑血管疾病治疗、神经系统疾病和肿瘤等方面),在基因工程多肽及基因治疗药物、疫苗、重大疾病防治药物、药物新剂型、分子诊断技术等方面进行突破性的研究和发展,并研制和加大力度开发对老年疾病的治疗,研发能够产生有效作用的新型制剂和特效药物.5 前景和展望基因工程药物的发展给生物医药领域带来了不断的突破. 人类基因组计划的完成更有利于帮助我们确定疾病发生和发展的靶标以及寻找更多的有效治疗药物[4]. 随着人类基因组计划的完成,后基因组计划、蛋白质组学研究和RNA的功能等的不断研究,人体重要器官的生理活动和功能与疾病相关的基因的关系逐渐研究深入,功能的改变引起了人体生理功能衰退和功能的缺失的基因结构逐渐被认识清楚,引发众多疑难问题和顽固疾病的机理逐渐研究清晰. 基因重组细胞因子、基因重组激素、基因重组溶血栓药物、基因工程血液代用品、基因工程重组蛋白药物、反义核酸药物、RNAi基因治疗药物和siRNA基因治疗药物等对抗病毒感染、抗肿瘤治疗、对基因功能的研究及识别和确认基因靶点等领域的功能研究不断深入,新型基因工程药物的研制不断取得了突破性进展. 运用基因工程药物进行基因治疗,是治疗人类的遗传病症、癌症的转移和扩散等并发症、衰老疾病、心血管病症、传染性病毒和代谢性疾病等众多疾病治疗的最为有效的治疗方法. 因此,基因工程药物对人类生存和健康具有极其重要的治疗潜力,发展前景广阔.6 结语基因工程药物理论和技术科学的快速发展,工艺和研制等技术不断进步,促进了人们对基因工程药物认识和理解的加深,基因工程药越来越突显【参考文献】[1] 李元主编.基因工程药物[M].北京:化学工业出版社,2007.7.[2]《国家中长期科学和技术发展纲要(2006-2020)》(国 发[2005]44号),中共中央国务院,2006年2月9日.[3] 李哲.转基因技术在我国生物制药领域的应用与发展[J]. 中国医药技术经济与管理. 2008. Vol. 2,No. 6,49-52.[4] 兰欣. 我国生物制药的开发现状与展望[J]. 菏泽学院学报, 2007,4. Vol 29. No. 2. 92-95.【收稿日期 2009-09-03】【责任编辑 谢文海】取、传递、加工、存贮、使用等等是十分复杂的,因此仅仅研究给定的信源,以及它所发出信息的统计特性是远远不够的. 这就不能不涉及到信息的产生、信息的使用,从而涉及到信息的语义和信息的效用(价值)问题. 正是由于这种客观需要,使得其研究对象不得不由统计信息向语义信息和有效信息方面伸展. 可见,信息科学的产生是与大系统理论、系统工程的发展、系统科学的形成分不开的. 正是在这个意义上,信息科学是与系统科学一道发展起来的,两者相辅相成. 它们在实质上都以大系统和复杂系统为研究对象,不过研究的角度不同. 这意味着人类认识史和科学史已进入一个新的历史时期,要在新的水平上重新对整体性的对象加以研究,这类对象一般不仅规模巨大,联系复杂,而且具有不确定性的特点,因而研究起来特别困难. 与此相联,方法论问题也就特别突出.现代科学技术与社会生活的发展决定了信息科学研究对象扩展的必要性,而新的科学方法的出现则使这一扩展具有可能性. 我们知道,研究对象、科学理论和科学方法之间存在着密切的关系. 不同的研究对象会出现不同的理论,而不同的理论则派生出以之为根据的方法,对于开创性的工作来说,针对新的研究对象,有时还必须提出开创性的新的方法来进行探索. ■【参考文献】[1] C E Shannon. A Mathematical Theory of Communication[M]. B.S.T.J.vol.27 July and Oct .1948.[2] /question/22894222.html[OL], 2007-4-6.[3] /auto/data/25461/detail.php? thisid= 1970[OL],2005-01-22.[4] S Guiasu. Information Theory With Application[M].McGraw—Hill, Inc 1997.[5] 高庆狮. 新模糊集合理论基础[M]. 北京:机械工业出版 社,2006.【收稿日期 2009-01-13】【责任编辑 谢明俊】(上接第 33 页)黄雅琼,刘 力,张 鹏,李桂芬,庞 起,朱万仁,石德顺 基因工程药物的研究热点及发展方向出它在现代生物技术制药领域的重要性,以及迫切发展基因工程药物的时代紧迫感. 随着科技发展和更新,不断丰富和更新的基因工程药物理论、探索基因工程药物的生物活性、发展基因工程药物的新技术程序和合成途径,加快临床研究和技术开发及应用,对于提高生命的质量和生存的意义、预防衰老、治疗肿瘤等疾病有重要的医学应用价值. 基因工程药物已经成为研究人类生存的生命攸关的重要研究领域,对基因工程药物的深入研究,可不断促进人类生命的健康发展和社会的和谐进步. ■。
基因工程学术论文基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪70 年代诞生的一门崭新的生物技术科学。
下面是由店铺整理的基因工程学术论文,谢谢你的阅读。
基因工程学术论文篇一摘要:基因工程是在分子生物学和分子遗传学综合发展基础上于20 世纪70 年代诞生的一门崭新的生物技术科学。
基因工程是一项很精密的尖端生物技术。
可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。
当某一基因进入另一种细胞,就会改变这个细胞的某种功能。
这项工程创造出原本自然界不存在的重组基因。
它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。
基因工程的发展现状和前景是怎么样呢,而又有哪些利弊?关键词:基因工程;发展现状;发展前景;基因工程利弊一、基因工程(一)基因工程的概念及发展1.概念基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
2.发展生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。
60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。
在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。
(二)基因工程的发展现状及前景1.发展现状(1)基因工程应用于农业方面。
运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。
下面列举几个代表性方法。
①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。
医药领域生物基因工程的运用-基因工程论文-生物学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:生物基因工程又被称为基因拼接技术或者DNA重组技术,可分为微生物基因工程、动物基因工程和植物基因工程3种生物转基因技术。
其在医药领域的具体应用有胰岛素、药用重组蛋白以及抗凝血酶等的制备。
通过阐述总结这些内容,对生物工程应用于医药领域的优缺点进行了分析。
关键词:生物基因工程; 医药; 应用;Abstract:Biogenetic engineering, also known as gene splicing technology or DNA recombination technology, can be divided into microbial genetic engineering, animal genetic engineering and plant genetic engineering. Its specific applications in the field of medicine include the preparation of insulin, medicinal recombinant protein and antithrombin. The advantages and disadvantages of bioengineering in medicine were analyzed.Keyword:Biological genetic engineering; Medicine; Application;DNA分子双螺旋结构的发现标志着生物基因工程研究开始朝着分子结构方向进展。
近年来随着生物技术的不断创新和发展,生物基因工程领域获得了不错的发展成绩,不仅给人们生活带来了深远的影响,还为医药领域开拓了新的发展方向。
生物基因工程能够利用预先设定好的重组DNA序列,通过一系列的特殊反应,实现改变细胞功能、获取预想产物的目的。
基因工程技术在生物制药中的应用在当今科技飞速发展的时代,基因工程技术犹如一颗璀璨的明星,在生物制药领域绽放出耀眼的光芒。
它不仅为人类健康带来了前所未有的希望,也彻底改变了传统制药的模式和理念。
基因工程技术,简单来说,就是通过对生物体基因的操作和改造,来实现特定的目标。
在生物制药中,这一技术的应用主要集中在药物的研发、生产和质量控制等方面。
首先,基因工程技术在药物研发方面发挥了至关重要的作用。
它使得我们能够针对特定的疾病靶点,设计和开发出更加精准有效的药物。
以癌症治疗为例,通过对癌细胞基因的深入研究,科学家们利用基因工程技术研发出了靶向治疗药物。
这些药物能够精准地识别并作用于癌细胞上的特定靶点,如某些异常激活的蛋白质或基因突变,从而抑制癌细胞的生长和扩散,同时减少对正常细胞的损伤。
相比传统的化疗药物,靶向治疗药物具有更高的特异性和更少的副作用,显著提高了癌症患者的治疗效果和生活质量。
此外,基因工程技术还为治疗一些遗传性疾病带来了新的希望。
对于那些由基因突变引起的疾病,如囊性纤维化、血友病等,通过基因治疗的方法,将正常的基因导入患者的细胞中,以替代或修复缺陷的基因,从而恢复细胞的正常功能。
虽然基因治疗目前仍面临诸多挑战,但其潜力巨大,为那些传统治疗方法无法治愈的遗传性疾病患者带来了曙光。
在药物生产方面,基因工程技术更是带来了革命性的变革。
利用基因工程菌或基因工程细胞进行大规模的药物生产,不仅提高了生产效率,降低了生产成本,还能够保证药物的质量和纯度。
例如,胰岛素是治疗糖尿病的重要药物。
传统的胰岛素提取方法产量低、成本高,且容易受到杂质的影响。
而通过基因工程技术,将人胰岛素基因导入大肠杆菌或酵母细胞中,使其能够大量合成胰岛素。
这种基因工程胰岛素与人体自身分泌的胰岛素结构和功能完全一致,而且生产过程易于控制,质量稳定,为广大糖尿病患者带来了福音。
再比如,疫苗的生产也得益于基因工程技术的发展。
传统的疫苗生产方法往往需要培养大量的病原体,然后对其进行灭活或减毒处理,不仅生产周期长,而且存在一定的安全风险。
基因工程技术在生物制药中的应用在当今的医学领域,生物制药无疑是一颗璀璨的明星,而基因工程技术则是推动生物制药发展的强大引擎。
基因工程技术的出现和不断发展,为解决人类的健康问题带来了前所未有的机遇,也为生物制药产业带来了革命性的变革。
基因工程技术,简单来说,就是通过对生物体基因的改造、重组和表达,来实现特定的生物功能或生产有用的生物制品。
在生物制药领域,它的应用范围非常广泛,涵盖了从药物的研发、生产到质量控制等多个环节。
首先,基因工程技术在药物研发方面发挥着至关重要的作用。
传统的药物研发往往依赖于从天然产物中筛选活性成分,或者通过化学合成来制备药物。
这种方法不仅效率低下,而且往往难以获得具有理想疗效和安全性的药物。
而基因工程技术则为药物研发提供了全新的思路和方法。
通过基因工程技术,科学家们可以深入了解疾病的发生机制,从而针对性地设计和开发药物。
例如,对于某些遗传性疾病,如囊性纤维化,科学家们通过研究相关基因的突变情况,开发出了能够修复基因突变的基因治疗药物。
此外,基因工程技术还可以用于生产抗体药物。
抗体是人体免疫系统产生的一种蛋白质,能够特异性地识别和结合病原体或异常细胞,从而发挥免疫防御作用。
利用基因工程技术,科学家们可以将人类抗体的基因导入到细菌、酵母或哺乳动物细胞中,使其大量表达和生产抗体药物。
这些抗体药物具有高特异性、高亲和力和低副作用等优点,在肿瘤、自身免疫性疾病等领域取得了显著的疗效。
其次,基因工程技术在药物生产方面也具有显著的优势。
传统的药物生产方法往往受到原材料供应、生产工艺复杂等因素的限制,导致药物生产成本高昂、产量有限。
而基因工程技术则可以通过构建基因工程菌或基因工程细胞系,实现药物的大规模工业化生产。
以胰岛素为例,胰岛素是治疗糖尿病的重要药物。
过去,胰岛素主要从动物胰腺中提取,不仅产量有限,而且由于动物胰岛素与人胰岛素在结构上存在一定差异,容易引起免疫反应等副作用。
而利用基因工程技术,科学家们将人胰岛素基因导入到大肠杆菌或酵母细胞中,使其能够高效表达和生产人胰岛素。
基因工程制药论文3900字_基因工程制药毕业论文范文模板基因工程制药论文3900字(一):医药高职“基因工程制药”课程的双语教学论文摘要实施双语教学是适应我国高等教育国际化趋势的发展需要。
本文立足培养具备国际竞争力的医药技术型人才的角度出发,阐述了高职院校“基因工程制药”实行双语教学的必要性,从教学模式、教学方法及考核形式等方面进行了浅析。
旨在为其他专业课程开展双语教学提供有益参考,为现代职业教育的发展引领方向。
关键词高职院校双语教学基因工程制药适应社会需要为目标、培养高技能型人才是高职教育的主要任务和特点。
当前我国经济发展进入新常态,发展机遇带来更新的经济增长点,“十三五”规划纲要中将加快构建现代职业教育体系作为重点思想,对高素质技能型人才的培养提出了更高要求。
在“一带一路”新的国内外经济环境下,双语教学是我国本科院校教学改革中的一大亮点,双语教学的有效实施培养出了一批专业知识扎实,外语应用能力强的高素质人才。
目前,少数高职院校在政策激励下,响应市场之需求,结合自身情况开展双语教学的教学改革,并取得初步成效。
“基因工程制药”是生物制药专业的主要专业特色课程之一,是现代生物技术制药发展的核心,知识和技术更新尤为迅速。
为了使学生能更好地掌握基因工程制药相关知识,培养具有国际化视野高素质医药创新人才。
本文针对医药高职院校核心专业课程“基因工程制药”实行双语教学的必要性进行阐述,并从提高双语教学教师素质、教学模式、教学方法及考核形式等方面进行浅析。
1“基因工程制药”实行双语教学的必要性“双语教学(bilingualteaching)”的定义就是在教学过程中,用两种语言作为教学媒介语,学习和掌握学科专业知识。
双语教学一方面可以提高学生的英语水平,另外一方面可以培养学生利用英语学习专业知识和提高解决专业问题的能力。
如今的生物技术正迅速地改变着我们的生产和生活方式。
“基因工程制药”涵盖了研发基因工程药物的基本理论和相关研制技术比如免疫球蛋白,细胞因子和干扰素等新药的原理、方法、技术路线。
近年来,随着人们健康观念的变化,尤其国家先后出台了《国家中长期科学和技术发展规划纲要》和《促进生物产业加快发展的若干政策》,加大了对生物技术创新和生物产业发展的支持力度,我国的生物制药行业发展保持快速增长,但大多依靠国外进口,缺乏自主产品。
随着分子生物学突飞猛进的发展,基因治疗正在快速发展,在2011年,美国医学界就首次提出了“精准医学”的概念,2012年10月,歐盟批准了西方发达国家第一个基因治疗药物uniQure公司的Glybera,2015年年初,奥巴马提出了“精准医学计划”,引领了一个医学新时代,促进了基因工程制药研究新药的迅猛发展。
作为医药行业的技术人员,只有与时俱进,不断创新,跟上国际同行的步伐,相互切磋,才能更好地掌握基因工程药物理论和新技术,为医学新时代的生物药的研究和发展做出贡献,创新出自己的产品。
基于以上,开展“基因工程制药”双语教学是必要的,有助于学生及时了解学科国际发展趋势,更好地为医药行业服务。
2“基因工程制药”双语教学实施方法和思路2.1提高双语教学教师素质的必要性和应对措施双语教学除了要求学生掌握本专业相关的基础知识之外,同时学生的外语水平和用外语学习专业知识的能力也要在双语教学的教学过程中得到提高,这对任课教师有一定的要求。
教师是双语教学的主要实施者,实施双语教学的教师要有深厚的专业知识,外语水平高,具有用外语解析专业知识的能力。
目前,高职院校能进行双语教学的师资仍然有限,高职院校教师从总体上大致分为两类,一是专业英语水平不错,能查阅国外专业文献、科研能力较强,但利用英语交流表达上有所欠缺;二是英语专业的教师听说读写能力水平较强,但专业知识不够。
教师的英语水平和学科知识等直接影响教学质量,因此,提高高职院校双语教学教师素质是很有必要的。
目前,提高双语教学教师的主要措施就是学校选派有能力的教师参加国内双语教学研修班和赴国外求学。
教师通过研修班的培训学习和国外相关课程学习,有助于提高教师的外语口头表达能力、专业水平以及写作能力,拓宽了教师的视野,提高了教师参与双语教学改革的积极性,提高了双语教学教师团队的师资水平,为培养国际性的人才提供了基本保证。
2.2确立适度的教学模式“基因工程制药”课程目标是使学生能够掌握基因工程制药研究体系的基本原理,掌握基因工程制药操作的基本技能,了解基因工程制药研究方向的热点问题和发展趋势。
双语教学的有效实施可以提高学生的外语水平,引导学生自己动手查阅国内外文献及国外相关网站了解医药行业知识的最新进展,成为與时俱进的人才。
在教学过程中,教师应贯彻本课程知识目标,以制备基因工程药物产品为主线,围绕基因工程制药的一般流程、基因工程制药常用的载体、基因工程制药常用的酶;基因工程制药常用的技术五大模块为体系进行课程的整合与设计。
国内常见的双语教学模式一般有3种,分别是沉浸式教学、保持型教学和过渡型教学。
针对我国高职学生英语基础相对薄弱,对英语授课的接受能力普遍偏低的特点,高职院校一般采用过渡型双语教学。
课堂上合理安排两种语言的教学比例是很重要的。
教学资料PPT是英文,授课全部用中文这种形式化教学是不可取的。
提倡比如基因治疗、免疫球蛋白和干扰素等重点概念用英语讲,配以中文解释。
知识简单的绪论和实验过程中简单的技术路线等章节用英语讲,而在知识较难的基因工程药物研发多用汉语教学。
不论用英语还是汉语,都应围绕将语言作为载体传授学科知识的基本点来开展双语教学。
2.3选择合理的教材合适的英语原版教材和参考书是双语教学正常开展的前提。
国外原版教材具有原汁原味,内容丰富,图文并茂,结构鲜明,权威性强等特点。
一些本科院校中文教材选定的是李元的《基因工程药物》,原版教材选用的是GeneCloninga ndDNAanalysis(T.A.Brown),中文教材与原版教材内容相符的章节用来作为双语教学的内容。
但是国外原版教材费用价格偏高、书中内容信息量大、专业理论知识深和高职学生英语基础偏弱,接受能力不强等都是实际情况。
高职课程教学大纲重在培养学生技术应用能力,高职院校选用国外原版教材显然是不合适的。
目前,完全适合高职院校的双语教材还比较少。
因此,高职院校相关学科教师可根据人才培养方案课程大纲和学生的外语水平和接受能力对国外原版教材进行改编、整合,整合成体现高职教育特色和双语教学目标的教材。
教师也可根据学生实际情况编写教材配套中文讲义,方便学生理解,以期保证高职院校双语教学的顺利进行。
2.4运用灵活恰当的教学方法有学习兴趣就有学习动力,培养学生学习兴趣是教师的首要任务。
“基因工程制药”课程理论性强、专业性强,枯燥乏味。
因此,教师要想办法提高学生的学习兴趣,让学生以积极的心态对待双语教学。
比如在授课过程中,教师可以多介绍比如基因治疗,精准医疗这些前沿技术在医药领域的实际应用,让学生意识到生命科学知识和新技术在不断变更,唤起学生探索未知领域的欲望。
在理论课授课中,开展双语教学可以穿插“汉中有英,英中带汉”的方式进行,应以汉语为主(70%)、英语为辅(30%),以此来缓解听课疲劳。
将重点概念比如基因治疗,免疫球蛋白等用英语表述,汉语注释,把握難易深度,有层次性,在介绍治疗肿瘤的基因药物等这些新技术时,准备丰富的多媒体课件和微课内容(具有英文背景的),让学生建立感性认识。
同时,教师应积极地改进教学方法,采用研讨式、启发式和辩论式等创造性教学法激发学生的学习兴趣。
“基因工程制药”也是一门实验课程,在实验课程中可采用小组教学,在PCR克隆技术、质粒DNA的转化等简单实验中,实验步骤可以用英文讲授,实验结果用中文论述,学生在实践操作过程中遇到问题可以及时与教师沟通,提高双语教学质量。
2.5教学考核双语教学效果考核方式一般是平时成绩和课程期末考试二者结合到一起进行考核。
平时成绩可以结合课程进度来布置作业,可以选取一个专题如Genethera py、Insulinsecretinggene Engineering等,课后分组讨论后查阅文献,制作成PPT,鼓励用英文演讲,教师和同学共同进行评分。
学生在完成专题作业过程中通过NCBI、EMBL、中国生命科学论坛、生物秀等网站,了解生物技术在生物医药行业的最新进展,同时,通过查阅外文文献和国外网站,提高了学生的英语阅读能力和增加了词汇量,也提高了用英语解析专业知识的能力。
同时,通过讨论也能训练他们用英语思考问题的能力。
课程期末考试,试卷题型一般包括名词解释、选择题、判断题、简答题,论述题这几种题型。
由于高职院校学生英语基础薄弱,出题形式全部用英文命题和用英文作答显然是不合适的。
应采取中英文混合形式出题,名词解释和简答题用英文命题,选择题、判断题和论述题用中文出题。
期末考试名词解释用英文作答,其它题型用中文作答,也可增加英译汉和汉译英题型。
这种形式既能考核专业知识的掌握程度也能考核英语水平的阅读和写作能力,保证双语教学学习和教学效果。
3结语近年来,我国生物制药行业保持快速增长,尤其未来十年,一批创新基因药物进入到应用阶段,需要更多的具有国际视野的高素质的技能人才满足市场需求。
双语教学是一种新教学模式,是现代职业教育体系的一项重要教学改革,是培养具有国际视野的高素质的技能人才的重要途径,也是一项长期不断探索的工作。
“基因工程制藥”课程作为生物制药专业的核心课程,双语教学势在必行。
目前,“基因工程制药”课程双语教学在高职院校还处在起步阶段,在教学实践中遇到一些问题,但它作为教学改革的一大方向,需要长期努力和探索。
同时,加强生物医药类课程的双语教学,塑造全面、可持续发展、具有创新能力的一线人才更是加快发展现代职业教育的一大体现。
基因工程制药毕业论文范文模板(二):基因工程在生物制药领域的应用探讨论文摘要:随着基因工程技术的进步和发展,其在生物制药领域发挥着重要的作用。
从基因操作技术入手,详细阐述了大分子分离技术、PCR技术、基因芯片技术和外源基因的导入技术等,并详细分析和研究了一些具体的基因生物药物。
关键词:基因工程;生物制药;操作技术;表达载体中图分类号:R915文献标识码:ADOI:10.15913/ki.kjycx.2015.02.15 0基因工程在生物制药领域的主要应用是基因工程制药。
基因工程制药是指人们按照一定的医学目标,将特定的外源基因导入宿主的基因组成,由宿主产生特定蛋白药物的一种制药方式。
1基因操作技术1.1基因大分子分离技术基因大分子分离技术实际上是指基因组DNA和质粒(plasmidDNA)的分离。
基因组DNA分离的方法主要有PCR扩增技术、Southern杂交等。
其中,基因文库是建立在DNA重组基础上的,它不同于基因克隆和基因库,主要是指将某种重组的DNA序列在某宿主体内进行克隆增值。