煤气化工艺流程
- 格式:doc
- 大小:35.50 KB
- 文档页数:9
工艺过程由空分生产出的氧气(4.9MPaG、25℃)进入氧气预热器E-1709,被中压汽包循环水加热到180℃。
(主要是避免低温氧气在氧气/蒸汽混合器中混合时使蒸汽冷凝)。
预热后的氧气进入氧气/蒸汽混合器X-1721。
过热蒸汽(4.9MPaG、350℃)先通过蒸汽过滤器S-1703以确保没有铁锈颗粒(>10μm)进入不锈钢的氧气管路中,然后按蒸汽与氧的比例控制(通常对应于每种煤是固定的比例,一般取H2O/O2:0.03~0.1,根据具体项目和煤种变化)送入氧气/蒸汽混合器进行混合,混合气(4.1MPaG、197℃)去粉煤烧嘴A-1701。
从粉煤给料罐下部三个料斗送出来的粉煤(4.7 MPaG、80℃)进入粉煤加料器X-1701A/B/C,由调节阀17FV-1101/1201/1301控制粉煤质量流量,该阀主要由氧/煤比例控制(根据煤质调整氧煤比),并参照合成气中的二氧化碳(一般为1.0~4.0V%,干基)或者甲烷的含量进行调节。
由调节阀17FV-1102/1202/1302控制加入粉煤加料器的二氧化碳(开车时为氮气)(5.1 MPaG、80℃)的流量来调节粉煤悬浮速度。
然后悬浮粉煤(4.1 MPaG、80℃)去粉煤烧嘴。
在开车和停车时,悬浮粉煤可通过三通阀17XV-1108/1208/1308循环至低压的粉煤贮罐V-1601。
粉煤和氧气/蒸汽混合气经粉煤烧嘴喷入气化炉F-1701中混合,进行部分氧化反应,反应在4.0 MPaG、1400~1700℃下进行,反应生成合成气,其主要成分为CO、H2、CO2、H2O以及少量的H2S、COS、N2、Ar、CH4等。
未反应的呈熔融状态的灰渣与粗合成气一起进入均布激冷水的激冷环,合成气被激冷水冷却并饱和后,向上穿过水分离器进行汽水分离,分离后的合成气由激冷室上部的合成气出口管线导出去文丘里进一步洗涤;而灰渣被水激冷后沿下降管进入激冷室的水浴中冷却。
熔融状态的灰渣经过冷却固化,落入激冷室底部,经破渣机H-1701破碎除去大块渣后排入渣锁斗V-1703。
煤化工壳牌炉煤气化工艺方案一、工艺流程简述(-)气化装置本装置采用Shell干煤粉气化技术,以永城无烟粉煤为原料,生产以H2+C0为主要成分的粗合成气,经后工序变换、净化后作为合成甲醇的原料气。
1、磨煤及枯燥合格粒度的原料煤(包括湿渣和无烟煤)由原料贮运系统通过胶带输送机送入磨前碎煤仓。
碎煤仓中的无烟煤通过称重给煤机送到磨煤机中磨粉,同口寸根据无烟煤的流量,石灰石仓中的石灰石粉按一定比例配到磨煤机中混磨。
假设飞灰循环时,来自飞灰缓冲仓的飞灰也按比例参加磨中。
从热风炉(燃料为甲醇弛放气,开工时采用柴油)送来的热烟气送入煤磨中对煤粉枯燥,在磨粉的同时,经旋转别离器分选,将枯燥后合格的煤粉吹入煤粉袋式过滤器别离收集,经旋转给料器、螺旋输送机送入煤粉贮仓中贮存。
别离后的尾气经循环风机加压后大局部循环至热风炉循环使用,局部排入大气。
为控制系统惰性化,设置。
2、CO浓度在线分析,根据需要补充氮气。
2、煤粉加压及给料煤粉贮存在煤粉贮仓中,当煤粉锁斗处于常压状态时,关闭煤粉锁斗出口的下阀,翻开煤粉锁斗进口的上阀,使煤粉贮仓的煤粉自流进入煤粉锁斗,料满后关闭上阀,通入高压氮气加压后翻开下阀使煤粉自流进入煤粉给料仓中,卸完后关闭下阀,排出氮气降至常压,再循环上述过程O煤粉给料仓中的煤粉由管道通过高压C02送往气化炉喷嘴。
锁斗减压或气化炉喷嘴调试排气经煤粉仓装料袋滤器过滤,收集的煤粉进入煤粉贮仓,气体排入大气。
3、煤气化来自粉煤给料罐的粉煤,用高压二氧化碳送至煤气化烧嘴。
同时, 来自空分的加压氧气经预热后也进入气化烧嘴。
气化炉为立式压力容器,炉内为水冷壁组成的气化室,煤气化烧嘴位于气化室中下部,烧嘴二个一组对称布置。
由煤气化烧嘴喷入的煤粉、氧及蒸汽的混合物在1500°C高温下,瞬间完成煤的气化反响,生成(CO+田)含量很高且夹带飞灰的粗煤气,由下向上从气化炉顶排出。
为防止飞灰粘结在后续设备,在炉出口处喷入循环返回的低温煤气,将其急冷至900°C,使飞灰成为固态,再进入合成气冷却器回收热量,煤气温度降至350°C左右进入后序设备。
煤气化工艺流程一、原料准备煤气化工艺的原料主要是煤炭,需要将原煤进行破碎、筛分、干燥等预处理,以确保原料煤的质量和稳定性。
预处理后的原料煤需经过称量、运输和储存等环节,为后续的煤气化工艺流程做好准备。
二、煤浆制备煤浆制备是将经过预处理的原料煤与水按照一定比例混合,经过球磨机等设备进行研磨和搅拌,制备出一定浓度的煤浆。
制备好的煤浆需经过质量检验,确保其浓度、粒度等指标符合工艺要求。
三、气化炉操作煤气化工艺的核心设备是气化炉,它将经过制备的煤浆与氧气进行高温高压反应,生成合成气。
气化炉的操作需要严格按照工艺参数进行控制,以确保反应的稳定性和安全性。
四、煤气净化从气化炉出来的合成气含有大量的杂质,需要进行净化处理。
通过洗涤、除尘、脱硫等净化环节,将合成气中的杂质去除,得到纯净的煤气。
净化过程中使用的药剂和设备需定期检查和维护,以保证净化效果。
五、尾气处理煤气化工艺的尾气主要指未完全反应的废气和排放的废渣等。
这些废气和废渣需进行妥善处理,以防止对环境和人体健康造成不良影响。
常见的尾气处理方法包括废气燃烧、废渣回收再利用等。
六、煤气储存与运输经过净化和处理的煤气可以储存在专门的储气罐中,以供后续使用。
煤气运输需使用专业的管道或车辆进行,确保安全、高效地将煤气输送到目的地。
七、安全生产措施为了确保煤气化工艺流程的安全生产,需要采取一系列的安全措施。
包括但不限于:严格控制工艺参数、加强设备维护和检修、定期进行安全演练和培训等。
这些措施的实施可以最大限度地减少事故发生的可能性,保障员工和企业安全。
八、环境影响控制煤气化工艺流程对环境有一定的影响,主要体现在废气、废水和废渣的排放上。
为了降低对环境的影响,需要采取有效的环保措施,如废水处理、废气处理和废渣回收再利用等。
此外,还需要加强对环保法规的遵守和环保意识的普及,以实现煤气化工艺流程的可持续发展。
煤气化合成气净化工序工艺流程引言煤气化合成气净化工序是指通过煤气化工艺将煤转化为合成气,并对合成气进行净化处理,以提高合成气的纯度和稳定性,保证合成气的质量,以便用于后续的利用。
本文将介绍煤气化合成气净化工序的工艺流程,旨在提供一个清晰的工艺参考。
工艺流程概述煤气化合成气净化工序的工艺流程主要包括除尘、脱硫、脱氮和脱碳等净化步骤。
其中,除尘主要是去除煤气中的颗粒物,脱硫是去除煤气中的二氧化硫,脱氮是去除煤气中的氮氧化物,而脱碳则是去除煤气中的二氧化碳。
除尘步骤除尘是煤气化合成气净化工序中的第一步,其主要目的是去除煤气中的颗粒物,以防止颗粒物对后续设备和催化剂的损害,并提高合成气的纯度。
除尘步骤通常包括以下几个过程:1.预处理:将煤气中的大颗粒物先行去除,以减轻后续处理设备的负荷。
2.除尘器:采用除尘器将煤气中的细颗粒物去除,常见的除尘器有电除尘器、布袋除尘器和湿式除尘器等。
3.净化:除尘后的煤气进行净化处理,以进一步提高气体的纯度。
脱硫步骤脱硫是煤气化合成气净化工序中的重要步骤,其主要目的是去除煤气中的二氧化硫,以减少二氧化硫对环境和设备的危害。
脱硫步骤通常包括以下几个过程:1.吸收剂准备:选择合适的吸收剂,并将其与煤气进行接触,使二氧化硫被吸收。
2.吸收器:在吸收器中,煤气与吸收剂进行接触,并被吸收剂吸收二氧化硫。
3.脱附:吸收剂中的二氧化硫通过脱附过程被分离出来,以得到可再生的吸收剂。
脱氮步骤脱氮是煤气化合成气净化工序中的重要步骤之一,其主要目的是去除煤气中的氮氧化物,以减少氮氧化物对环境的污染。
脱氮步骤通常包括以下几个过程:1.催化剂还原:使用合适的催化剂还原氮氧化物,将其还原为氮气。
2.分离:将还原后的氮气与其他气体进行分离,以获取纯净的氮气。
脱碳步骤脱碳是煤气化合成气净化工序中的最后一步,其主要目的是去除煤气中的二氧化碳,以提高合成气的氢气含量和催化剂的稳定性。
脱碳步骤通常包括以下几个过程:1.吸收剂准备:选择适当的吸收剂,并将其与煤气进行接触,以吸收二氧化碳。
煤气化工艺流程范文煤气化是利用高温和高压条件下将煤炭转化为合成气的过程。
煤气化技术具有高效、清洁和灵活的特点,被广泛应用于能源转换、化工和石化等领域。
下面是煤气化的基本工艺流程:1.煤气化炉煤气化炉是整个煤气化过程的核心设备。
在煤气化炉中,煤炭与空气或氧气在高温(800-1500℃)和高压(3-45MPa)条件下反应,生成合成气,主要包括一氧化碳(CO)、氢气(H2)、甲烷(CH4)、二氧化碳(CO2)等气体。
2.煤气净化煤气进入净化系统后,首先通过除尘装置去除炉内产生的灰尘颗粒。
随后,煤气进一步经过脱硫装置去除硫化氢(H2S)和其他有毒气体。
除硫后的煤气会通过一系列净化装置去除其他杂质,如氰化物、氯化物等。
3.气体转换将煤气进行转换,主要是将一氧化碳(CO)和二氧化碳(CO2)转化为二氧化碳(CO2)和氢气(H2)。
这个过程称为气体转换或气体增值。
常见的气体转换技术有催化剂变换装置、换热器和新型膜过滤技术等。
4.高压液化经过气体转换的气体进入高压液化环节,通过降低温度和增加压力将气体液化。
液化后的气体称为合成液体燃料,可以用作燃料或化工原料。
5.合成气的利用合成气可以通过合成氨、甲醇、乙醇等化学品的合成反应产生相应的化学品。
合成气也可以用于发电和热能供应等非化学工业领域。
6.尾气回收煤气化过程中会产生大量的尾气,其中含有部分有用成分。
为了实现资源的综合利用,需要对尾气回收和再循环利用。
尾气回收可以通过尾气净化、尾气焚烧和尾气发电等方式进行。
总之,煤气化是一种重要的能源转化工艺,可以将煤炭转化为合成气,进而用于化工和石化生产等应用领域。
随着技术的发展,煤气化技术逐渐成熟,能够更加高效和清洁地将煤炭转化为合成气。
尾气回收和综合利用也是煤气化过程中需要考虑的重要环节。
煤炭气化生产流程
煤炭气化生产流程如下:
1.原煤经过备煤单元处理后,经煤锁送入气化炉。
2.蒸汽和来自空分的氧气作为气化剂从气化炉下部喷入。
3.在气化炉内,煤和气化剂逆流接触,煤经过干燥、干馏、气化和氧化后,生成粗合成气。
4.粗合成气的主要组成为氢气、一氧化碳、二氧化碳、甲烷、硫化氢、油和高级烃。
5.粗合成气经急冷和洗涤后送入变换单元。
6.粗合成气经过部分变换和工艺废热回收后进入酸性气体脱除单元。
7.粗合成气经酸性气体脱除单元脱除硫化氢和二氧化碳及其它杂质后送入甲烷化单元。
8.在甲烷化单元内,原料气经预热后送入硫保护反应器,脱硫后依次进入后续甲烷化反应器进行甲烷化反应,得到合格的天然气产品。
9.天然气产品再经压缩干燥后送入天然气管网。
shell煤气化工艺流程煤气化工艺流程是将煤炭等固体燃料转化为可燃性气体的一种化学过程。
这种工艺流程在煤矿、化工厂和能源生产领域得到广泛应用。
本文将介绍煤气化工艺流程的基本原理和步骤。
1. 煤气化的基本原理煤气化是通过将煤炭等固体燃料暴露在高温和缺氧条件下,使其发生热解反应,生成可燃性气体的过程。
在煤气化过程中,煤炭中的碳氢化合物被分解为一氧化碳、氢气和其他有机物。
2. 煤气化工艺的步骤煤气化工艺通常包括以下几个步骤:2.1 煤炭预处理煤炭预处理包括煤炭的破碎、干燥和粉碎等过程。
这些步骤可以增加煤炭的表面积,提高煤炭与反应介质的接触效果,从而提高煤气化效率。
2.2 煤气化反应煤气化反应是煤气化工艺的核心步骤。
在高温和缺氧条件下,煤炭与反应介质(通常是水蒸气或空气)发生反应。
煤炭中的碳氢化合物被分解为一氧化碳、氢气和其他有机物。
这些反应生成的气体被称为合成气。
2.3 合成气的净化合成气中可能含有杂质如硫化物、氨和灰分等,需要进行净化处理。
净化过程通常包括酸洗、吸附和过滤等步骤,以确保合成气的纯度和稳定性。
2.4 合成气的利用净化后的合成气可以直接用作燃料,也可以进一步转化为其他化学品和燃料。
常见的合成气利用方式包括合成甲醇、合成氨和合成石油等。
3. 煤气化工艺的应用煤气化工艺在能源生产和化工工业中有广泛的应用。
煤气化技术可以将煤炭等固体燃料转化为可燃性气体,提供燃料供给,减少对传统石油和天然气资源的依赖。
同时,煤气化还可以生产有机化学品和石油产品,为化工工业提供原料。
4. 煤气化工艺的优势和挑战煤气化工艺具有以下优势:一是可以利用煤炭等广泛存在的固体燃料资源,减少对传统能源资源的依赖;二是可以减少污染物的排放,提高环境友好性;三是可以生产多种化学品和燃料,提供多样化的产品。
然而,煤气化工艺也面临一些挑战。
首先,煤气化过程需要高温和压力条件,设备成本较高。
其次,煤气化过程中产生的废气和废水需要进行处理和处置,增加了工艺的复杂性和成本。
粉煤加压气化工艺流程
原煤除杂后送入磨煤机破碎,同时由经过加热的低压氮气将其干燥,制备出合格煤粉存于料舱中。
加热用低压氮气大部分可循环利用。
料仓中的煤粉先后在低压氮气和高压氮气的输送下,通过气化喷嘴进入气化炉。
气化剂氧气、蒸汽也通过气化喷嘴进入气化炉,并在高温下与煤粉进行气化反应。
出气化炉的高温合成气经激冷、洗涤后并入造气车间合成气管线。
熔融灰渣在气化激冷室中被激冷固化,经锁斗收集,定期排放。
洗涤塔出来的黑水经过二级闪蒸,水蒸气及一部分溶解在黑水中的酸性气、等被迅速闪蒸出来,闪蒸汽经冷凝、分离后与其花分厂生产系统的酸性气体一并处理,闪蒸黑水经换热器冷却后排入地沟,送气化分厂生产装置的污水处理系统。
煤气化工艺流程煤气化工艺是将固体煤转化为气体能源的一种方法。
它是一项非常重要的技术,可以将煤转化为合成气,用于发电、燃料和化工等领域。
煤气化工艺流程包括煤气化反应、气体净化和气体利用三个主要阶段。
首先是煤气化反应阶段。
煤气化是指将煤在高温、高压和缺氧的条件下转化为气体。
在煤气化反应过程中,煤被加热到高温,以使其发生热解反应,生成一系列气体。
这些气体主要包括一氧化碳(CO)、氢气(H2)、二氧化碳(CO2)和少量甲烷(CH4)。
煤气化反应通常在反应器中进行,反应器可以是固定床、流化床或喷射床等形式。
接下来是气体净化阶段。
在煤气化反应产生的气体中,含有一些杂质和有害成分,如硫化物、氯化物和灰分等。
这些杂质和有害成分会对后续的气体利用和环境造成一定影响,因此需要进行净化处理。
气体净化通常包括除尘、脱硫和脱氯等步骤。
除尘主要通过过滤、静电除尘或洗涤等方法去除气体中的固体颗粒;脱硫可以采用吸收剂或催化剂吸收硫化物,使其转化为硫酸;脱氯也可采用类似的方法。
通过气体净化,可以得到高纯度的合成气。
最后是气体利用阶段。
经过煤气化反应和气体净化后,得到的合成气可以作为一种重要的能源来源。
合成气常被用作燃料,如用于发电和工业燃烧;同时也可以通过合成反应转化为化学品,如合成石油、合成天然气和合成醇等。
气体的利用方法取决于不同的应用领域和需求。
在发电中,合成气可以作为燃料供给燃气轮机或燃气锅炉;在化工中,合成气可以经过进一步的化学反应,得到不同的化学品。
总结起来,煤气化工艺流程包括煤气化反应、气体净化和气体利用三个主要阶段。
通过这些步骤,可以将固体煤转化为气体能源,并用于发电、燃料和化工等领域。
煤气化工艺在能源转化和资源利用方面具有重要意义,可以提供可再生的替代能源,并减少对化石燃料的依赖。
煤气化工艺流程简述1)气化a)煤浆制备由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。
为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。
出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。
煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。
磨煤采用湿法,可防止粉尘飞扬,环境好。
用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。
煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。
为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。
煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。
为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。
b)气化在本工段,煤浆与氧进行部分氧化反应制得粗合成气。
煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应:CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2SCO+H2O—→H2+CO2反应在6.5MPa(G)、1350~1400℃下进行。
气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。
离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。
气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。
气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。
煤气化工艺流程
《煤气化工艺流程》
煤气化是一种将固态煤转化为可燃性气体的化学过程,其基本原理是在高温、高压和缺氧的环境中,将煤转化为一种称为合成气的混合气体。
合成气主要由一氧化碳和氢气组成,可以用于发电、制氢、合成化学品等各种工业过程。
煤气化工艺流程主要包括煤的预处理、煤气化反应、气体净化和气体利用四个基本环节。
首先,煤需要经过粉碎、干燥和脱硫等预处理过程,以提高气化效率和减少煤中的杂质。
接下来,煤会被送入气化炉中,在高温(1000-1300摄氏度)和高压
(20-30大气压)的环境下,与少量氧气或蒸汽进行化学反应,生成合成气。
然后,合成气会通过一系列气体净化设备,包括除灰、除硫、除氨、除苯等工艺,以降低对下游设备和环境的影响。
最后,净化后的合成气可以被用于发电、制氢、合成甲烷等不同的应用领域。
煤气化工艺不仅可以提高能源利用率,还可以降低对环境的影响。
与传统的直接燃烧煤炭相比,煤气化可以减少大气污染物的排放,同时产生的固体废弃物也较少。
因此,煤气化技术在能源和环保领域具有广阔的应用前景。
总的来说,煤气化工艺流程包括煤的预处理、煤气化反应、气体净化和气体利用等环节,其成功实施可以有效提高能源利用率,降低环境污染,对未来的能源发展具有重要意义。
煤气化工艺流程(德士古气化炉)煤气化工艺流程一、制浆系统1、系统图2、工艺叙述由煤贮运系统来的小于10mm的碎煤进入煤贮斗后,经煤称量给料机称量送入磨机。
30%的添加剂由人工送至添加剂溶解槽中溶解成3%的水溶液,由添加剂溶解槽泵送至添加剂槽中贮存。
并由添加剂计量泵送至磨机中。
在添加剂槽底部设有蒸汽盘管,在冬季维持添加剂温度在20--30?,以防止冻结。
工艺水由研磨水泵经磨机给水阀来控制送至磨机。
煤、工艺水和添加剂一同送入磨机中研磨成一定粒度分布的浓度约59%-62%合格的水煤浆。
水煤浆经滚筒筛滤去3mm以上的大颗粒后溢流至磨机出料槽中,由磨机出料槽泵送至煤浆槽。
磨机出料槽和煤浆槽均设有搅拌器,使煤浆始终处于均匀悬浮状态。
二、气化炉系统1、系统图2、工艺叙述来自煤浆槽浓度为59%-62%的煤浆,由煤浆给料泵加压,投料前经煤浆循环阀循环至煤浆槽。
投料后经煤浆切断阀送至德士古烧嘴的内环隙。
空分装置送来的纯度为99.6%的氧气经氧气缓冲罐,控制氧气压力为6.0~6.2MPa,在准备投料前打开氧气手动阀,由氧气调节阀控制氧气流量经氧气放空阀送至氧气消音器放空。
投料后由氧气调节阀控制氧气经氧气上、下游切断阀送入德士古烧嘴。
水煤浆和氧气在德士古烧嘴中充分混合雾化后进入气化炉的燃烧室中,在约4.0MPa、1300?条件下进行气化反应。
生成以CO和H为有效成份的粗合成气。
粗2合成气和熔融态灰渣一起向下,经过均匀分布激冷水的激冷环沿下降管进入激冷室的水浴中。
大部分的熔渣经冷却固化后,落入激冷室底部。
粗合成气从下降管和导气管的环隙上升,出激冷室去洗涤塔。
在激冷室合成气出口处设有工艺冷凝液冲洗水,以防止灰渣在出口管累积堵塞,并增湿粗合成气。
由冷凝液冲洗水调3节阀控制冲洗水量为23m/h。
激冷水经激冷水过滤器滤去可能堵塞激冷环的大颗粒,送入位于下降管上部的激冷环。
激冷水呈螺旋状沿下降管壁流下进入激冷室。
激冷室底部黑水,经黑水排放阀送入黑水处理系统,激冷室液位控制在50--55%。
壳牌煤气化工艺流程简述首先是煤炭处理环节。
在这个环节中,煤炭通过压碎和干燥处理,使其达到适合气化反应的粒度和湿度要求。
煤炭经过初级破碎后,进入到煤炭的中间仓库,待气化过程需要时,再经过二级破碎、三级破碎等工艺处理,最终得到满足气化反应要求的煤炭颗粒。
接下来是气化反应环节。
在这个环节中,经过煤炭处理后的粒状煤炭进入气化炉中,通过高温和压力下的化学反应,将煤炭转化为一种名为合成气的气体。
合成气主要包括氢气(H2)、一氧化碳(CO)、二氧化碳(CO2)和一些杂质气体(如氮气和甲烷等)。
气化炉内部有适当的温度和气氛控制,以确保煤炭在适宜的条件下进行气化反应,从而获得高质量的合成气体。
第三个环节是气体净化环节。
合成气进入气体净化装置,主要进行一系列化学和物理处理,以去除其中的杂质和有毒物质,提高合成气的质量和纯度。
气体净化装置通常由多个部分组成,如醚洗、硫化物转化、冷凝和吸附等单元。
通过这些处理,可以分离出合成气中的硫化氢、氨、一氧化碳等有害物质,净化后的合成气被用于后续的加氢处理和合成气相变等反应。
最后是变换环节。
合成气进入变换装置后,通过一系列催化反应,将一氧化碳和水蒸气转化为一些有用的烃类化合物。
这些反应通过催化剂的存在,使得一氧化碳和水蒸气分子被活化,发生碳链延长和重整等化学变化,最终产生一定含氢的合成物。
该变换装置主要采用Fisher-Tropsch (FT) 变换技术,能够生产出高标准燃料,如液态燃料或化学原料等。
在整个工艺流程中,有一系列辅助设备和控制系统供给支持。
其中,最重要的设备包括冷凝器、分离器、压缩机和储罐等。
冷凝器主要用于合成气的冷却和水分的回收;分离器用于分离合成气中的有害物质和不同组分;压缩机用于提高气体压力,以便于后续的加工和储存;储罐主要用于临时储存和供给气体。
总的来说,壳牌煤气化工艺流程相对复杂,但通过合理的设计和操作,可以高效地将煤炭转化为高质量的合成气。
这种工艺流程不仅可以提供燃料和化学原料,还能有效促进清洁能源和低碳经济的发展。
煤气化流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!煤气化作为一种重要的化工生产方式,可以将固体煤转化为更清洁、高效的燃料和化工产品,是我国能源转型和环保的重要途径之一。
煤化工工艺流程气化
煤化工工艺流程气化是将固体煤转化为可用气体的过程。
常见的气化方式有煤气化、水煤气化和干燥气化。
本文将主要介绍煤气化的工艺流程,包括煤的预处理、气化反应、气体处理以及能源回收。
首先是煤的预处理。
煤通过破碎、筛分、磁选等工序进行预处理,以保证煤的颗粒度适合气化反应,并去除其中的杂质和硫。
接下来是气化反应。
煤经过破碎和干燥后送入气化炉,同时加入适量的空气和水蒸气。
在高温高压的条件下,煤发生热解和气化反应,生成一氧化碳、氢气等可用气体,同时还会产生固体残渣-炉渣。
第三步是气体处理。
气化产生的气体中含有酸性物质和固体颗粒物,需要进行处理。
首先将气体经过除尘器除去固体颗粒物,然后进入酸性气体处理装置,通过循环吸收剂的反复吸收和再生,去除气体中的硫和其他酸性物质,最后经过再净化设备除去尾气中的其他杂质。
最后是能源回收。
在气化过程中产生的高温高压烟气可以用来转化为蒸汽,驱动汽轮机发电。
同时,气化过程还会产生大量余热,可以通过余热锅炉等设备进行回收,提供给其他工艺过程使用,提高能源利用效率。
总的来说,煤化工工艺流程气化是将固态煤转化为可用气体的过程。
通过煤的预处理、气化反应、气体处理以及能源回收等
步骤,可以将煤转化为可用气体,并回收利用其中的能源。
这种工艺具有高效、环保的特点,对于煤资源的有效开发和利用具有重要意义。
精心整理煤气化工艺流程1、主要产品生产工艺煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。
主要产品城市煤气和甲醇。
城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之化碳15%提作用。
2。
净化装置。
合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。
生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。
分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。
低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。
空分装置提供气化用氧气和全厂公用氮气。
仪表空压站为全厂仪表提供合格的仪表空气。
小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽,一部分供发电站发电。
3、主要装置工艺流程3.1备煤装置工艺流程简述备煤工艺流程分为三个系统:(1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。
缓可能周期性地加至气化炉中。
当煤锁法兰温度超过350℃时,气化炉将联锁停车,这种情况仅发生在供煤短缺时。
在供煤短缺时,气化炉应在煤锁法兰温度到停车温度之前手动停车。
气化炉:鲁奇加压气化炉可归入移动床气化炉,并配有旋转炉篦排灰装置。
气化炉为双层压力容器,内表层为水夹套,外表面为承压壁,在正常情况下,外表面设计压力为3600KPa(g),内夹套与气化炉之间压差只有50KPa(g)。
在正常操作下,中压锅炉给水冷却气化炉壁,并产生中压饱和蒸汽经夹套蒸汽气液分离器1分离液滴后的蒸汽作为气化用中压蒸汽。
中压锅炉给水在夹套中维持在一定的液位,液位低于临界时,气化炉将联锁停车。
中压蒸汽、夹套蒸汽气混合后,作为气化剂,气化剂通过分布在旋转炉篦表面孔隙进入气化炉。
煤中的碳与气化剂(H2Og,O2)进行复杂多相的物理化学反应,生成的粗煤气成份主要包括:CO2、CO、H2、CH4和H2O,(以及碳氢化合物轻组份,H2S、N2、焦油、油、石脑油、酚、腐植酸、NH3等少量物)离开气化炉温度大约为400℃。
气化炉在3100KPa(g)下,产气量近40000Nm3/h干煤气。
口,203与离。
400# 28T/h锁气气柜20一B009中。
在气柜上游,煤锁气在煤锁气洗涤器20一B008内用来自煤锁气分离器的低压喷射煤气水洗涤,洗涤后的煤锁气经煤锁气分离器20一F004后进入煤锁气柜。
煤锁气柜用于平衡、收集不稳定的煤锁气,这些煤锁气收集后,送到硫回收工段。
3.3酚回收工艺流程简述酚水从800#煤气水分离装置进入脱酸塔,经塔釜再滞器,用0.5Mpa蒸汽间接加热,将其中的CO2和H2S等酸性气体从中解吸出来,同时一部分氨从水中解吸出来,解吸出来的氨在K90004塔用酚水洗涤下来,经洗涤后的废气从塔顶排至681#,洗涤下的氨冷凝液流入氨水槽中,与此同时脱酸塔顶的一部分氨气经脱酸塔顶冷却器冷却后也流入氨水槽,这些氨水用泵打到800a。
脱酸之后的酚水用脱酸塔釜酚水泵经换热器换热到40℃左右送到萃取塔上部,按照液液萃取原理把煤气水中的酚萃取出来。
在萃取塔内通过逆流加入溶剂把酚水中含有的大部分酚萃取出来。
转盘萃取塔釜的稀酚水用泵经酚水换热器换热后送至水塔上部,塔釜采用再滞器用低压蒸汽间接加热,将溶解在稀酚水中溶剂和氨汽提出来。
溶解在稀酚水中溶剂的汽提在塔顶进行,塔顶汽提出来的醚蒸汽在塔顶冷却器中冷凝冷却,回收出来的溶剂流到溶剂循环槽中作为萃取剂循环使用。
从水塔中部侧提出来的氨蒸汽先经分凝器冷收。
3.4回到球磨机。
合格煤粉继续由干燥剂输送至细粉分离器,经旋风分离作用约有90%的煤粉被分离出来进入煤粉仓;由细粉分离器上部出来的磨煤乏气中含有约10%的极细煤粉,经排粉风机提高压头后作为一次风携带由给粉机给入的煤粉进入炉膛燃烧。
汽水系统:从高加来的给水,经流量孔板,进入主给水管道,一部分作为减温水,一部分经省煤器进入汽包,由汽包下部的四根大直径集中下降管进入下联箱,经下联箱分配给水冷壁,又由水冷壁进入汽包,这样在汽包、下降管、下联箱、水冷壁、汽包之间形成自然循环。
水冷壁中的水在炉膛内接受燃料燃烧放出的辐射热变成汽水混合物。
汽水是混合物进入汽包,经汽水分离设备,分离出的蒸汽进入项棚管入口集箱→顶棚管→后包墙管→后包墙下集箱→侧包箱→(后半段)→上行侧包墙管→侧包墙上集箱(前半段)→底包墙管→低温过热器入口联箱→低浊过热器蛇形管→低温过热器出口集箱→高温过热器→高温过热器出口集箱→集汽集箱连接管→集汽集箱→主蒸汽管燃烧系统:由送风机送来的空气进入一、二级空气预热器,吸收锅炉尾部烟道中排烟的热量而成为热空气。
热空气分为二股:一股供给制粉系统作为输送介质、干燥剂,最后从细粉分离器出来作为一次风携带煤粉作燃烧剂进放炉膛;另一股作为二次风经燃烧器进入炉膛。
煤粉与空气的混合物在炉膛内进行燃烧放热,将热量以辐射方式传给炉膛四周的水冷壁以及其它辐射受热面,燃烧4#角各气枪,3.5却至10等杂质。
先经增175℃左172℃,空气在下塔被初步分离成氮和富氧液空,在塔顶获得99.99%N2的气氮进入主冷,被另一侧蒸发的液氧冷凝成液氮,部分液氮回下塔作为精馏的回流液,另一部分液氮,经过冷器过冷后,节流进入上塔顶部,作为上塔回流液,下塔釜液38%O2的液空,经过冷却器过冷后,再经节流进入上塔中部参加精馏。
以不同状态的三股流体进入上塔经再分离后,在上塔顶部得到纯度为99.99%的氮气,经过冷器、主换热器复热后出冷箱,在单套、两套空分开车时,均为6000Nm3/h进入氮气压缩机加压送用户和氮气贮罐(B671A/B05),在甲醇洗、吸收制冷开车时其中一部分进入氧气透平压缩机加压,送到甲醇洗和吸收制冷,多余氮气作为水冷却塔的冷源。
上塔底部的液氧在主冷被下塔的氮气加热而蒸发,约7500Nm3/h,纯度99.6%O2的氧气,经主换热器复热后出冷箱,在单套空分开车时7500Nm3/h氧气,进入氧气透平压缩机加压送用户,在两套空分开车时15000Nm3/h氧气进入氧气压缩机加压送用户。
从上塔中抽出约12500Nm3/h的污氮,经主换热器复热后出冷箱,其一部分进入蒸汽加热器(W671A/B02)加热后用于分子筛的再生,另一部分作为水冷却塔的冷源,还有一部分做为膨胀机和吸附器的加热气源和冷箱的密封气,多余部分经放空消音器直接放空。
3.6、B(A)、36552#自300#送到II36℃500号用于38℃从发生,这里使用的防腐剂是浓度为0.1%—0.5%(W/W)的重络酸钾(K2Cr2O7)溶液,配制好的水溶液是通过防腐剂溶液泵P55004打入系统内的。
高压部分:来自低压部分的13.16%,38℃的“富液”首先进入溶液热交换器的壳程,被来自低压解吸器的141℃左右的“贫液”加热到接近饱和状态(112℃)后送入操作压力为0.47Mpa(A)的低压精馏塔K552101的中部进行精馏,该塔的上段为泡罩塔板,下段为浮阀塔板,塔顶精馏出的64℃,97%纯度的气氨以并行方式进入四台叠置的再吸收器的壳程,被来自溶液热交换器管程的溶液所吸收。
低压精馏塔所需的精馏热量由低压解吸器提供,热源是0.5Mpa(G)158℃的低压蒸汽。
底部出来的141℃,2.56%的“贫液”先进入溶液热交换器的管程被“富液”冷却到63.5℃再进入氨水冷却器的壳程被冷却水冷却到55℃,最后去I级吸收器作为吸收液。
再吸收器中吸收终了的38℃,48.52%的溶液经贮槽的缓冲后由泵加压到1.79Mpa(A)送往高压精馏塔上部的塔顶分凝器的壳程作为精馏回流液的冷却介质。
泵出口的一部分溶液入塔顶部作为该塔的回流液,该回流液管道上的控制阀使塔顶气氨的纯度和温度保持稳定。
在塔顶分凝器中,上述来自再吸收器的溶液被管程的氨气加热到50℃左右再进入溶液热交换器的壳程被高压解吸器W552110来的溶液(140℃、24.2%)加热到接近饱和状态(1.79Mpa(A)、92℃))进入氨%,140混合成73不凝3.7气缸,甲醇合成:来自压缩工段的净化气(5.3MPa,80℃)总硫含量为0.5PPm,进入合成工段脱硫塔,经脱硫后硫含量降至0.1PPm,然后进入缓冲罐和来自压缩工段的循环气混合。
混合气进入中间换热器壳程与管程的合成气换热,升温至195~245℃,再进入合成塔,在催化剂的作用下,CO、CO2分别与H2反应,生成甲醇,反应后含甲醇的合成气(压力5.0MPa(g),温度220~270℃)进入中间换热器(管程,被管间的循环水冷却至40℃,进入甲醇分离器分离出粗甲醇,尔后粗甲醇进入闪蒸槽,闪蒸出溶解的CO、CO2和CH4等混合气体(闪蒸气)后,去精馏工段精制。
闪蒸气在681硫回收工段开车的情况下去硫回收,否则去火炬系统。
出甲醇分离器的气体进入洗醇塔,用塔顶淋下的软水进一步回收其中残存的甲醇。
出洗醇塔的气体压力为4.8MPa(g),温度40℃,大部分去压缩工段。
小部分做为驰放气减压经过300号干燥后再送往长输管线。
来自外管的软水首先进入稀醇槽,然后由槽下部出来经洗醇塔循环泵加压送至洗醇塔上部。
软水自上向下喷淋吸收气体中的甲醇后,由塔下部出来送入粗甲醇管线。
由管网来的除氧锅炉给水温度150℃,压力5.0MPa(g)先进入汽包,通过下降管进入甲醇合成塔管间被甲醇合成反应热加热后汽化,由上升管进入汽包,在汽包内汽液分离,产生中压蒸汽,压力为2.4~4.5MPa(g),经减压后并入65℃后,甲醇PH持在塔后,装置。
蒸汽,出塔后作为常压精馏塔塔釜的热源,通过常压塔再沸器,与常压精馏塔釜液换热而被冷凝,进入加压塔回流槽。
一部分甲醇由加压塔回流泵升压后返回塔顶作为回流液,其余部分经精甲醇冷却器冷却至40℃后,成为A—A级精甲醇产品送往中间罐区的精甲醇中间槽。
由加压精馏塔底放出的甲醇水溶液,依靠塔内压力进入常压精馏塔。
塔釜操作压力为0.08MPa(g),温度为105℃。
从塔顶馏出的甲醇蒸汽,出塔后经常压塔冷凝器冷凝后,甲醇进入常压塔回流槽。
槽中的甲醇经常压塔回流泵加压,一部分送回塔顶作为回流液,一部分经精甲醇冷却器冷却至40℃后,成为GB级精甲醇产品送往中间罐区的精甲醇中间槽。
常压精馏塔排出的废水,含有微量的甲醇,送生化处理装置。
地下槽专用于精馏工段、合成工段和中间罐区有关槽、泵设备的甲醇排液的收集,并定时用地下槽泵将收集的甲醇送往中间罐区的粗甲醇中间槽。