带全维观测器的全状态反馈系统的数字仿真(终)
- 格式:doc
- 大小:293.00 KB
- 文档页数:4
武汉理工大学研究生课程论文课程名称:现代控制工程学生姓名:宋*课程教师:谭耀刚学号:************日期:2010年1月状态反馈控制的主要特性及发展姓名:宋雄班级:机电1004班学号:104972101293 摘要:状态反馈是指系统的状态变量通过比例环节传送到输入端去的反馈方式。
状态反馈是体现现代控制理论特色的一种控制方式。
状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。
但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。
本文首先介绍了状态反馈控制系统的主要特性——可控性和可观性,并且对这两种性能进行了举例说明;还介绍了引入状态反馈对系统的可控性和可观性的影响;另外也说明了如何利用状态反馈来任意配置极点。
其次,本文主要介绍的是状态反馈控制的发展,有容错控制,带全维状态观测器的状态反馈系统,这两种都是对可控性和可观性的深入的发掘和拓展。
关键词:状态反馈可控性和可观性极点配置全维状态观测器容错控制引言随着科技的不断发展,在硬件方面的发展逐步走向饱和,或者很难得到进步和延伸。
但是软件方面的发展却逐步地得到社会的重视。
一套好的设备,唯有配备合适的软件才能将它的功效尽可能大的释放出来。
对于机械方面而言,软件就是指其控制系统。
系统的状态变量通过比例环节传送到输入端去的反馈方式。
状态反馈是体现现代控制理论特色的一种控制方式。
状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。
但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。
状态反馈也不影响系统的能控性,但可能改变系统的能观测性。
只要原系统是能控的,则一定可以通过适当选取反馈增益矩阵K用状态反馈来任意移置闭环系统的极点(见极点配置)。
对于传统的输出反馈,如果不引入附加的补偿装置,这一点不是总能作到的。
第五章 状态反馈和状态观测器3-5-1 已知系统结构图如图题3-5-1图所示。
(1)写出系统状态空间表达式;(2)试设计一个状态反馈矩阵,将闭环极点特征值配置在j 53±-上。
)(t y题3-5-1图【解】:方法一:根据系统结构直接设状态变量如题3-5-1图所示,写状态空间表达式:[]x y u x x 10112101=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--= 23111=⎥⎦⎤⎢⎣⎡--=c c U rank U系统能控,可以设计状态反馈阵。
设状态反馈阵为][21k k K = 状态反馈控制规律为:Kx r u -= 求希望特征多项式:34625)3()(*22++=++=s s s s f求加入反馈后的系统特征多项式:)22()3()(1212k s k k s bK A sI s f ++-++=+-=依据极点配置的定义求反馈矩阵:]1316[131634)22(6)3(21112=⎩⎨⎧==⇒⎩⎨⎧=+=+-K k k k k k 方法二:[][][]1316)346(311110)(*10211=++⎥⎦⎤⎢⎣⎡--==--I A A A f U K c方法三:(若不考虑原受控对象的结构,仅从配置极点位置的角度出发)求系统传递函数写出能控标准型:2321)111()()(2++-=+-+=s s ss s s U s Y []xy u x x 10103210-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--= 求系统希望特征多项式:34625)3()(*22++=++=s s s s f求状态反馈矩阵K ~:[][][]33236234~21=--==k k K [][][][]5.05.031111010111=⎥⎦⎤⎢⎣⎡--==--Ab bP⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=105.05.011A P P P []1316~==P K K依据系统传递函数写出能控标准型ss s s s s s U s Y 2310)2)(1(10)()(23++=++= []x y u x x 0010100320100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=求系统希望特征多项式:464]1)1)[(2()(*232+++=+++=s s s s s s f求状态反馈矩阵:[][][]144342604321=---==k k k K 。
、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数.〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现.〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的.〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的.〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态反馈使其稳定.〔×〕 6. 对一个系统,只能选取一组状态变量;〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;〔×〕 10. 状态反馈不改变系统的能控性和能观性.二、已知下图电路,以电源电压 u<t>为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输出量的输出方程.〔10 分〕解:〔1〕由电路原理得:二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网2 2络的状态方程和输出方程,并绘制状态变量图.解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量.以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令:i L = x 1 , u c = x 2,由基尔霍夫电压定律可得电压方程为: • •y y21 =-x x21+ u三、 〔每小题 10 分共 40 分〕基础题〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1+ -1 …………4 分不妨令X (s)1 = 1 ,X (s)2 = - 1 …………2 分 于是有 又Y(s)U(s)= 1+ X (s)1U(s)+ X (s)2U(s),所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有y = u + x + x …………2 分1 2最终的对角规 X 型实现为则系统的一个最小实现为:=「|2 0 ]+「| 1 ]|u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」U (s) s - 2 U (s) s + 1从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:〔2〕已知系统 =「| 0 1]| +「|1]|u, y = [1 -2] ,写出其对偶系统,判断该系统的能控性与其对偶系统的能观性.〔10 分〕解答:= 10 3-2+ -12 u…………………………2 分y = [1 2] ……………………………………2 分〔3〕设系统为试求系统输入为单位阶跃信号时的状态响应〔10 分〕 .解(t )=「|e-t 0 ]|L 0 e -2t 」……………………………..…….……..3 分(t) = (t )(0) + j 0t (t )u(t )d τ……….….……….……..3 分=11+ j 0t11d τ ….……..2 分=「| e-t ]| + j t 「| e -(t -t ) ]|d τL e -2t 」 0 |L e -2(t -t )」| .................................................................................... 1 分=(1- e1(1-2= 21 (1 e -2t )………………..1 分〔4〕已知系统 x =01 01x + 11u 试将其化为能控标准型.〔10 分〕 「0 1 ]解: u c = 11 02 , u -c 1 =|L 21 - 21 」| ............2 分 p 1= [0 1]u -c1 = [0 1]-121= [21 - 21].…….1 分 p 2= p 1A = [21- 21]01 01= [21 21].……..1 分 L -2 3」 L 2」「 1 - 1 ] 「 1 1]P = |L 212」| ,P -1 = |L -1 1」| ....................2 分能控标准型为x =「|0 1]|x +「|0]|u........ 4 分 四、设系统为试对系统进行能控性与能观测性分解,并求系统的传递函数.〔10 分〕 解:能控性分解:能观测性分解: 传递函数为g(s) ==(2分)五、试用李雅普诺夫第二法,判断系统 x •=「| 0 1 ]| x 的稳定性.〔10分〕方法一:解: x 1= x 2原点 x =0是系统的惟一平衡状态 .选取标准二次型函数为李雅e普诺夫函数,即当x 1 = 0 ,x 2 = 0 时, v(x) = 0 ;当x 1 丰 0 ,x 2 = 0 时,v(x) = 0 ,因此v(x) 为 负半定.根据判断,可知该系统在李雅普诺夫意义下是稳定的. 另选一个李雅普诺夫函数,例如:为正定,而为负定的,且当 x ) w ,有V (x)) w .即该系统在原点处是大 X 围渐进 稳定. 方法二:• • ••L -1 -1」L 0 1」 L 1」解:或者设P =则由 A T P + PA = -I 得+=可知 P 是正定的.因此系统在原点处是大 X 围渐近稳定的六、 〔20 分〕线性定常系统的传函为 Y (s) = s +4U (s) (s + 2)(s +1)〔1〕实现状态反馈,将系统闭环的希翼极点配置为(-4,-3),求反馈阵K .〔5 分〕〔2〕试设计极点为(-10,-10) 全维状态观测器〔5 分〕 . 〔3〕绘制带观测器的状态反馈闭环系统的状态变量图〔4 分〕 〔4〕分析闭环先后系统的能控性和能观性〔4 分〕注明:由于实现是不惟一的,本题的答案不惟一!其中一种答案为:解:〔1〕 Y (s) = s + 4 = s + 4U (s) (s + 2)(s +1) s 2 + 3s + 2系统的能控标准型实现为: X =「| 0 1 ]| X +「|0]| u, y = [4 1]X ……1 分系统彻底可控,则可以任意配置极点……1 分 令状态反馈增益阵为K = [k k ]……1 分1 2则有A - BK =「| 0 1 ]|,则状态反馈闭环特征多项式为又期望的闭环极点给出的特征多项式为: (s + 4)(s + 3) = s 2+ 7s +12由入2 + (k + 3)入 + (k + 2) = s 2 + 7s +12 可得到K = [4 10]……3 分1 2〔2〕观测器的设计:L -k 2 - 2 -k 1- 3」 L -2 -3」 L 1」由传递函数可知,原系统不存在零极点相消,系统状态彻底能观,可以任意配置观测器的极点.……1 分 令E = [e e ]T ……1 分1 2由观测器 = (A - EC)+ Bu + Ey 可得其期望的特征多项式为:f * (s) = f (s) 亭 E = - 311 395T ……4 分〔3〕绘制闭环系统的摹拟结构图第一种绘制方法:……4 分〔注:观测器输出端的加号和减号应去掉!不好意思, 刚发现!!〕第二种绘制方法:〔4〕闭环前系统状态彻底能控且能观,闭环后系统能控但不能观〔因 为状态反馈不改变系统的能控性 ,但闭环后存在零极点对消 ,所以系 统状体不彻底可观测〕……4 分A 卷-+-41 s32x 21 sx1x14+ + y10++22 - 3+ +1 s 222 - 358 -34 322 - 3 + ++1+ + - s1 4 43v u +-++++一、判断题,判断下例各题的正误,正确的打√ , 错误的打×〔每小题1 分,共10 分〕1、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换过程〔√〕2、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕3、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕4、系统的状态转移矩阵就是矩阵指数〔×〕5、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕6、状态的能空性是系统的一种结构特性,依赖于系统的结构, 与系统的参数和控制变量作用的位置有关〔√〕7、状态能控性与输出能控性之间存在必然的联系〔×〕8、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√ 〕9、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无关〔√〕10、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕二、已知系统的传递函数为试分别用以下方法写出系统的实现:(1) 串联分解(2) 并联分解(3) 直接分解(4) 能观测性规X 型〔20 分〕解:2对于s3 +10s2 + 31s + 30 有(1) 串联分解串联分解有多种,如果不将 2 分解为两个有理数的乘积,如2 = 1 8 ,绘制该系统串联分解的结4构图,然后每一个惯性环节的输出设为状态变量,则可得到系统四种典型的实现为:则对应的状态空间表达式为:需要说明的是, 当交换环节相乘的顺序时,对应地交换对应行之间对角线的元素. . 的实现为:〈0 0一311]XX + u则. .的实现为:〈0一311]XX + u挨次类推!! (2) 并联分解实现有无数种,若实现为〈X = X + 21u只要满足y = [c L 1 c 2 c 3]2 1〔3〕直接分解〔4〕能观测规 X 型三、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状态响应分别为试据此定出系统矩阵A.〔10 分〕解: x(t) = e At x(0) 可得四、已知系统的传递函数为〔1〕试确定 a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述 a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性; 〔3〕若a = 3 ,写出系统的一个最小实现.〔15 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 〔2〕可写系统的能控标准形实现为此问答案不惟一 存在零极相消,系统不能观 〔3〕 a = 3 ,则有G(s) =2 3 一1 3 如例如: s 3 + 10s 2 + 31s +30 = (s + 2) + (s + 3) + (s + 5),则其实现可以为:可写出能控标准形最小实现为此问答案不惟一,可有多种解五、已知系统的状态空间表达式为 〔1〕判断系统的能控性与能观测性; 〔2〕若不能控,试问能控的状态变量数为多少? 〔3〕试将系统按能控性进行分解; 〔4〕求系统的传递函数.〔15 分〕 解:〔1〕系统的能控性矩阵为U C = [b Ab ]= 10 -20, det U C = 0, rankU C = 1 < 2故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ]故系统的状态不能观测 4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1C〔3〕由状态方程式可知是x 能控的, x 是不能控的2 1〔4〕系统的传递函数为1 分2 分G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关六、给定系统解李雅普诺夫方程,求使得系统渐近稳定的 a 值 X 围.〔10 分〕七、伺服机电的输入为电枢电压,输出是轴转角,其传递函数为〔1〕设计状态反馈控制器u = -Kx + v ,使得闭环系统的极点为-5 士 j5 ;〔2〕设计全维状态观测器,观测器具有二重极点-15;〔3〕将上述设计的反馈控制器和观测器结合,构成带观测器的反馈控制器,画出闭环系统的状 态变量图;〔4〕求整个闭环系统的传递函数.〔20 分〕 第二章题 A 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 11、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换 过程〔 √〕12、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕13、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕3 分2 2 2s + 2U O= |L cA 」| = |L 19 -10」| , det U C = -115 丰 0, rankU O = 214、系统的状态转移矩阵就是矩阵指数〔×〕15、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕16、状态的能空性是系统的一种结构特性 ,依赖于系统的结构, 与系统的参数和控制变量作 用的位置有关〔 √〕17、状态能控性与输出能控性之间存在必然的联系〔×〕18、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√〕 19、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无 关〔 √〕20、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕第二题:已知系统的传递函数为G(s) == ,试分别用以下方法写出系统的实现:(5) 串联分解〔4 分〕 (6) 并联分解〔4 分〕 (7) 直接分解〔4 分〕 (8) 能观测性规 X 型〔4 分〕(9) 绘制串联分解实现时系统的结构图〔4 分〕解:s对于有s 3 +10s 2 + 31s + 30(3) 串联分解 串联分解有三种s = s . 1 . 1 = 1 . s . 1 = 1 . 1 . s s 3 +10s 2 + 31s + 30 (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) = (1)..=.(1).=.(1)对应的状态方程为:(4) 并联分解实现有无数种,其中之三为: 〔3〕直接分解 〔4〕能观测规 X 型 (10) 结构图第二章题 B 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 1、状态空间模型描述了输入-输出之间的行为,而且在任何初始条件下都能揭示系统的内部 行为〔 √〕2、状态空间描述是对系统的一种彻底的描述,而传递函数则只是对系统的一种外部描述〔√〕3、任何采样周期下都可以通过近似离散化方法将连续时间系统离散化〔×〕4、对于一个线性系统来说,经过线性非奇妙状态变换后,其状态能控性不变〔 √〕5、系统状态的能控所关心的是系统的任意时刻的运动〔×〕6、能观〔能控〕性问题可以转化为能控〔能观〕性问题来处理〔√〕7、一个系统的传递函数所表示的是该系统既能控又能观的子系统〔√〕8、一个系统的传递函数若有零、 极点对消现象,则视状态变量的选择不同,系统或者是不能控的Y(s) s 3 +10s 2 + 31s + 32U (s) (s 2 + 5s + 6)(s + 1)或者是不能观的〔 √〕9、对于一个给定的系统,李雅普诺夫函数是惟一的〔 ×〕 10、若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的〔√〕 第二题: 求以下 RLC 网络系统的状态空间模型, 并绘制其结构图.取电压 e_i 为输入,e_o 为输 出.其中 R 1 、R 2 、C 和 L 为常数.第二题图答案:解: 〔状态变量可以另取〕定义状态变量: x 1 为电阻两端电压 v,x 2 为通过电感的电流 i.输入 u 为 e_i ,输出 y 为e_o .使用 基尔霍夫电流定理列 R 1 和 R 2 间节点的电流方程:使用基尔霍夫电压定理列出包含 C 、R 2 、L 回路的电压方程: 最后,输出电压的表达式为: 得到状态空间模型: 结构图为:第三题: 如图所示,系统的输入量为 u 1 和 u 2、输出量为 y 和请选择适当的状态变量,并写出系 统的状态空间表达式,根据状态空间表达式求系统的闭环传递函数:第三题图 解:状态变量如下图所示〔3 分〕从方框图中可以写出状态方程和输出方程〔4〕 状态方程的矩阵向量形式: 系统的传递函数为〔3 分〕:. 解:由电路图可知:图1 :RC 无源网络可得:选,,=所以可以得到:解:运用公式可得:可得传递函数为:解:先求出系统的.可得:令,X<k>+解:计算算式为:所以:解:由于 A 无特定形式,用秩判据简单.因此,不管 a 去何值都不能够联合彻底能控和彻底能观测解:〔1〕选取李雅普若夫函数V<x>,取,可知:V<0>=0,即〔2〕计算基此可知:即:〔3〕判断和出:为正定.并判断其定号性.对取定和系统状态方程,计算得到:为负半定..对此, 只需判断的不为系统状态方程的解.为此,将带入状态方程, 导表明,状态方程的解只为, 不是系统状态方程的解.通过类似分析也可以得证不是系统状态方程的解. 基此, 可知判断.〔4〕综合可知,对于给定非线性时不变系统,可构造李雅普若夫函数判断满足:V<x>为正定, 为负定;对任意,当,有基此,并根据李雅普若夫方法渐近稳定性定理知:系统原点平衡状态为大X 围渐近稳定.解:可知,系统彻底可控,可以用状态反馈进行任意极点配置. 由于状态维数为 3 维.所以设.系统期望的特征多项式为:而令,二者相应系数相等.得:5 3 ]即: 验证:A 卷二、基础题〔每题 10 分〕1、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状 态响应分别为试据此定出系统矩阵 A .解: x(t) = e At x(0) 2 分可得e At = 4 4「| 1 (e -t + e 3t )4 分4 e -t + 4 e 3t |「 1 -5 e -t + 3 e 3t |L -1 1 1 ] 21 (e -t + e 3t )」2 ]-1 「| 43 e -t + 41 e 3t -1」| = - 23 e -t + 21e 3t45 e -t + 43e 3t ]|「-1 - 25 e -t + 23e 3t 」 |L 1-2] 1 」| A ==-te3t14-43t =0 = 41 11 2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化. 解:① 首先计算矩阵指数.采用拉氏变换法:e t = L -1 (s -)-1 = L -1〈-1= L -122)=3 分② 进而计算离散时间系统的系数矩阵.= e T =「|1 0.5 (1- e -2T )] T 「14 分0.4323] 0.1353」|2 分 「3 e -t + 1 e 3t |L 0 e -2T 」|| 将T = 1s 代入得 = e = |L 0 - 4 e -t + 4 e 3t| |- 3 e -t + 1 e 3t |L 2 2 = | 2||L -e -t + e 3t2 2 」|=(j T)B =〈(|j T「|10 |l 0 |L00.5(1- e-2t)] )|「0]「0.5T + 0.25e-2T - 0.25]=|L -0.5e-2T + 0.5 」|「1.0789]= | |③故系统离散化状态方程为xx21 = xx21kk+ u (k ) 2 分3、已知系统的传递函数为〔1〕试确定a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性;〔3〕若a = 3 ,写出系统的一个最小实现.〔10 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 3 分〔2〕可写系统的能控标准形实现为此问答案不惟一x =-x + u y =[2a 2 0]x3 分存在零极相消,系统不能观 1 分〔3〕a = 3 ,则有G(s) =可写出能控标准形最小实现为此问答案不惟一,可有多种解三、已知系统的状态空间表达式为3 分〔1〕判断系统的能控性与能观测性;〔2〕若不能控,试问能控的状态变量数为多少?〔3〕试将系统按能控性进行分解;〔4〕求系统的传递函数.〔10 分〕解:〔1〕系统的能控性矩阵为UC= [b Ab]=1-2, det UC= 0, rankUC= 1 < 23 分L0.4323」|dt卜||e-2t 」| J|L 1」故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ] U O= | | = | | ,detU = -115 丰 0, rankU = 2 C O4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1 1 分 C〔3〕由状态方程式可知是x 能控的, x 是不能控的 2 分3 分B 卷二、基础题〔每题 10 分〕1、给定一个连续时间线性定常系统, 已知状态转移矩阵个(t) 为 试据此定出系统矩阵 A .解:A =〈dt d(t) 卜Jt =0=t =0「 0 2 ] = | |2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化.解:① 首先计算矩阵指数.采用拉氏变换法: ② 进而计算离散时间系统的系数矩阵.「 1 T ] 「1 1]= e T = |L 0 1」|将T = 1s 代入得 = e T = |L 0 1」| ③ 故系统离散化状态方程为 3、已知系统的传递函数为试写出系统的能控标准形实现.〔10 分〕解:系统的能控标准形实现为三、试确定下列系统当 p 与 q 如何取值系统既能控又能观.〔10 分〕 解:系统的能控性矩阵为其行列式为 det [b Ab ]= p 2 + p - 12根据判定能控性的定理 , 若系统能控 , 则系统能控性矩阵的秩为 2,亦即行列式值不为2 1〔4〕系统的传递函数为G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关2 2 2s + 2L -1 -3」L cA 」 L 19 -10」 故系统的状态不能观测[b Ab]= p2+ p - 12 丰00 , det因此当p 丰3,-4 时系统能控系统能观测性矩阵为其行列式为根据判定能观性的定理, 若系统能观, 则系统能观性矩阵的秩为2, 亦即「c ]det | | = 12q2 - q - 1 丰0L cA」1 1因此当q 丰, - 时系统能观3 41 1综上可知, 当p 丰3, -4 , q 丰, - 时系统既能控又能观3 4。
实验二 带全维观测器的全状态反馈系统的数字仿真一、实验目的1.了解全维观测器的构成及应用; 2.研究不同的观测器极点对系统的影响二、实验原理设受控系统的动态方程为u x xB A += x yC = (2-1) 构造一个由计算机实现、且和原受控系统结构相同的模拟受控系统u x x B A += x y C =构造状态观测器的目的是使状态估计值x尽量接近实际系统的状态x ,由于系统初始状态等因数的影响,x 和x 之间存在差异,为减小这种差异,利用y y - 负反馈至模拟系统的x处,反馈系数矩阵为H ,按以上原理构成的状态观测器及其实现状态反馈的结构图如图2-1所示,从而得到全维状态观测器的动态方程为()A GC B Gy =-++x x u , x yC = (2-2) 由式(2-1)和(2-2)得状态向量误差方程()()A GC -=--x x x x (2-3)由式(2-3)可知,A GC -的特征值直接影响误差向量的衰减速度,若原受控系统状态完全可观测,则可以任意配置A GC -的极点,从而保证了状态观测器的存在。
图2-1 全维状态观测器及其实现状态反馈的结构图分离定理 若受控系统(A ,B ,C )可控可观测,用状态观测器估值形成状态反馈时,其系统的极点配置和观测器设计可分别独立进行。
由分离定理可以看出,由全维状态观测器提供的状态估值x代替真实状态x 来实现状态反馈,根据系统期望特征值设计的状态反馈矩阵K 不必重新设计,当观测器被引入系统以后,状态反馈部分也不会改变设计好的观测器极点配置。
求受控系统状态反馈矩阵K 和,观测器反馈系数矩阵H 的过程举例如下:假设SISO 受控系统的开环传递函数为31)(ss G =该系统可控标准形形式的状态方程和输出方程为u x x x Bu A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=100000100010321x x ,[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==321001x x x C y x 因为31000100012=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡rank CA CA C rank ,所以系统可观测。
实验名称:状态反馈综合实验实验日期:2023年X月X日实验地点:XX大学自动化实验室实验人员:XXX、XXX、XXX指导教师:XXX一、实验目的1. 理解状态反馈控制原理,掌握状态反馈控制系统的设计方法。
2. 熟悉状态观测器的设计与应用,提高对系统稳定性和鲁棒性的认识。
3. 通过实验,验证状态反馈和状态观测器在控制系统中的应用效果。
二、实验原理状态反馈控制是一种将系统输出反馈到输入端的控制方法,通过改变系统的输入信号来调整系统的状态,实现对系统性能的优化。
状态观测器是一种能够估计系统状态的装置,它通过对系统输入、输出信号的观测,实现对系统状态的估计。
三、实验内容及步骤1. 实验内容(1)设计一个状态反馈控制系统,并实现系统的稳定运行。
(2)设计一个状态观测器,实现对系统状态的估计。
(3)将状态反馈和状态观测器结合,验证其在控制系统中的应用效果。
2. 实验步骤(1)根据系统要求,确定系统状态变量和输入、输出变量。
(2)建立系统状态方程和输出方程。
(3)设计状态反馈控制器,使系统满足稳定性和性能要求。
(4)设计状态观测器,实现对系统状态的估计。
(5)将状态反馈和状态观测器结合,构建综合控制系统。
(6)进行实验,观察系统运行状态,分析实验结果。
四、实验结果与分析1. 状态反馈控制器设计根据系统要求,选择合适的控制器设计方法,如PID控制器、线性二次调节器(LQR)等。
通过仿真实验,调整控制器参数,使系统满足稳定性和性能要求。
2. 状态观测器设计根据系统状态方程和输出方程,设计状态观测器。
通过仿真实验,验证状态观测器的估计精度和稳定性。
3. 状态反馈与状态观测器结合将状态反馈控制器和状态观测器结合,构建综合控制系统。
通过仿真实验,观察系统运行状态,分析实验结果。
实验结果表明,结合状态反馈和状态观测器的综合控制系统具有良好的稳定性和鲁棒性。
在系统受到干扰或参数变化时,系统能够快速恢复到稳定状态,满足实际工程应用需求。
基于全维状态观测器重构状态反馈的倒立摆控制系统镇定设计
湖南科技大学
学院:潇湘学院
专业:电气工程及其自动化
班级:电气三班
姓名:**
学号: **********
1.引言:
2.系统设计及描述:一:摆杆受力分析
二:摆的垂直方向:三:摆的水平方向:四:小车的受力分析:
3.系统特性分析:一:系统稳定性分析
二:系统能控.能观性分析1.能控性分析
4.倒立摆控制器设计:一.倒立摆PID控制器分析
5.设计结果仿真:
参考文献
俞立.鲁棒控制---线性矩阵不等式.北京:清华大学出版社,2002
阳武较.基于MATLAB的一阶倒立摆控制系统的建模与仿真。
南华大学电气工程学院.2007.
薛安克.王俊宏.柴利.王惠娇.倒立摆控制仿真与试验研究现状.杭州电子工业学智能信息与控制技术研究所,2005.
李虹,熊诗波,孙志毅.Simulink环境下倒立摆控制系统建模与仿真【J】.太原科技大学学报,2005,(03).
曾志新,邹海明,李伟光,周建辉,倒立摆系统的建模及
MATLAB仿真【J】.新技术工艺,2005,(10).。
现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。
实验6_状态反馈与状态观测器自动控制原理实验报告自动控制原理实验报告院系名称:仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。
二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。
图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=-仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。
2. 了解带有状态观测器的状态反馈系统。
3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。
二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。
图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=:其中维状态反馈系数矩阵,由计算机算出。
维观测器的反馈矩阵,由计算机算出。
为使跟踪所乘的比例系数。
三、实验原理1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。
这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。
在改善与提高系统性能时不增加系统零、极点,所以不改变系统阶数,实现方便。
2. 已知线形定常系统的状态方程为为了实现状态反馈,需要状态变量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。
倒立摆系统的建模及Matlab仿真1.系统的物理模型考虑如图(1)所示的倒立摆系统。
图中,倒立摆安装在一个小车上。
这里仅考虑倒立摆在图面内运动的二维问题。
图(1)倒立摆系统假定倒立摆系统的参数如下。
摆杆的质量:m=0.1g摆杆的长度:l =1m小车的质量:M=1k重力加速度:g=9.8m/ s2摆杆的质量在摆杆的中心。
设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量6 < 10%调节时间ts < 4s,通过小车的水平运动使倒立摆保持在垂直位置。
2.系统的数学模型2.1建立倒置摆的运动方程并将其线性化为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。
设小车瞬时位置为乙摆心瞬时位置为(z lsinr ),在u作用下,小车及摆均产生加速远动, 根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有2 2M d^ m dF(z lsin"u即:(M m)z mP cos : - mP2 sin - - u绕摆轴转动的惯性力矩与重力矩平衡,因而有(z I sin 二)]」COST - mgl sin 二即: z c o S l v c o Sv _ l / s i n c o S = g s i n ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。
由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定9很小,接近于零时合理的,则sin, : -,co^ : 1 ,且可忽略r 勺 项。
于是有 (M m)z ml v - u ③联立求解可得 2.2列写系统的状态空间表达式选取系统变量 x 1,x 2,x 3,x 4, x = X 1,x 2,x 3, X t T贝U X 1 =X2X3~ X 4X 4 (M + m) X 1 X 3Ml MldX 二dt0 1 0 0Mlmg M 0 (M m)g 二 Ax Buy=x 1= 1 0 0 oX=Cx代入数据计算得到: 0 1 0 0 0—1 A = 0 0 0 0 0 1101,B = 0 1 0 1-1T ,C 二3.设计控制器3.1判断系统的能控性和稳定性0 1 Q k = B AB A2B A3B】=1 00 -1—00 11 00 -11-11 0rank( Q k)=4,故被控对象完全可控由特征方程控对象不稳定•I 一A二,2C2 -11) =0解得特征值为0 , 0, _ .11。
实验二 带全维观测器的全状态反馈系统的数字仿真
一、实验目的
1.了解全维观测器的构成及应用; 2.研究不同的观测器极点对系统的影响
二、实验原理
设受控系统的动态方程为
u x x
B A += x y
C = (2-1) 构造一个由计算机实现、且和原受控系统结构相同的模拟受控系统
u x x B A += x y C =
构造状态观测器的目的是使状态估计值x
尽量接近实际系统的状态x ,由于系统初始状态
等因数的影响,x 和x 之间存在差异,为减小这种差异,利用y y - 负反馈至模拟系统的x
处,反馈系数矩阵为H ,按以上原理构成的状态观测器及其实现状态反馈的结构图如图2-1所示,从而得到全维状态观测器的动态方程为
()A GC B Gy =-++x x u , x y
C = (2-2) 由式(2-1)和(2-2)得状态向量误差方程
()()A GC -=--x x x x (2-3)
由式(2-3)可知,A GC -的特征值直接影响误差向量的衰减速度,若原受控系统状态完全可观测,则可以任意配置A GC -的极点,从而保证了状态观测器的存在。
图2-1 全维状态观测器及其实现状态反馈的结构图
分离定理 若受控系统(A ,B ,C )可控可观测,用状态观测器估值形成状态反馈时,其系统的极点配置和观测器设计可分别独立进行。
由分离定理可以看出,由全维状态观测器提供的状态估值x
代替真实状态x 来实现状态反馈,根据系统期望特征值设计的状态反馈矩阵K 不必重新设计,当观测器被引入系统
以后,状态反馈部分也不会改变设计好的观测器极点配置。
求受控系统状态反馈矩阵K 和,观测器反馈系数矩阵H 的过程举例如下:
假设SISO 受控系统的开环传递函数为
31)(s
s G =
该系统可控标准形形式的状态方程和输出方程为
u x x x Bu A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=100000100010321x x ,[]⎥⎥
⎥⎦⎤
⎢⎢⎢⎣⎡==321001x x x C y x 因为31000100012=⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡rank CA CA C rank ,所以系统可观测。
由于本系统是完全可控的,能够通过状态反馈矩阵K 的选择,使闭环系统的极点置于所希望的位置上,以满足系统的性能指标要求。
若根据系统的性能指标,希望配置的极点为31-=p ,2j 23,2±-=p ,则采用状态反馈后系统的特征多项式为
12233)](I det[)(k k k BK A f +++=--=λλλλλ (2-4)
希望的系统特征多项式为
24207)2j 2)(2j 2)(3()(23*+++==+-++=λλλλλλλf (2-5)
比较(2-4)和(2-5)两个多项式得系统状态反馈矩阵为
[][]7202432
1
==k k k K
由于本系统是可观测的,能够通过观测器反馈系数矩阵H 的选择,使观测器的极点置于所希望的位置上。
假设实验系统的全维状态观测器的希望极点均为-3,则观测器的期望特征多项式为
27279)3()(233*+++==+=λλλλλg (2-6)
采用反馈后观测器的特征多项式为
322
13)](I det[)(h h h HC A g +++=--=λλλλλ (2-7)
比较(2-6)和(2-7)两个多项式得观测器反馈系数矩阵为
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=27279321h h h H 带全维状态观测器的状态反馈系统结构图如图2-2所示
图2-2 带全维状态观测器的状态反馈系统结构图
三、实验内容及步骤
实验通过MATLAB 软件实现。
1.预先计算全维状态观测器的极点为-3、-3、-3和-10、-10、-10所对应的观测器反馈系数矩阵H ;
2.双击MATLAB 图标或单击开始菜单,依次指向“程序”、“MATLAB ”,单击MATLAB ,进入MATLAB 命令窗口。
单击MATLAB 工具条上的Simulink 图标,运行后出现Simulink
模块库浏览器,并单击其工具条左边的图标
,弹出新建模型窗口。
图2-3 MA TLAB 下带全维状态观测器的状态反馈系统仿真图
3.在模块库浏览器窗口中的Simulink 下的输入源模块(Sources)、数学运算模块
s
1s
1s
127
9
-
-
-v 3
x 2
x y
x =1s
1s
1s
124
20
7
-
-
-u
3
x 2x y
x =1-
27
(Math)、连续系统模块(Continuous)、接收模块(Sinks)库中,分别选择阶跃信号(Step)、求和(Sum)、常量增益(Gain)、积分环节(Integrator)、示波器(Scope)模块,建立如图2-3 所示的仿真图。
4.用鼠标左键双击各模型,设置好参数,其中六个积分环节的初始条件均为零;选择Simulation 菜单中parameters 选项,设置好仿真参数;选择Simulation 菜单中的start 选项,开始仿真;观察并记录下系统的输出(y 、y
)。
5.将原系统的三个积分环节(积分器1、2、3)的初值设为1,观测器系统的三个积分环节(积分器4、5、6)的初值设为0,启动系统仿真,观察并记录下系统的输出(y 、y
)。
6.对应于观测器极点为-10、-10、-10,重复4、5步骤。
四、实验报告内容
1.理论计算观测器极点为-3、-3、-3和-10、-10、-10时的观测器反馈矩阵
[]T
h h h H 321=;
2.屏幕拷贝下不同观测器极点、不同积分器初始条件下的系统响应曲线(y 、y
); 3.分析积分器初始条件对状态y 和y 的影响,分析观测器极点位置对y
响应速度影响。
五、实验思考题
1. 观测器极点可以任意配置的充要条件是什么?
2. 在带全维观测器的状态反馈系统中,观测器极点和状态反馈极点应怎样设置。