基于等效面电流法表面贴磁圆筒型永磁直线电机磁场研究
- 格式:pdf
- 大小:1.03 MB
- 文档页数:6
永磁同步电机弱磁控制的控制策略研究摘要永磁同步电机是数控机床、机器人控制等的主要执行元件,随着稀土永磁材料、永磁电机设计制造技术、电力电子技术、微处理器技术的不断发展和进步,永磁同步电机控制技术成为了交流电机控制技术的一个新的发展方向。
基于它的优越性,永磁同步电机获得了广泛的研究和应用。
本文对永磁同步电机的弱磁控制策略进行了综述,并着重对电压极限椭圆梯度下降法弱磁控制、采用改进的超前角控制弱磁增速、内置式永磁同步电动机弱磁控制方面进行了调查、研究。
关键词:永磁同步电机、弱磁控制、电压极限椭圆梯度下降法、超前角控制、内置式永磁同步电动机一、永磁同步电机弱磁控制研究现状1.永磁同步电机及其控制技术的发展任何电机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。
直流电机的主磁场和电枢磁场在空间互差90°电角度,因此可以独立调节;而交流电机的主磁场和电枢磁场互不垂直,互相影响。
因此,交流电机的转矩控制性能不佳。
经过长期的研究,目前交流电机的控制方案有:矢量控制、恒压频比控制、直接转矩控制等[1]。
1.1 矢量控制1971年德国西门子公司F.Blaschke等与美国P.C.Custman等几乎同时提出了交流电机磁场定向控制的原理,经过不断的研究与实践,形成了现在获得广泛应用的矢量控制系统。
矢量控制系统是通过坐标变换,把交流电机在按照磁链定向的旋转坐标系上等效成直流电机,从而模仿直流电机进行控制,使交流电机的调速性能达到或超过直流电机的性能。
1.2 恒压频比控制恒压频比控制是一种开环控制,它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出进行控制,使电机以一定的转速运转。
但是它依据电机的稳态模型,从而得不到理想的动态控制性能。
要获得很高的动态性能,必须依据电机的动态数学模型,永磁同步电机的动态数学模型是非线性、多变量,它含有角速度与电流或的乘积项,因此要得到精确控制性能必须对角速度和电流进行解耦。
实验一:球形载流线圈的场分布与自感一、实验目的1. 研究球形载流线圈(磁通球)的典型磁场分布及其自感参数;2. 掌握感应电势法测量磁场的方法;3. 在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解。
二、实验原理(1)球形载流线圈(磁通球)的磁场分析如图1-1所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。
显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R θ上,应有()d d N W R θi=z i 2R ⎛⎫'⎪⎝⎭因在球面上,θcos R z =,所以()d d cos sin d z R R θθθ==代入上式,可知对应于球面上线匝密度分布W ′,应有2sin d sin d 2N RR NW R Rθθθθ⋅'==即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。
因此,本实验模拟的在球表面上等效的面电流密度K 的分布为sin Ni 2RK e φθ=⋅⋅ 由上式可见,面电流密度K 周向分布,且其值正比于θsin 。
因为,在由球面上面电流密度K 所界定的球内外轴对称场域中,没有自由电流的分布, 所以, 可采用标量磁位ϕm 为待求场量,列出待求的边值问题如下:图1-1球形载流线圈(磁通球) i图1-2 呈轴对称性的计算场域上式中泛定方程为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。
通过求解球坐标系下这一边值问题,可得标量磁位ϕm1和ϕm2的解答,然后,最终得磁通球内外磁场强度为(1-1)和()()32m22cos sin 6r Ni R - r>R R r θϕθθ⎛⎫=∇=+ ⎪⎝⎭H e e (1-2)基于标量磁位或磁场强度的解答,即可描绘出磁通球内外的磁场线分布,如图1-3所示。
几组特殊形状永磁体的磁场及梯度COMSOL分析宋浩;黄彦;邓志扬;朱泉水【摘要】利用COMSOL“静磁场,无电流”的应用模式给出了相对放置的永磁条、具有磁回路结构的磁轭磁极、环形磁体的磁场分布图,并分析了这3组磁体的磁场和梯度情况,更关注于均匀磁场和恒梯度磁场的分布情况.【期刊名称】《大学物理实验》【年(卷),期】2013(026)004【总页数】5页(P3-7)【关键词】永磁体;磁场;磁场梯度;COMSOL【作者】宋浩;黄彦;邓志扬;朱泉水【作者单位】南昌航空大学,江西南昌330063;南昌航空大学,江西南昌330063;南昌航空大学,江西南昌330063;南昌航空大学,江西南昌330063【正文语种】中文【中图分类】O4-39;O441.5在电磁学中,通电直导线、环形线圈(如亥姆赫兹线圈)以及通电螺线管等可以定量地计算出它们的周围空间的磁场大小及分布,并有十分形象的图形表示。
但是特殊形状的磁体及组合的静磁场分布的定量计算是十分复杂的,因此也无法准确而形象地描绘出磁场分布图[1]。
在实际的应用研究中,往往要构造一些特殊形状和组合的永磁体达到科学研究实验和工业应用所需磁场分布要求,比如科学史上著名的原子空间取向量子化实验——史特恩—盖拉赫实验[2]、工业应用较为广泛的磁悬浮陀螺[3,4]。
尽管工程电磁场计算提供了各种数值计算方法,方便程度和功能与目前计算机的有限元模拟软件如ANSYS、ANSOFT Maxwell、COMSOL等仍无法比拟。
因为COMSOL Multiphysics具有优秀的多物理场耦合功能,且目前利用此软件在静磁场分布公开发表的文献较少,文章中特列举了几组形状比较特殊的永磁体及其组合,利用COMSOL模拟它们周围空间磁场分布并分析磁场梯度的变化。
以下模型都是在COMSOL的“磁场,无电流”的应用模式下进行模拟的。
它的外部环境条件为:温度T=293.15K,绝对压力PA=1atm。
电涡流阻尼器冲击制动性能仿真与试验研究摘要:为了研究电涡流阻尼器冲击制动性能,在圆环形永磁体磁通密度和电涡流阻尼力公式的基础上,提出了4种圆筒型电涡流阻尼器磁路方案,分析了各方案静态磁场的气隙磁密分布规律,建立了冲击载荷下电涡流阻尼器瞬态电磁场仿真模型,对4种方案进行了涡流密度分布和制动性能的仿真。
仿真结果表明:永磁体同极相对排列、具有导磁外筒的磁路设计方案涡流密度最大,阻尼效率最高,在高速冲击条件下导体内存在明显的涡流集肤效应。
搭建了电涡流阻尼器冲击响应试验系统,测量了冲击载荷下阻尼器制动位移和速度变化规律,验证了仿真结果的正确性。
研究表明圆筒型电涡流阻尼器具有优越的冲击制动性能,在列车制动、武器发射等工程领域具有广阔的应用前景。
关键词:电涡流阻尼器;冲击制动;磁路设计;气隙磁密;涡流密度;阻尼效率在高速列车、航天装备和武器发射等工程领域常面临高速大惯量机械装备高效可靠制动需求,传统制动装置采用液压阻尼工作原理,存在阻尼系统低、摩擦磨损大、工作介质易泄露、环境适应性差及维护保养困难等缺点。
电涡流阻尼器利用导体在恒定磁场中运动或在交变磁场中产生的电涡流效应进行工作,根据应用场合的不同形成了各种形式的电涡流阻尼装置。
电涡流阻尼装置具有非接触、无需流体介质的特点,能够有效克服液压装置的弊端,在旋转机械、建筑及桥梁等领域的振动控制方面得到了广泛应用。
Sodano[1]详细地介绍了多种阻尼器,对磁制动、旋转机械涡流阻尼以及动态系统涡流的近年研究进行回顾,提出了涡流阻尼机制未来应用在太空和汽车减震与制动系统的可能性。
Bae等[2]对永磁体置于导电管内时的涡流阻尼特性进行了分析和试验研究,验证了提出的模型可以准确预测稳态阻尼力及低激励频率下的阻尼力。
Ebrahimi[3]设计开发了直线永磁执行器,可应用于汽车悬架系统。
宋伟宁等[4]以上海中心大厦为对象,对电涡流阻尼器在建筑上应用的可行性、安全性和效益性进行了分析。
2017年第24卷第7期技术与市场技术研发永磁同步电动机设计关键技术与方法研究曹敏(深圳市安托山特种机械有限公司,广东深圳518000)摘要:永磁同步电动机在节能方面有着非常高效的特征,在国防方面,航空航天方面、工业以及农业的生产方面等应用 广泛。
传统的永磁同步电动机的设计方式以及在技术上的分析方式,已不适应当前先进技术及研发技术的发展要求,所 以,也需要利用一些更加科学更加现代化的计算方式来进行技术与方法的创新。
对永磁同步电动机在当前的发展以及 设计方式等进行了分析和研究。
关键词:永磁同步电动机;设计关键技术;方法doi:10. 3969/j.issn.1006 - 8554. 2017.07.0801永磁同步电动机的发展概况永磁电动机的发展是与永磁材料的发展相同步的,有着非 常密切的关系。
永磁材料的技术性能以及价格,在很大的程度 上决定了永磁电动机的使用性能。
永磁材料的发展之初,出现 了碳钢、钨钢、钴钢等很多种的材料。
20世纪30年代开始,铝 钴磁钢等材料的出现,让永磁电动机有了真正意义上的使用价 值,并且得到了很快的发展。
20世纪50年代,出现了铁氧体永 磁材料,并且因为其本身的价格比较便宜,一些比较小型的电 动机都开始应用到了永磁体励磁,也就使得永磁电动机在一些 视听设备、家用电器、医用设备、办公用品等多方面都有了非常 广泛的应用。
但是,因为以上两种永磁材料都在本身的性能上 有着一定程度的缺陷,在剩磁密度等方面都有着一定的缺点,在永磁电动机的使用过程中会受到一定的限制。
这种情况直 到在20世纪60年代的稀土永磁材料问世之后被改变,并且让 永磁电动机进人到了一个全新的发展阶段。
钐钴永磁是最早 进行开发的一种稀土永磁,但是因为钐、钴等材料都是属于稀 有金属,在价格上比较贵,在实际的应用过程中有一定的困难,在最初进行研究的时候主要是应用在一些航空航天以及以及 一些不需要考虑价格因素的方面。
而第三代稀土永磁,也就是 钕铁硼的出现,给永磁电动机的发展带来了很有益的作用。