数列和不等式中的函数和方程思想
- 格式:docx
- 大小:45.76 KB
- 文档页数:4
授课教案教学标题 期末复习(三) 教学目标 1 、不等式知识点归纳与总结 教学重难点重点:不等式基础知识点的熟练掌握难点:不等式在实际应用中的相互转换上次作业检查授课内容:一、数列章节知识点复习1 等差数列(1)性质:a n =an+b ,即a n 是n 的一次性函数,系数a 为等差数列的公差;(2) 等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 即S n 是n 的不含常数项的二次函数;若{a n },{b n }均为等差数列,则{a n ±n n },{∑=k1i ka},{ka n +c}(k ,c 为常数)均为等差数列;当m+n=p+q 时,a m +a n =a p +a q ,特例:a 1+a n =a 2+a n-1=a 3+a n-2=…;当2n=p+q 时,2a n =a p +a q ; ① 等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ② 若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;等差数列等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;()n m a a n m d =+-q a a n n 1-=;m n m n q a a -= 通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(*,,0n k N n k ∈>>))0( k n k n k n k n a a a a G +-+-±=(*,,0n k N n k ∈>>)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≠--=--==)1(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅③ 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇, 1-=n n S S 偶奇 (4)常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nna .2 等比数列 (1)性质当m+n=p+q 时,a m a n =a p a q ,特例:a 1a n =a 2a n-1=a 3a n-2=…,当2n=p+q 时,a n 2=a p a q ,数列{ka n },{∑=k1i ia}成等比数列。
[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)1.函数的思想函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。
经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。
2.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。
3.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。
4.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=nbax)((n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。
解题技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+...+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。
数学思想之——函数思想数学思想之——函数思想摘要:函数思想是数学思想的有机组成部分,它在数学解题中显得越来越重要,本文就其在方程、不等式、数列、三角函数、解析几何、向量以及在实际中等方面的应用作例说。
关键词:数学思想函数思想应用数学思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物,数学思想不仅是数学知识的重要组成部分,更是数学教学中进行素质教育的重要部分,在高中数学中起到横向联系和纽带连结的主干作用,它包括:分类讨论思想、方程思想、转化思想、数形结合思想、函数思想、换元思想、对称思想、正难则反思想等等。
而函数思想是用函数的概念和性质去分析问题、转化问题和解决问题,是在知识和方法反复学习运用中抽象出的带有观念性的指导方法。
所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。
构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质,结合函数的概念和性质,通过类比联想转化合理地构造函数,去分析、研究问题转化问题并解决问题。
函数思想不仅体现在本身就是函数问题的高考试题中,而且对于诸如方程、不等式、三角函数、数列、解析几何、向量等问题也常常可以通过构造函数来求解。
本文拟就函数思想方面,讨论其在解题中的应用。
一、运用函数思想求解方程问题函数与方程既是两个不同的概念,又存在着密切的联系。
一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数。
一个方程的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标。
因此,许多有关方程的问题都可用函数思想来解决。
例1、求证:不论 a取什么实数,方程x2-(a2+a)x+a-2=0必有两个不相等的实根。
分析:常规解法,若求出判别式△是一个关于a的一元四次多项式,符号不易判断。
高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。
数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。
更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。
一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。
A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。
A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。
A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。
A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。
二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
解读初中数学数学思想《数学课程标准》在课程目标中明确指出:“通过义务教育阶段的数学学习,学生能够获得适应未来社会生活和进一步发展所必须的重要数学知识以及基本的数学思想方法和必要的应用技能”.由此可知,《数学课程标准》已把基本的数学思想方法作为学生必须掌握的基础知识来要求.数学思想方法是数学的灵魂,数学思想指导着数学问题的解决,并具体地体现在解决问题的不同方法中,掌握一定的数学思想和方法远比掌握一般的数学知识有用的多.通过七年级下册数学的学习,同学们应进一步理解和感受以下几种数学思想方法:一、方程思想所谓方程思想就是从分析问题的数量关系入手,适当设定未知数,把已知量与未知量之间的数量关系转化为方程(组)模型,从而使问题得到解决的思维方法.方程知识是初中数学的核心内容,理解方程思想并应用于解题当中十分重要.课本中第6章、第7章列一次方程(组)解应用题就是方程思想的具体应用.例1.一个多边形的外角和是内角和的27,求这个多边形的边数. 分析:根据“n 边形的内角和等于(2)180n -⋅”与“多边形的外角和等于360”和已知条件,列方程可求解.解答:设多边形的边数为n ,则根据题意得方程: 2(2)1803607n -⋅⨯= 解得9n = 所以,这个多边形的边数为9评注:对方程思想的考查主要有两个方面:一是列方程(组)解应用题;二是列方程(组)解决代数问题或几何问题.二、数形结合思想数学是研究数量关系和空间形式的一门科学,每个几何图形中都要蕴藏着一定的数量关系,而数量关系常常又可以通过图形的直观性作出形象的描述.数形结合思想即是把代数、几何知识相互转化、相互利用的一种解题思想. 在一元一次不等式(组)中,用数轴表示不等式的解集就是数形结合的具体体现.例2.求不等式组255246715x xx x -<-⎧⎨--⎩≥的自然数解.分析:欲求不等式组的自然数解,一般思路是先求出不等式组的解集,再在数轴上表示出其解集,从而进一步求出问题的答案.解答:解不等式2552x x -<-得52x <解不等式46715x x -≥-得3x ≤ 所以,原不等式组的解集是52x <,其解集在数轴上表示如图1所示图1所以,其自然数解为0、1、2.评注:自然数也就是非负整数,在这里易漏掉0. 三、分类讨论思想分类讨论思想就是要针对数学对象的共性与差异性,将其区分为不同种类,从而克服思维的片面性,有效地考查学生思维的全面性与严谨性.要做到成功分类,需注意两点:一是要有分类意识,善于从问题的情境中抓住分类对象;二是找出科学合理的分类标准,满足不重不漏的原则.例3.等腰三角形的周长为16,其中一条边的长是6,求另两条边的长.分析:由于已知的“一条边的长是6”,未告之是腰长,还是底边长,所以应分类讨论求解.解答:(1)当周长为16,腰长为6时,该等腰三角形的另两边:一条边为腰,长为6,另一条边为底边,长为16-6-6=4,即另两边分别为6和4;(2)当周长为16,底边长为6时,该等腰三角形的另两边都是腰,其长为(16-6)÷2=5,即另两边长为5、5.评注:求解有关等腰三角形的边、角问题时,在题中未附图形且未指名已知的边、角是该等腰三角形的底或腰(底角或顶角)的情况下,均需用分类讨论思想求解.四、转化思想转化是解数学问题的一种重要的思维方法.转化思想是分析问题和解决问题的一个重要的基本思想,就解题的本质而言,解题就意味着转化,即是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”转化为“简单”,把“陌生”转化为“熟悉”,把“抽象”转化为“具体”,把“一般”转化为“特殊”,把“高次”转化为“低次”,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维等等.例4.在一个多边形中,它的内角最多可以有几个是锐角?分析:由于任意一个多边形的内角与其相邻的外角的和等于180,所以若内角为锐角,则其外角为钝角,将该问题转化为求多边形的外角中最多有几个钝角就十分简捷。
高中数学的思想方法数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握状况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变幻法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的.2方法一:函数与方程的思想函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来合计问题,研究问题和解决问题。
所谓方程的思想就是特别研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。
函数和方程、不等式是通过函数值等于零、大于零或小于零而互相关联的,它们之间既有区别又有联系。
函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。
3方法二:分类与整合思想解题时,我们经常碰到这样一种状况,解到某一步之后,不能再以统一方法,统一的式子持续进行了,因为这时被研究的问题包涵了多种状况,这就必须在条件所给出的总区域内,正确划分假设干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。
有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。
高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题必须要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。
特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q1两种状况,对数函数的单调性就分为a1,04方法三:转化与化归思想转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。
数列与不等式中的函数与方程思想1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程思想是动中求静,研究运动中的等量关系.2.和函数与方程思想密切关联的知识点(1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.热点一函数与方程思想在不等式中的应用例1(1)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为() A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞)(2)f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=________.解析(1)解析f′(x)>2转化为f′(x)-2>0,构造函数F(x)=f(x)-2x,得F(x)在R上是增函数.又F(-1)=f(-1)-2×(-1)=4,f(x)>2x+4,即F(x)>4=F(-1),所以x>-1.(2)若x=0,则不论a取何值,f(x)≥0显然成立;当x>0即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为a≥3x2-1x3.设g(x)=3x2-1x3,则g′(x)=3(1-2x)x4,所以g(x)在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g(x)max=g⎝⎛⎭⎫12=4,从而a≥4;当x<0即x∈[-1,0)时,f(x)=ax3-3x+1≥0可化为a≤3x2-1x3,设g(x)=3x2-1x3,且g(x)在区间[-1,0)上单调递增,因此g(x)min=g(-1)=4,从而a≤4,综上a=4.思维升华(1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f(x)>0或f(x)<0恒成立,一般可转化为f(x)min>0或f(x)max<0;已知恒成立求参数1 / 42 / 4范围可先分离参数,然后利用函数值域求解.1.若2x +5y ≤2-y +5-x ,则有( )A .x +y ≥0B .x +y ≤0C .x -y ≤0D .x -y ≥0解析 把不等式变形为2x -5-x ≤2-y -5y ,构造函数y =2x -5-x ,其为R 上的增函数,故x ≤-y . 2.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( ) A .1 B.12 C.52 D.22解析 可知|MN |=f (x )-g (x )=x 2-ln x .令F (x )=x 2-ln x ,F ′(x )=2x -1x =2x 2-1x ,所以当0<x <22时,F ′(x )<0,F (x )单调递减;当x >22时,F ′(x )>0,F (x )单调递增,故当x =t =22时,F (x )有最小值,即|MN |达到最小.3.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <32解析 因为函数f (x )=12x 4-2x 3+3m .所以f ′(x )=2x 3-6x 2,令f ′(x )=0得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32,故选A.4.如果方程cos 2x -sin x +a =0在(0,π2]上有解,求a 的取值范围.解析 可分离变量为a =-cos 2x +sin x ,转化为确定的相关函数的值域.解 方法一 设f (x )=-cos 2x +sin x (x ∈(0,π2]).显然当且仅当a 属于f (x )的值域时,a =f (x )有解.因为f (x )=-(1-sin 2x )+sin x =(sin x +12)2-54,且由x ∈(0,π2]知sin x ∈(0,1].易求得f (x )的值域为(-1,1].故a 的取值范围是(-1,1].方法二 令t =sin x ,由x ∈(0,π2],可得t ∈(0,1].将方程变为t 2+t -1-a =0.依题意,该方程在(0,1]上有解.设f (t )=t 2+t -1-a .其图象是开口向上的抛物线,对称轴t =-12,如图所示.因此f (t )=0在(0,1]上有解等价于⎩⎪⎨⎪⎧f (0)<0,f (1)≥0,即⎩⎪⎨⎪⎧-1-a <0,1-a ≥0,所以-1<a ≤1. 故a 的取值范围是(-1,1].热点二 函数与方程思想在数列中的应用例2 已知数列{a n }是各项均为正数的等差数列.3 / 4(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ;(2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1S 2n ,若对任意的n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值. 解 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0,所以(2+2d )2=(2+d )(3+3d ),得d =2或d =-1(舍去),所以数列{a n }的通项公式a n =2n . (2)因为S n =n (n +1), b n =1S n +1+1S n +2+…+1S 2n=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n 2n 2+3n +1=12n +1n +3,令f (x )=2x +1x(x ≥1),则f ′(x )=2-1x 2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数,故当x =1时,[f (x )]min =f (1)=3,即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立,则须使k ≥(b n )max =16,所以实数k 的最小值为16.思维升华 数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意利用函数的思想求解.1.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5.求{a n }前n 项和S n 的最大值.解析 (1)设{a n }的公差为d ,由已知条件,⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解出a 1=3,d =-2.所以a n =a 1+(n -1)d =-2n +5. S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2. 所以n =2时,S n 取到最大值4.2.已知函数f (x )=(13)x ,等比数列{a n }的前n 项和为f (n )-c ,则a n 的最小值为( )A .-1B .1 C.23D .-23解析 由题设,得a 1=f (1)-c =13-c ;a 2=[f (2)-c ]-[f (1)-c ]=-29;a 3=[f (3)-c ]-[f (2)-c ]=-227.又数列{a n }是等比数列,4 / 4∴(-29)2=(13-c )×(-227),∴c =1.又∵公比q =a 3a 2=13,∴a n =-23(13)n -1=-2(13)n ,n ∈N *.且数列 {a n }是递增数列, ∴n =1时,a n 有最小值a 1=-23.。