四边形核心知识及结构图
- 格式:doc
- 大小:59.50 KB
- 文档页数:2
小学数学单元整体教学的实践与探索无疑是当前研究的热点。
所谓单元整体教学,是指在不改变现行的教学目标、教学内容和教学时间的前提下,以核心概念统摄,厘清单元知识的内在逻辑,强调概念之间的联系,通过调整教学内容的顺序、教学方式等途径,形成单元内容整体框架,以便把知识关联起来,实现深度学习。
其目的是:使学科知识更具系统性,教师教学更具结构性,学生学习更具挑战性。
一、核心概念统摄单元整体教学的必要性所谓学科核心概念,是指能反映学科的本质,居于学科的中心地位,具有较广泛的适用性和解释力的原理、思想和方法。
学科核心概念具备如下特点:其一,反映学科主要观点和思维方式,是学科结构的骨架和主干部分;其二,能统摄学科知识与技能,具有普适性和广泛的解释力;其三,能深入学科内部,反映学科对象之间的关联;其四,是促进理解和探究的基本思维工具,具有持久的迁移和应用价值。
核心概念统摄的单元整体教学对课程内容进行整合与优化无疑具有十分重要的意义,主要体现在:1.核心概念统摄是落实核心素养培养的重要途径。
随着核心素养的提出,教学实践的视角越来越聚焦于如何发展学生适应未来生活的必备品格与关键能力。
而在实际教学中,如何切实落实核心素养培养成为教学实践中需要面对的重要问题。
核心概念是在数学知识内容基础之◇陈国权朱国平——以“平行四边形和梯形”单元教学为例核心概念统摄单元整体教学9上的一种重新架构,既包含对核心内容本质的理解,也包括知识形成和应用过程中所体现的思维方式,并促进学生的学习迁移。
可以说,少而精的核心概念能促使学生达成对数学学科的深度理解,促进其结构化思维的形成,是落实核心素养培养的重要方式,也是连接知识和素养的桥梁。
2.核心概念统摄是单元整体教学的必然选择。
单元整体教学试图解决“以课时为单位的教学导致知识碎片化”问题。
但必须客观地承认,在可预见的时期内,各学科都将以“课”为单位组织教学,而重组后的内容也将以“课时”的方式进行设计与推进。
重难点专项突破:中点四边形模型(4种题型)【知识梳理】【考点剖析】题型一、利用中点求长度例1.如图,某花木场有一块四边形ABCD的空地,其各边的中点为E、F、G、H,测得对角线AC=11米,BD=9米,现想用篱笆围成四边形EFGH场地,则需篱笆总长度是()A.20米B.11米C.10米D.9米【答案】A【解析】∵E 、F 、G 、H 分别为四边形ABCD 各边的中点,∴EF 、FG 、GH 、HE 分别为△ABC 、△BCD 、△CDA 、△ABD 的中位线, ∴EF =12AC =112(米),FG =12BD =92(米),HG =12AC =112(米), HE =12BD =92(米),∴四边形EFGH 总长度=EF +FG +GH +HE =20(米), 故选:A .【变式1】在四边形ABCD 中,8AC BD ==,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则22EG FH +的值为( )A .18B .36C .48D .64【答案】D【解析】连接EF 、FG 、GH 、EH ,∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点, ∴11//,//,,22EF AC HG AC EF AC FG BD ==,∴//EF HG ,同理//EH FG , ∴四边形EFGH 为平行四边形,∵AC BD =,∴EF FG =,∴平行四边形 EFGH 为菱形, ∴EG FH ⊥,2EG OG =,2FH OH =,()2222222221(2)(2)4448642EG FH OE OH OE OH EH BD ⎛⎫+=+=+==⨯== ⎪⎝⎭故选:D .【变式2】如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结矩形各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )cm .A .20B .C .D .25【答案】A 【解析】连接BD ,∵H 、G 是AD 与CD 的中点,∴HG 是△ACD 的中位线, ∴HG=12AC=5cm ,同理EF=5cm , ∵四边形ABCD 是矩形,∴根据矩形的对角线相等,即BD=AC=10cm , ∵H 、E 是AD 与AB 的中点,∴EH 是△ABD 的中位线, ∴EH=12BD=5cm ,同理FG=5cm ,∴四边形EFGH 的周长为20cm . 故选A .【变式3】如图,点O 为四边形ABCD 内任意一点,E ,F ,G ,H 分别为OA ,OB ,OC ,OD 的中点,则四边形EFGH 的周长为( )A .9B .12C .18D .不能确定【答案】C【解析】∵E ,F 分别为OA ,OB 的中点,∴EF 是△AOB 的中位线,∴EF=12AB=3, 同理可得:FG=12BC=5,HG=12DC=6,EH=12AD=4,∴四边形EFGH 的周长为=3+5+6+4=18, 故选C .题型二、利用中点求面积例2.如图,四边形ABCD 中,点E 、F 、G 分别为边AB 、BC 、CD 的中点,若△EFG 的面积为4,则四边形ABCD 的面积为( )A .8B .12C .16D .18【答案】C【解析】记△BEF ,△DGH ,△CFG ,△AEH 的面积分别为1234,,,S S S S ,四边形ABCD 的面积为S .连接AC .∵BF =CF ,BE =AE ,CG =DG ,AH =DH ,∴EF ∥AC ,1,2EF AC =GH ∥AC ,12GH AC =,∴EF ∥GH ,EF =GH ,∴四边形EFGH 是平行四边形,∴S 平行四边形EFGH =2S △EFG =8,∵△BEF ∽△BAC ,∴11,4S S ABC =同理可得214S S ACD ,= ∴1211()44ABC ACD S S S S S +=+=, 同法可得3414S S S +=,∴123412S S S S S ,+++= ∴S 四边形EFGH =12S , ∴S =2S 四边形EFGH =16.故选C.【变式1】定义,我们把对角线互相垂直的四边形叫做和美四边形,对角线交点作为和美四边形的中心.(1)写出一种你学过的和美四边形______;(2)顺次连接和美四边形四边中点所得四边形是( ) A .矩形 B ,菱形 C .正方形 D .无法确定(3)如图1,点O 是和美四边形ABCD 的中心,E F G H 、、、分别是边AB BC CD DA 、、、的中点,连接OE OF OG 、、OH 、,记四边形AEOH BEOF CGOF DHOG 、、、的面积为1234S S S S 、、、,用等式表示1234S S S S 、、、的数量关系(无需说明理由)(4)如图2,四边形ABCD 是和美四边形,若4,2,5AB BC CD ===,求AD 的长.【答案】(1)正方形;(2)A ;(3)S 1+S 3=S 2+S 4;(4 【解析】(1)正方形是学过的和美四边形,故答案为:正方形; (2)顺次连接和美四边形四边中点所得四边形是矩形, 如图,四边形ACBD 中,对角线AB ⊥CD ,即为“和美四边形”, 点E 、F 、G 、H 分别是AC 、AD 、BD 、BC 的中点, ∴EF ∥CD ∥HG ,且EF=HG=12CD ,EH ∥FG ∥AB ,且EH=FG=12AB , ∴四边形EFGH 为平行四边形,∵AB ⊥CD ,∴EF ⊥EH ,∴平行四边形EFGH 是矩形;故选:A .(3)连接AC 和BD ,由和美四边形的定义可知,AC ⊥BD ,则∠AOB=∠BOC=∠COD=∠DOA=90°, 又E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,∴△AOE 的面积=△BOE 的面积,△BOF 的面积=△COF 的面积,△COG 的面积=△DOG 的面积,△DOH 的面积=△AOH 的面积,∴S 1+S 3=△AOE 的面积+△COF 的面积+△COG 的面积+△AOH 的面积=S 2+S 4;(4)如图,连接AC 、BD 交于点O ,则AC ⊥BD , ∵在Rt △AOB 中,AO 2=AB 2-BO 2,Rt △DOC 中,DO 2=DC 2-CO 2,AB=4,BC=2,CD=5,∴可得AD 2=AO 2+DO 2=AB 2-BO 2+DC 2-CO 2=AB 2+DC 2-BC 2=42+52-22=37,即可得AD =.【变式2】如图,在四边形ABCD 中,对角线AC BD ⊥,且8AC =,6BD =,E ,F ,G ,H 分别是四边的中点,则四边形EFGH 的面积为__________.【答案】12【解析】∵点E 、F 分别为边AB 、BC 的中点,∴EF ∥AC ,EF=12AC , ∵AC=8,∴EF=4,同理,HE ∥BD ,HE=1BD 32=, ∴四边形EFGH 是平行四边形, ∵EH ∥BD ,AC ⊥BD ,∴EH ⊥AC ,∵EF ∥AC ,∴EF ⊥HE ,∴四边形EFGH 是矩形, ∴矩形EFGH 的面积=HE ×EF=12. 故答案为:12.题型三、找规律问题例3.如图,四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD =,各边中点分别为1A 、1B 、1C 、1D ,顺次连接得到四边形1111D C B A ,再取各边中点2A 、2B 、2C 、2D ,顺次连接得到四边形2222A B C D ,……,依此类推,这样得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积为( )A .162n−B .182n − C .412n −−D .不确定【答案】B【解析】∵四边形A 1B 1C 1D 1的四个顶点A 1、B 1、C 1、D 1分别为AB 、BC 、CD 、DA 的中点,∴A 1B 1∥AC ,A 1B 112=AC ,∴△BA 1B 1∽△BAC .∴△BA 1B 1和△BAC 的面积比是相似比的平方,即14. 即1114BA B S=S △ABC ,同理可证:1114DD C S =S △ADC , 1114AD A S =S △ABD ,S △CB 1C 114=S △BDC ,∴111112A B C D S =四边形S 四边形ABCD ,同法可证2222111112A B C D A B C D S S =四边形四边形,又四边形ABCD 的对角线AC =8,BD =4,AC ⊥BD ,∴四边形ABCD 的面积是16.∴四边形A n B n ∁n D n 的面积116822n n −==.故选:B .【变式1】如图1,1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点,且AC BD ⊥,6AC =,10BD =.(1)试判断四边形1111D C B A 的形状,并证明你的结论;(2)如图2,依次取11A B ,11B C ,11C D ,11D A 的中点2A ,2B ,2C ,2D ,再依次取22A B ,22B C ,22C D ,22D A 的中点3A ,3B ,3C,3D ……以此类推,取11n n A B −−,11n n B C −−,11n n C D −−,11n n D A −−的中点n A ,n B ,n C ,n D ,根据信息填空:①四边形1111D C B A 的面积是__________; ②若四边形n n n n A B C D 的面积为1516,则n =________; ③试用n 表示四边形n n n n A B C D 的面积___________. 【答案】(1)矩形,见解析;(2)①15,②5,③1152n − 【解析】(1)四边形1111D C B A 是矩形,证明:∵1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点, ∴11A B AC ,11C D AC ,∴1111A B C D ,同理可得1111A D B C ∥,∴四边形1111D C B A 是平行四边形,又∵AC BD ⊥,易得1111A B B C ⊥,∴四边形1111D C B A 是矩形; (2)①由题意可知:A 1B 1=12AC=3,A 1D 1=12BD=5,四边形1111D C B A 的面积=3×5=15;②由构图过程可得:A 2D 2=B 2C 2=12B 1D 1=12C 2D 2=B 2A 2=12A 1C 1=12可知四边形2222A B C D 为菱形,∴2222A B C D S =222212A C B D ⨯=111112A B B C ⨯=152;同理可求:3333A B C D S =154,4444A B C D S =158,…,n n n n A B C D S =1152n −,故当四边形n n n n A B C D 的面积为1516时,1152n −=1516,解得:n=5;③由②可知:用n 表示四边形n n n n A B C D 的面积为1152n −.故答案为:(1)矩形,见解析;(2)①15,②5,③1152n −题型四、中点综合问题例4.通过解方程(组)使问题得到解决的思维方式就是方程思想,已学过的《勾股定理》及《一次函数》都与它有密切的联系,最近方程家族的《一元二次方程》我们也学习了它的求解方法和应用。
初中数学几何部分分析初中数学几何部分共包含:相交线与平行线、三角形、四边形、圆、图形的变换和解直角三角形六部分。
近几年,宜宾中考中,几何部分考分稳定在45分左右,占总分的37.5%.我将从以下方面分析:(1)初中数学几何部分知识点。
(2)近几年宜宾市中考数学知识点分布。
(3)核心知识梳理,(4)重点难点解析或突破(高频考点、题型、举例、思路分析、答案、点评或解题技巧),进行分析。
一、几何部分知识点二、近几年考试情况统计三、近几年宜宾中考数学几何部分的高频考点。
1.三视图,选择题3分,11年-19年,每年都考。
2.平行线,多考填空题3分。
3. 全等三角形,证明题6(5)分,只有11年没考。
4.解直角三角形,解答题8分,只有12、14年没考。
5.特殊四边形,往往考填空题3分。
6.圆的综合证明,解答题10分,多为23题,每年都考。
(一)三视图:2014年:3.如图1放置的一个机器零件,若其主正视图如图2,则其俯视图是A. B. C. D.2015年:2.如图,立体图形的左视图是A. B.C. D.2016年:3.如图,立体图形的俯视图是A. B. C. D.2017年:3.下面的几何体中,主视图为圆的是A. B. C. D.2018年:3.一个立体图形的三视图如图所示,则该立体图形是A. 圆柱B. 圆锥C. 长方体D. 球2019年:5.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()个。
A:10B: 9C: 8D: 7(二)全等三角形,证明题6(5)分(近5年没考SSS和H.L)2015年(SAS):18.如图,,,求证:.2016年(ASA):18.如图,已知,.求证:.2017年(AAS):18.如图,已知点B、E、C、F在同一条直线上,,,求证:.2018年(AAS):19.如图,已知,,求证:.∠=∠.2019年(SAS):如图,AB=AD,AC=AE,BAE DAC∠=∠求证:C E(三)解直角三角形,解答题8分2015年(方位角):21.如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造供水站M在笔直公路AD上,测得供水站M在小区A的南偏东方向,在小区B的西南方向,小区A、B之间的距离为米,求供水站M分别到小区A、B的距离结果可保留根号2016年(仰角):21.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高结果保留根号2017年(测河宽):21.如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得,,量得BC长为100米求河的宽度结果保留根号.2018年(仰角、俯角):18.某游乐场一转角滑梯如图所示,滑梯立柱AB 、CD 均垂直于地面,点E 在线段BD 上,在C 点测得点A 的仰角为,点E 的俯角也为,测得B 、E 间距离为10米,立柱AB 高30米求立柱CD 的高结果保留根号2019年(仰角):21. (本小题满分8分)如图,为了 测得某建筑物的高度AB ,在C 处用高1米的测角仪CF 测得该建筑物顶端A 的仰角为045,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为060。
三个角直角的平行四边形1.引言1.1 概述概述部分的内容可以从以下角度展开:平行四边形是一种具有特殊性质的四边形,它拥有三个角都是直角的特点。
在数学中,这种形状被广泛研究并应用于各个领域。
本文将着重探讨三个角都是直角的平行四边形,探究其性质以及与其他几何形状之间的关系。
首先,要明确的是,平行四边形是一种特殊的四边形。
它拥有两组平行的对边,即相对的两条边是平行的。
利用这个性质,我们可以简化很多几何计算和推理的过程。
加上三个直角的特点,三个角直角的平行四边形更具有特殊性和独特性。
其次,我们可以探究三个角都是直角的平行四边形在几何学中的应用。
首先,它可以作为建筑设计中的基本元素之一。
例如,在建筑的规划和设计过程中,平行四边形的概念被广泛应用于房屋的外形设计、室内空间布局以及家具的设计与摆放等方面。
平行四边形的特殊性质使得建筑师能够更好地利用和规划各个区域,使整体结构更加稳定和美观。
此外,平行四边形还在数学和物理学的研究中发挥了重要作用。
在数学领域中,平行四边形是解决图形证明和计算问题的常用工具。
通过研究平行四边形的性质和变换规律,我们可以推导出很多高级的几何定理和公式,为数学的发展提供了重要的支撑。
在物理学领域中,平行四边形的概念可以应用于物体的平衡分析和受力分析等方面。
通过将物体或力的作用效果抽象为平行四边形的形状,可以更好地理解物体的运动和受力情况,进而进行更精确的分析和预测。
总结来说,三个角直角的平行四边形是一种具有特殊性质的几何形状。
它在建筑设计、数学和物理学等领域中发挥着重要的作用。
通过研究和应用三个角直角的平行四边形,我们可以更深入地理解几何学的基本概念和原理,并将其运用于实际问题的解决中。
在接下来的正文部分,本文将进一步探讨三个角直角的平行四边形的性质和应用。
1.2 文章结构文章结构部分内容如下:本篇长文将按照以下结构进行讨论和分析:引言、正文和结论。
在引言部分,我们将首先对文中要讨论的主题进行概述,介绍平行四边形及其特点,并引入三个角都是直角的平行四边形这一特殊情况。
《平行四边形》一、内容和内容解析关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复。
本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”.在平行四边形的定义中,大前提是“四边形(种概念)”,条件是“两组对边分别平行(属差)”.“两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在。
平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性。
同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质。
关于平行四边形边、角的性质,“平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行”,是由“相邻的角互补”产生的思维的一种深化。
同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段。
在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧.关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位。
二、教学目标1、使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明.2、通过有关的证明及应用,教给学生一些基本的数学思想方法.使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力.3、通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等.使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点.4、通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质.三、教学重点平行四边形的概念和性质。
四边形知识框架图
(平行四边形、矩形、菱形、正方形)
附:平行四边形、矩形、菱形、正方形形里的对角线
(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线互相平分且相等的四边形是矩形;
(3)两条对角线互相平分且垂直的四边形是菱形;
(4)两条对角线互相平分、垂直且相等的四边形是正方形;(5)两条对角线相等的平行四边形是矩形;(6)两条对角线垂直的平行四边形是菱形;(7)两条对角线垂直且相等的平行四边形是正方形;(8)两条对角线垂直的矩形是正方形;
(9)两条对角线相等的菱形是正方形。
“图形的认识”核心知识“图形的认识”核心知识的深层理解在小学阶段,“图形与几何”的学习内容主要是欧几里得几何,欧几里得几何学是现实世界最简单、最粗略、最直观的近似刻画,它把空间分解为最基本的元素——点、线、面,用公理来规定点、线、面、体之间的关系,再用形式逻辑规则来推证一系列的性质。
欧氏几何学所使用的工具很简单,所以只研究涉及直线、平面、直方体等“平直性”的变化。
研究对象是抽象出来的那些平直的概念,比如:点、线、面、体、角。
在教学过程中应当注意的是,这些概念涉及的线都是直的,涉及的面都是平的。
一、“图形的认识”内容结构关于图形的认识,小学阶段主要是欧式几何空间中的点、线、面、体、角,描述平面图形与立体图形的特征与性质。
小学数学中“图形的认识”只要涉及平面图形和立体图形,具体包括:点;线:直线、射线、线段;角:直角、锐角、钝角、平角;平面图形:三角形、四边形(长方形、正方形、平行四边形、梯形)、圆;立体图形:长方体、正方体、圆柱、圆锥、球。
二、“图形的认识”深层理解2011年版《数学课程标准》在数学课程的总体目标中明确提出四基的观念,具体包括基础知识、基本技能、基本思想、基本活动经验。
那么,在学习“图形的认识”的过程中,除了要把握图形的特征与性质以外,在基本思想与基本活动经验方面,有怎样的教育功能和价值?是需要教师深层次认识和理解的。
从数学的视角来看,教学图形的认识,其核心要把握5个方面:图形的抽象、图形的分类、图形的定义、图形的性质、图形的转化。
(一)图形的抽象图形是人类通过对客观物体的长期观察逐渐抽象出来的。
抽象的核心是把物体的外部形象用线条描绘在二维平面上。
这种抽象不仅舍去了物体的颜色、构成材料等物体的本质要素,还忽略了所占空间。
例如:点是位置的抽象,在几何中用“点”来标记一个物体的位置(生活中的楼房、公园;地图上的城市;天空中的天体,不管多大的物体都可以根据实际描述的需要用点来表示);线是路径的抽象,我们把“从一个地方到另一个地方”抽象为线段、折线段或曲线段。
《四边形》核心知识
矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形
矩形的性质:
矩形的四个角都是直角;矩形的对角线相等
矩形的对角线相等且互相平分。
特别提示:直角三角形斜边上的中线等于斜边的一半
矩形具有平行四边形的一切性质
矩形的判定方法
有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形
有三个角是直角的四边形是矩形
菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等) 性质:
菱形的四条边都相等
菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。
菱形的判定方法:
一组邻边相等的平行四边形是菱形
对角线互相垂直平分的平行四边形是菱形
对角线互相垂直平分的四边形是菱形
四条边都相等的四边形是菱形
正方形:
定义:四条边都相等,四个角都是直角的四边形是正方形。
性质:正方形既有矩形的性质,又有菱形的性质。
正方形是轴对称图形,其对称轴为对边中点所在的直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点。
梯形:
定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
等腰梯形:两腰相等的梯形是等腰梯形。
直角梯形:有一个角是直角的梯形是直角梯形
等腰梯形的性质:
等腰梯形是轴对称图形,上下底的中点连线所在的直线是对称轴,
等腰梯形同一底边上的两个角相等。
等腰梯形的两条对角线相等。
等腰梯形的判定定理
同一底上两个角相等的梯形是等腰梯形
等腰梯形的判定方法:先判定它是梯形,再用两腰相等或同一底上的两个角相等来判定它是等腰梯形。
解决梯形问题常用的方法:
1.“平移腰”把梯形分成一个平行四边形和一个三角形
2.“作高”:使两腰在两个直角三角形中
3."平移对角线”:使两条对角线在同一个三角形中
4.“延腰”构造具有公共角的两个三角形
5.“等积变形”:连接梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。
知识结构图:。