人教版九年级数学中考模拟测试冲刺卷(含答案) (20)
- 格式:docx
- 大小:894.11 KB
- 文档页数:24
人教版九年级数学中考模拟试卷考 生须知 1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为 (A )41310⨯(B )51.310⨯(C )60.1310⨯(D )71.310⨯2.如图是某几何体的三视图,该几何体是 (A )三棱柱 (B )三棱锥 (C )长方体 (D )正方体3.实数a ,b ,c 在数轴上对应点的位置如图所示,则正确的结论是(A )2a >-(B )1b > (C )0a c +>(D )0abc >4.下列图案中,是中心对称图形的为(A ) (B ) (C ) (D )bca–1–2–3–412345.如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G , 若1∠=70︒,则2∠的度数是 (A )60︒ (B )55︒ (C )50︒(D )45︒6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用 平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()32,,则表示其他位置的点的坐标正确的是7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是 指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是 (A )与2017年相比,2018年年末全国农村贫困人口减少了1386万人 (B )2015 ~2018年年末,与上一年相比,全国农村贫困发生率逐年下降 (C )2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万(D )2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点BACDEGF 212014 ~ 2018年年末全国农村贫困人口统计图2014 ~ 2018年年末全国农村贫困发生率统计图8.如图,在平面直角坐标系xOy 中,△AOB 可以看作是 由△OCD 经过两次图形的变化(平移、轴对称、旋转) 得到的,这个变化过程不可能...是 (A )先平移,再轴对称 (B )先轴对称,再旋转 (C )先旋转,再平移 (D )先轴对称,再平移二、填空题(本题共16分,每小题2分) 9.写出一个大于2且小于3的无理数:.10.右图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m n . (填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为. 12.若正多边形的一个内角是135︒,则该正多边形的边数为. 13.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC .若6AE =,3EC =,8DE =, 则BC =.14.如果230m m --=,那么代数式211m m m m +⎛⎫-÷ ⎪⎝⎭的值是.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为.16.如图,AB 是⊙O 的一条弦,P 是⊙O 上一动点 (不与点A ,B 重合),C ,D 分别是AB ,BP 的中点. 若AB = 4,∠APB = 45°,则CD 长的最大值为.EDCBA三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 及直线l 外一点A . 求作:直线AD ,使得AD ∥l .作法:如图2,①在直线l 上任取一点B ,连接AB ; ②以点B 为圆心,AB 长为半径画弧, 交直线l 于点C ;③分别以点A ,C 为圆心,AB 长为半径 画弧,两弧交于点D (不与点B 重合); ④作直线AD .所以直线AD 就是所求作的直线. 根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD .∵AD=CD=BC=AB ,∴四边形ABCD 是().∴AD ∥l ().18.计算:()02cos3023π︒++-.19.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 20.关于x 的一元二次方程()2320x m x m -+++=. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.lA图1图2l21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形; (2)若30A ∠=︒,4BC =,6CF =,求CD 的长.22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.23.如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线2y mx =-于点C ,交 函数()0ky x x=<的图象于点D . ①当1=-n 时,判断线段PD 与PC 的数量关系,并说明理由; ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.CFDG EBA24.如图,Q 是AB 上一定点,P 是弦AB 上一动点,C 为AP 中点,连接CQ ,过点P 作PD ∥CQ 交AB 于点D ,连接AD ,CD .已知8AB cm ,设A ,P 两点间的距离为x cm ,C ,D 两点间的距离为y cm . (当点P 与点小荣根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1x x(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA DP ⊥时,AP 的长度约为cm .25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了 整理、描述和分析.下面给出了部分信息.a .甲、乙两校40名学生成绩的频数分布统计表如下:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以 下为不合格)b .甲校成绩在70≤x <80这一组的是: 70707071727373737475767778c 根据以上信息,回答下列问题: (1)写出表中n 的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是; (3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.28.在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -,(1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的 “正方距”,记作d (M ). (1)已知点(0,4)E ,①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取 值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <,直接写出t 的取值范围.DB参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.答案不唯一,10.>11.31012.813.12 14.315.552x y x y =+⎧⎪⎨=-⎪⎩16.三、解答题(本题共68分,第17-22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解:(1)补全的图形如图所示:(2)菱形;四条边都相等的四边形是菱形; 菱形的对边平行. 18.解:原式=213+ 2+=.………………2分………………5分………………4分 ………………4分 ………………5分19.解:解不等式13(3)x x -<-,得4x >. 解不等式52x x +≥,得5x ≥. ∴原不等式组的解集为5x ≥.20.(1)证明:依题意,得()()2342m m ∆=⎡-+⎤-+⎣⎦ 26948m m m =++--()21m =+.∵()210m +≥, ∴0∆≥.∴方程总有两个实数根.(2)解:解方程,得1212x x m ==+,, ∵方程的两个实数根都是正整数,∴21m +≥. ∴1m -≥.∴m 的最小值为1-.21.(1)证明:∵点E 为CD 中点, ∴CE =DE .∵EF =BE ,∴四边形DBCF 是平行四边形.(2)解:∵四边形DBCF 是平行四边形,∴CF ∥AB ,DF ∥BC .∴30FCG A ∠=∠=︒,90CGF CGD ACB ∠=∠=∠=︒.在Rt △FCG 中,CF =6,∴132FG CF ==,CG = ∵4DF BC ==, ∴1DG =. 在Rt △DCG 中, 由勾股定理,得CD =………………………………2分………………………………3分 ………………………………4分………………………………5分………………………………2分 ………………………………4分 ………………………………5分………………………………2分………………………………3分………………………………4分………………………………5分CFDG EBA22.(1)证明:连接CO 并延长交AF 于点G . ∵CD 是⊙O 的切线, ∴90ECO ∠=︒.∵AB 是⊙O 的直径, ∴90AFB ∠=︒. ∵BE CD ⊥, ∴90CEF ∠=︒.∴四边形CEFG 是矩形.∴GF CE =,90CGF ∠=︒. ∴CG AF ⊥.∴12GF AF =. ∴12CE AF =.(2)解:∵CG AF ⊥, ∴CF CA =.∴CBA CAF ∠=∠.∴tan tan 2CBA CAF ∠=∠=.∵AB 是⊙O 的直径,∴90ACB ∠=︒.在Rt △CBA 中,设BC x =,2AC x =,则=52AB =⨯.∴BC x ==23.解:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6), ∴6k =-.…………… 1分∵直线2y mx =-与x 轴交于点B (-1,0),∴2m =-. ……………………… 2分(2)①判断:PD =2PC .理由如下:……… 3分当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2).∴PC =1,PD =2.∴PD =2PC .…………… 4分②10n -<≤或3n -≤.…………… 6分………………………………3分………………………………4分………………………………5分………………………………2分24.解:(1)(2)(3)3.3125.解:(1)(2乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排 在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=.26.解:(1)∵1(0)y kx k =+≠经过点A 23(,),∴1k =.∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2,∴1m =.(2)∵抛物线2y ax bx a =++的对称轴为1x =,∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =-.∴抛物线的顶点坐标为()1,0.……………………………4分 ……………………………6分………………………………4分……………………………1分……………………………2分(3) 当0a >时,如图,若抛物线过点B 01(,),则1a =.结合函数图象可得01a <<. 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.27.(1)补全的图形如图1所示.…………… 1分 (2)证明:△ABC 是等边三角形, ∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分60ADE ACB ∴∠=∠=︒.90GMD ∠=︒,2DG DM DE ∴==.…………… 3分 DE BCAC ==, DG AC ∴=.AG CD ∴=.…………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠. ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =,BEF BHF ∴△≌△.…………… 6分 BE BH CD AG ∴===. AB AC =,AH CG ∴=.…………… 7分 ………………………………6分 图1图228.解:(1)①5.②如图,(5d E =点.()d EF ∴线段的最小值是5.∴符合题意的点F 满足()5d F 点≤.当()=5d F 点时,125BF DF ==.∴点1F 的坐标为()4,0,点2F 的坐标为()4,0-. ∴1k =-或1k =.结合函数图象可得1k ≤-或1k ≥.(2)33t -<<.………………………………5分………………………………7分。
九年级中考模拟测试数学冲刺卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.﹣2020绝对值的相反数是( ) A .2020B .20201C .20201-D .﹣2020【答案】D【解析】题目考察了绝对值与相反数的基本知识,熟练掌握正数的绝对值等于本身,负数的绝对值等于相反数,0的绝对值等于0;知道变相反数前面加负号.故选.D. 2. 在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A.m =3,n =2 B.m =-3,n =2 C.m =2,n =3 D.m =-2,n =3【答案】B【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同,故选B .3.如果分式11x x -+的值为0,那么x 的值为A.-1B.1C.-1或1D.1或0【答案】B【解析】要想使分式的值为零,应使分子为零,即|x |-1=0,分母不为零,即x +1≠0,∴x =1, 故选B.4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A.B.C.D.【答案】B【解析】本题考查了根据实际问题列二元一次方程组,等量关系是:绳长﹣木长=4.5;木长﹣绳长=1,据此可列方程组求解.设绳长x尺,长木为y尺,依题意得,故选B.5.下列几何体中,其主视图、左视图和俯视图完全相同的是()A. B. C. D.【答案】D.【解析】:A.圆柱的主视图和左视图是长方形、俯视图是圆形,故本选项不符合题意;B.三棱柱的主视图和左视图是相同的长方形,但是俯视图是一个三角形,故本选项不符合题意;C.长方体的主视图和左视图是不一样的长方形,俯视图也是一个长方形,故本选项不符合题意;D.球体的主视图、左视图和俯视图是相同的圆,故本选项符合题意.故选.D.6.下列采用的调查方式中,合适的是A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式【答案】A【解析】:本题考查了调查方法的选择,调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.了解东江湖的水质情况时,若进行一次全面的调查,费大量的人力物力是得不尝失,因此宜采用抽样调查的方式,故A选项是合适的;企业为了解所生产的产品的合格率,所采取的实验多带有破坏性,因此采取抽样调查即可,故B选项不合适;小型企业员工数量有限,因此给在职员工做工作服前对每个人进行尺寸大小进行测量即可,所以C选项不合适;在了解某市中小学生的视力情况时,若进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可,故D选项不合适.因此本题选A.7.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【答案】D.【解析】:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.8.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=√3x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到3右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n√3B.22n﹣1√3C.22n﹣2√3D.22n﹣3√3【答案】D【解析】:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=√33x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=√3,B2B3=2√3,…,B n B n+1=2n√3,∴S1=12×1×√3=√32,S2=12×2×2√3=2√3,…,S n=12×2n﹣1×2n√3=22n−3√3;故选:D.9.如图(1),⊙O 的半径为2,双曲线的解析式分别为1y x =和1y x=-,则阴影部分的面积为( )A . 4πB . 3πC . 2πD . π【答案】C【解析】:根据反比例函数1y x =,1y x=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积. ∴21222S ππ=⨯=阴影. 故选C .10.二次函数y =ax 2+bx +c (a ,b ,c 是常数,a <0)的图象经过A (﹣4,﹣4),B (6,﹣4)顶点为P ,则下列说法中错误的是( )A.不等式ax2+bx+c>﹣4的解为﹣4<x<6B.关于x的方程a(x+4)(x﹣6)﹣4=0的解与ax2+bx+c=0的解相同C.△PAB为等腰直角三角形,则a=﹣D.当t≤x≤t+2时,二次函数y=ax2+bx+c的最大值为at2+bt+c,则t≥0【答案】D【解析】:解:由函数图象可知,二次函数y=ax2+bx+c(a,b,c是常数,a<0)的图象位于A(﹣4,﹣4),B(6,﹣4)两点之间部分在y=﹣4的上方,即不等式ax2+bx+c>﹣4的解为﹣4<x<6,故A正确;由题意知,当x=﹣4或6时,a(x+4)(x﹣6)﹣4=﹣4,又因二次函数y=ax2+bx+c(a,b,c是常数,a<0)的图象经过A(﹣4,﹣4),B(6,﹣4)有当x=﹣4或6时,y=ax2+bx+c=﹣4,所以a(x+4)(x﹣6)﹣4=ax2+bx+c,则关于x的方程a(x+4)(x﹣6)﹣4=0的解与ax2+bx+c=0的解相同,故B正确;由题意得,P点的横坐标为:,则P点纵坐标为:a+b+c=a﹣2a+c=﹣a+c,若△PAB为等腰直角三角形,则点P到AB的距离等于AB的一半,有﹣a+c+4=(6+4),得c=1+a,则抛物线的解析式为:y=ax2+bx+x=ax2﹣2ax+a+1,把A(﹣4,﹣4)代入,得﹣4=16a+8a+a+1,解得a=﹣,故C正确;由图象可知,当0≤t<1时,二次函数的最大值顶点的纵坐标1>at2+bt+c,故D错误;故选:D.二、填空题(本题共6小题,每小題3分,共18分)11.分解因式(a﹣b)2+4ab的结果是.【答案】(a+b)2【解析】(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a 2+2ab +9b 2 =(a +b )2. 故答案为(a+b )2.12. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为【答案】.m≤2【解析】:解不等式①,得x >8,,由②,知x <4m,当4m ≤8时,原不等式无解,∴m ≤2.13.如图,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡发光的概率是____________.【答案】23. 【解析】:当开关1S 与2S 闭合或1S 与3S 闭合时,灯泡才会发光.同时闭合两个开关可能出现表格中的几种情况:()4263P ==灯泡发光 14.如图,△ABC 是 O 的内接三角形,且AB 是 O 的直径,点P 为 O 上的动点,且 ∠BPC =60°, O 的半径为6,则点P 到AC 距离的最大值是________.【答案】【解析】:作直径MN ⊥AC 于点Q,QM 为点P 到AC 的最大距离,∵半径为6,∴MO =OA =6,∠A =∠P =60°,∴OQ=∴MQ =15.如图,把某矩形纸片 ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上.点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若∠FPG -90°,△A 'EP 的面积为4,△D 'PH 的面积为1,则矩形ABCD 的面积等于__________.【答案】2(【解析】:∵四边形ABC 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:PA ′=AB =x ,PD ′=CD =x ,∵△A ′EP 的面积为4,△D ′PH 的面积为1,∴A ′E =4D ′H ,设D ′H =a ,则A ′E =4a ,∵△A ′EP ∽△D ′PH ,∴=,∴=,∴x 2=4a 2,∴x =2a或-2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==25,PH==5,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+35).故答案为2(5+35).16.如图,矩形ABCD的边长AB=3cm,AC=3cm,动点M从点A出发,沿AB以1cm/s的速度向点B匀速运动,同时动点N从点D出发,沿DA以2cm/s的速度向点A 匀速运动.若△AMN与△ACD相似,则运动的时间t为s.【答案】1.5或2.4.【解析】由题意得DN=2t,AN=6﹣2t,AM=t,若△NMA∽△ACD,则有=,即=,解得t=1.5,若△MNA∽△ACD则有=,即=,解得t=2.4,答:当t=1.5秒或2.4秒时,△AMN与△ACD相似.故答案为:1.5或2.4.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.【解答】解:原式=2﹣2×++1=3.18.(9分)先化简,再求值:,其中x=2.【解答】解:原式=把x=2代入得:原式=19.(9分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.20.(12分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育40 0.4科技25 a艺术b0.15其它20 0.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.四、解答题(本共3小,其中21、22题各9分,23题10分,共28分)21.(9分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A 型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D 型钢板全部出售,请你设计获利最大的购买方案.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.22.(9分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.23.(10分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=P B.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.【解答】(1)证明:连接OP、O B.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示.x…﹣3 ﹣2 ﹣1 0 1 2 3 …y…﹣6 ﹣4 ﹣2 0 ﹣2 ﹣4 ﹣6 …(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.【分析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数y=﹣2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=﹣2|x﹣3|+1的图象.根据函数的性质即可得到结论.【解答】解:(1)A(0,2),B(﹣2,0),函数y=﹣2|x+2|的对称轴为x=﹣2;(2)将函数y=﹣2|x|的图象向上平移2个单位得到函数y=﹣2|x|+2的图象;将函数y=﹣2|x|的图象向左平移2个单位得到函数y=﹣2|x+2|的图象;(3)将函数y=﹣2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=﹣2|x﹣3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.25.(12分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.【分析】(1)由EF∥BC知△AEF∽△ABC,据此得=,根据=()2即可得证;(2)分别过点F、C作AB的垂线,垂足分别为N、H,据此知△AFN∽△ACH,得=,根据=即可得证;(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,由重心性质知S△ABM=S△ACM、=,设=a,利用(2)中结论知==、==a,从而得==+a,结合==a可关于a的方程,解之求得a的值即可得出答案.【解答】解:(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∴=()2=•=;(2)若EF不与BC平行,(1)中的结论仍然成立,分别过点F、C作AB的垂线,垂足分别为N、H,∵FN⊥AB、CH⊥AB,∴FN∥CH,∴△AFN∽△ACH,∴=,∴==;(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,则MN分别是BC、AC的中点,∴MN∥AB,且MN=AB,∴==,且S△ABM=S△ACM,∴=,设=a,由(2)知:==×=,==a,则==+=+a,而==a,∴+a=a,解得:a=,∴=×=.26.(12分)在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B 两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,B C.若点P为直线BC上方抛物线上一动点,过点P作PE ∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+ KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.【分析】(1)首先证明△PEF∽△BCO,推出当PE最大时,△PEF的周长最大,构建二次函数,求出PE最大时,点P的坐标,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,求出PM即可解决问题.(2)首先利用待定系数法求出点D′坐标,设N(1,n),∵C(0,2),D′(5,),则NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,分三种情形分别构建方程求出n的值即可解决问题.【解答】解:(1)如图1中,对于抛物线y=﹣x2+x+2,令x=0,得到y=2,令y=0,得到﹣x2+x+2=0,解得x=﹣2或4,∴C(0,2),A(﹣2,0),B(4,0),抛物线顶点D坐标(1,),∵PF⊥BC,∴∠PFE=∠BOC=90°,∵PE∥OC,∴∠PEF=∠BCO,∴△PEF∽△BCO,∴当PE最大时,△PEF的周长最大,∵B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,设P(m,﹣m2+m+2),则E (m,﹣m+2),∴PE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,∴当m=2时,PE有最大值,∴P(2,2),如图,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,可得PM=10,∴PH+HK+KG的最小值为10,此时H(1,).(2)∵A(﹣2,0),C(0,2),∴直线AC的解析式为y=x+2,∵DD′∥AC,D(1,),∴直线DD′的解析式为y=x+,设D′(m,m+),则平移后抛物线的解析式为y1=﹣(x﹣m)2+m+,将(0,0)代入可得m=5或﹣1(舍弃),∴D′(5,),设N(1,n),∵C(0,2),D′(5,),∴NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,①当NC=CD′时,1+(n﹣2)2=52+(﹣2)2,解得:n=②当NC=D′N时,1+(n﹣2)2=(5﹣1)2+(﹣n)2,解得:n=③当D′C=D′N时,52+(﹣2)2=(5﹣1)2+(﹣n)2,解得:n=,综上所述,满足条件的点N的坐标为(1,)或(1,)或(1,)或(1,)或(1,).中考数学试卷一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣2的绝对值是()A.2 B.C.﹣D.﹣22.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8x104 4.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A.B.C.D.6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)计算(﹣2a)3的结果是()A.﹣8a3B.﹣6a3C.6a3D.8a38.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4 C.3 D.210.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.二、填空题(本题共6小题,每小題分,共18分)11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=°.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b=.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)计算:(﹣2)2++618.(9分)计算:÷+19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人)频率优秀15 0.3良好及格不及格 5根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x >0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD 为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.25.(12分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.2019年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.【解答】解:﹣2的绝对值是2.故选:A.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:5x+1≥3x﹣1,移项得5x﹣3x≥﹣1﹣1,合并同类项得2x≥﹣2,系数化为1得,x≥﹣1,在数轴上表示为:故选:B.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:(﹣2a)3=﹣8a3;故选:A.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:连接AC交EF于点O,如图所示:∵四边形ABCD是矩形,∴AD=BC=8,∠B=∠D=90°,AC===4,∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2,∴∠AOF=∠D=90°,∠OAF=∠DAC,∴则Rt△FOA∽Rt△ADC,∴=,即:=,解得:AF=5,∴D′F=DF=AD﹣AF=8﹣5=3,故选:C.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.二、填空题(本题共6小题,每小題分,共18分)11.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.16.【解答】解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.【解答】解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.18.【解答】解:原式=×﹣=﹣=.19.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.20.【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比:,故答案为15,90;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:,故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)答:该校八年级男生成绩等级为“良好”的学生人数72人.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.22.【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,∴k=3×2=6,∴反比例函数y=;答:反比例函数的关系式为:y=;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入得,k=,∴直线OA的关系式为y=x,∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,∴B(a,),即BC═a,D(a,),即CD=∵S△ACD=,∴CD•EC=,即,解得:a=6,∴BD=BC﹣CD==3;答:线段BD的长为3.23.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.【解答】解:(1)当x=0时,y=3,当y=0时,x=4,∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)∴OA=4,OB=3,∴AB=,因此:线段AB的长为5.(2)当CD∥OA时,如图,∵BD=OC,OC=m,∴BD=m,由△BCD∽△BOA得:,即:,解得:m=;①当0<m≤时,如图1所示:DE=m≤,此时点E在△AOB的内部,S=0 (0<m≤);②当<m≤3时,如图2所示:过点D作DF⊥OB,垂足为F,此时在x轴下方的三角形与△CDF全等,∵△BDF∽△BAO,∴,∴DF=,同理:BF=m,∴CF=2m﹣3,∴S△CDF==(2m﹣3)×=m2﹣4m,即:S=m2﹣4m,(<m≤3)③当m>3时,如图3所示:过点D作DF⊥y轴,DG⊥x轴,垂足为、FG,同理得:DF=,BF=m,∴OF=DG=m﹣3,AG=m﹣4,∴S=S△OGE﹣S△ADG==∴S=,(m>3)答:S=25.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF。
2020-2021学年人教新版中考数学冲刺试卷一.选择题(共10小题,满分30分,每小题3分)1.的倒数的绝对值是()A.1B.﹣2C.±2D.22.下列运算正确的是()A.a+a=a2B.(ab)2=ab2C.a2•a3=a5D.(a2)3=a5 3.物美超市试销一批新款衬衫,一周内销售情况如下表所示,超市经理想要了解哪种型号最畅销,那么他最关注的统计量应该是()型号(厘米)383940414243数量(件)132********A.平均数B.众数C.中位数D.方差4.下列一元二次方程没有实数根的是()A.x2+x+1=0B.x2+x﹣1=0C.x2﹣2x﹣1=0D.x2﹣2x+1=0 5.从正面、左面、上面观察一个由小正方体构成的几何体依次得到以下的形状图,那么构成这个几何体的小正方体有()A.4个B.5个C.6个D.7个6.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮转发后,共有931人参与了转发活动,则方程列为()A.(1+n)2=931B.n(n﹣1)=931C.1+n+n2=931D.n+n2=9317.小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,并作了如下的思考:请你说明小华得到两个三角形全等的根据是()A.SSS B.SAS C.ASA D.AAS8.在平面直角坐标系xOy中,点A,B是直线y=x与双曲线的交点,点B在第一象限,点C的坐标为(6,﹣2).若直线BC交x轴于点D,则点D的横坐标为()A.2B.3C.4D.59.如图,在△ABC中,∠C=90°,AB=5,BC=4,将△ABC沿BD折叠,使点C落在AB边上的点E处,过点E作EH∥AD,交BD于点H,过点H作HF⊥AB于点F,则=()A.B.C.D.10.如图,点P从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,点P运动时,△PBC的面积y(cm2)随时间x(s)变化的关系图象是()A.B.C.D.二.填空题(共7小题,满分21分,每小题3分)11.数据0.000000407用科学记数法表示为.12.一个袋中有3个白球和2个红球,它们除颜色不同外都相同.任意摸出一个球后放回,再任意摸出一球,则两次都摸到红球的概率为.13.如图①是长方形纸带,∠DEF=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE的度数是.14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问人数、物品的价格各是多少?”如果设共有x人,物品的价格为y元,那么根据题意可列出方程组为.15.若关于x的不等式组.只有4个整数解,则a的取值范围是.16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,求图中阴影部分的面积.17.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点A n的横坐标为a n,若a1=2,则a2021=.三.解答题(共9小题,满分69分)18.计算:+()﹣1﹣|﹣5|+sin45°.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.20.在一个不透明的盒子中,放入2个红球,1个黄球和1个白球.这些球除颜色外都相同.(1)第一次摸出一个球后放回盒子中,搅匀后第二次再摸出一个球,请用画树状图法求出两次都摸到红球的概率;(2)直接写出“一次同时摸出两个红球”的概率.21.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.(≈1.732)22.某校想了解学生疫情期间每天宅家学习时间情况,随机抽查了部分学生,对学生每天的学习时间x(单位:h)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E“组对应的圆心角度数;(3)请估计该校600名学生中每周的课外阅读时间不小于6小时的人数.23.(8分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.24.如图,▱A BCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD 长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.25.在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.26.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵﹣的倒数是﹣2,∴|﹣2|=2,则﹣的倒数的绝对值是2.故选:D.2.解:A、a+a=2a,故本选项不合题意;B、(ab)2=a2b2,故本选项不合题意;C、a2•a3=a5,故本选项符合题意;D、(a2)3=a6,故本选项不合题意.故选:C.3.解:要了解哪种型号最畅销,那么就看哪种型号买的最多,因此关注众数,故选:B.4.解:A、在方程x2+x+1=0中,△=12﹣4×1×1=﹣3<0,∴该方程没有实数根;B、在方程x2+x﹣1=0中,△=12﹣4×1×(﹣1)=5>0,∴该方程有两个不相同的实数根;C、在方程x2﹣2x﹣1=0中,△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相同的实数根;D、在方程x2﹣2x+1=0中,△=(﹣2)2﹣4×1×1=0,∴该方程有两个相等的实数根.故选:A.5.解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体.故选:B.6.解:由题意,得n2+n+1=931,故选:C.7.解:由尺规作图可知,OC=O'C',OD=O'D',CD=C'D',在△OCD≌△O′C′D′中,,∴△OCD≌△O′C′D′(SSS),∴∠DOC=∠D′O′C′(全等三角形的对应角相等),∴判定△OCD≌△O′C′D′的依据是“SSS”定理,故选:A.8.解:∵点A,B是直线y=x与双曲线的交点,∴联立方程得:,解得:或,∵点B在第一象限,∴B(2,2),∵点C的坐标为(6,﹣2),设直线BC的解析式为:y=kx+b,把B(2,2),C(6,﹣2)代入得:,解得:,∴直线BC的解析式为:y=﹣x+4,∵直线BC交x轴于点D,∴令y=0,即﹣x+4=0,解得:x=4,∴点D横坐标是4,故选:C.9.解:∵EH∥AD,∴∠HEF=∠A,∵HF⊥AB,∠C=90°,∴∠C=∠HFE=90°,∴△EHF∽△ABC,∴=,∴=,∵AB=5,BC=4,∴=,故选:B.10.解:如图,当点P在AD边上运动时,△PBC的面积保持不变,当点P在BD边上运动时,过点P作PE⊥BC于点E,所以S=•PE△PBC因为BC的长不变,PE的长随着时间x增大而减小,所以y的值随x的增大而减小.所以符合条件的图象为A.故选:A.二.填空题(共7小题,满分21分,每小题3分)11.解:0.000000407=4.07×10﹣7.故答案为:4.07×10﹣7.12.解:画树状图如图:共有25个等可能的结果,两次都摸到红球的结果有4个,∴两次都摸到红球的概率为,故答案为:.13.解:∵AD∥BC,∴∠BFE=∠DEF=α,∠CFE=180°﹣∠DEF=180°﹣α,∴∠CFG=∠CFE﹣∠BFE=180°﹣α﹣α=180°﹣2α,∴∠CFE=∠CFG﹣∠BFE=180°﹣2α﹣α=180°﹣3α.故答案为:180°﹣3α.14.解:设共有x人,物品的价格为y元,根据题意,可列方程组为,故答案为:.15.解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.解:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BOC=∠BCM=60°,∴∠AOC=120°,在Rt△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2,∴S阴=S扇形OAC﹣S△OAC=﹣=,故答案为.17.解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B2的横坐标和A2的横坐标相同为a2═﹣,A3的纵坐标和B2的纵坐标相同为y3=﹣=,B3的横坐标和A3的横坐标相同为a3=﹣,A4的纵坐标和B3的纵坐标相同为y4=﹣=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2021÷3=673…2,∴a2021=a2=﹣,故答案为:﹣.三.解答题(共9小题,满分69分)18.解:原式=﹣2+2﹣5+×=﹣2+2﹣5+1=﹣4.19.解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.20.解:(1)画树状图如下:共有16个等可能的结果,两次都摸到红球的结果有4个,∴两次都摸到红球的概率为=;(2)画树状图如下:共有12个等可能的结果,“一次同时摸出两个红球”的结果有2个,∴“一次同时摸出两个红球”的概率为=.21.解:有触礁危险.理由:过点P作PD⊥AC于D,由题意知∠PAD=90°﹣60°=30°,∠PBD=90°﹣45°=45°,AB=12海里,设PD=x海里,在Rt△PBD中,∵∠BPD=90°﹣45°=45°,∴∠PBD=∠BPD,∴BD=PD=x,在Rt△PAD中,∵tan∠PAD==,∴AD=x,∵AD=AB+BD,∴x=12+x,∴x==6(+1)≈16.392,∵PD≈16.392海里<18海里,∴有触礁危险,答:如果渔船不改变航线继续向东航行,有触礁危险.22.解:(1)10÷10%=100(人),100×25%=25(人),补全频率分布直方图如图所示:(2)40÷100×100%=40%,因此m=40,360°×=14.4°,答:m的值为40,“E“组对应的圆心角度数为14.4°;(3)600×=174(人),答:该校600名学生中每周的课外阅读时间不小于6小时的人数约为174人.23.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,依题意得:=×,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴x+2=4+2=6.答:每个A类摊位占地面积为6平方米,每个B类摊位的占地面积为4平方米.(2)设建A类摊位a个,建造这100个摊位的费用为y元,则建B类摊位(100﹣a)个,依题意得:y=6a×50+4×40(100﹣a)=140a+16000,∵140>0,∴y随a的增大而增大.∵100﹣a≥4a,解得:a≤20,∴当a取20时,费用最大,最大费用为140×20+16000=18800(元).答:建造这100个摊位的最大费用是18800元.24.解:(1)证明:∵G为的中点,∴∠MOG=∠MDN.∵四边形ABCD是平行四边形.∴AO∥BE,∠MDN+∠A=180°,∴∠MOG+∠A=180°,∴AB∥OE,∴四边形ABEO是平行四边形.∵BO平分∠ABE,∴∠ABO=∠OBE,又∵∠OBE=∠AOB,∴∠ABO=∠AOB,∴AB=AO,∴四边形ABEO为菱形;(2)如图,过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AE交OB于点F,则∠PAO=∠ABC,设AB=AO=OE=x,则∵cos∠ABC=,∴cos∠PAO=,∴=,∴PA=x,∴OP=OQ=x当AE与⊙O相切时,由菱形的对角线互相垂直,可知F为切点,∴在Rt△OBQ中,由勾股定理得:+=82,解得:x=2(舍负).∴AB的长为2.25.解:(1)∵∠ACB=90°,AB=5,BC=3,∴AC==4,∵∠ACB=90°,△ABC绕点B顺时针旋转得到△A′BC′,点A′落在AC的延长线上,∴∠A'CB=90°,A'B=AB=5,Rt△A'BC中,A'C==4,∴AA'=AC+A'C=8;(2)过C作CE∥A'B交AB于E,过C作CD⊥AB于D,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴∠A'BC=∠ABC,BC'=BC=3,∵CE∥A'B,∴∠A'BC=∠CEB,∴∠CEB=∠ABC,∴CE=BC=3,Rt△ABC中,S=AC•BC=AB•CD,AC=4,BC=3,AB=5,△ABC∴CD==,Rt△CED中,DE===,同理BD=,∴BE=DE+BD=,C'E=BC'+BE=3+=,∵CE∥A'B,∴=,∴=,∴BM=;(3)DE存在最小值1,理由如下:过A作AP∥A'C'交C'D延长线于P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,而∠ACP=180°﹣∠ACB﹣∠BCC'=90°﹣∠BCC',∠A'C'D=∠A'C'B﹣∠BC'C=90°﹣∠BC'C,∴∠ACP=∠A'C'D,∵AP∥A'C',∴∠P=∠A'C'D,∴∠P=∠ACP,∴AP=AC,∴AP=A'C',在△APD和△A'C'D中,,∴△APD≌△A'C'D(AAS),∴AD=A'D,即D是AA'中点,∵点E为AC的中点,∴DE是△AA'C的中位线,∴DE=A'C,要使DE最小,只需A'C最小,此时A'、C、B共线,A'C的最小值为A'B﹣BC=AB﹣BC =2,∴DE最小为A'C=1.26.解:(1)在直线y=﹣2x+4中,令x=0时,y=4,∴点B坐标(0,4),令y=0时,得:﹣2x+4=0,解得:x=2,∴点A(2,0),∵抛物线经过点A(2,0),C(6,0),E(5,3),∴可设抛物线解析式为y=a(x﹣2)(x﹣6),将E(5,3)代入,得:3=a(5﹣2)(5﹣6),解得:a=﹣1,∴抛物线解析式为:y=﹣(x﹣2)(x﹣6)=﹣x2+8x﹣12;(2)①∵抛物线解析式为:y=﹣x2+8x﹣12=﹣(x﹣4)2+4,∴顶点D(4,4),∵点B坐标(0,4),∴BD∥OC,BD=4,∵y=﹣x2+8x﹣12与x轴交于点A,点C,∴点C(6,0),点A(2,0),∴AC=4,∵点D(4,4),点C(6,0),点A(2,0),∴AD=CD=2,∴∠DAC=∠DCA,∵BD∥AC,∴∠DPH=∠PQA,且∠DPH=∠DAC,∴∠PQA=∠DAC,∴PQ∥DC,且BD∥AC,∴四边形PDCQ是平行四边形,∴PD=QC,∴4﹣2t=3t,∴t=;②存在以点P,N,H,M为顶点的四边形是矩形,此时t=1﹣.如图,若点N在AB上时,即0≤t≤1,∵BD∥OC,∴∠DBA=∠OAB,∵点B坐标(0,4),A(2,0),点D(4,4),∴AB=AD=2,OA=2,OB=4,∴∠ABD=∠ADB,∴tan∠OAB===tan∠DBA=,∴PN=2BP=4t,∴MH=PN=4t,∵tan∠ADB=tan∠ABD==2,∴MD=2t,∴DH==2t,∴AH=AD﹣DH=2﹣2t,∵BD∥OC,∴=,∴=,∴5t2﹣10t+4=0,∴t1=1+(舍去),t2=1﹣;若点N在AD上,即1<t≤,∵PN=MH,∴点E、N重合,此时以点P,N,H,M为顶点的矩形不存在,综上所述:当以点P,N,H,M为顶点的四边形是矩形时,t的值为1﹣.21。
九年级中考数学二模考试试题满分150分 时间:120分钟一、单选题。
(每小题4分,共40分) 1.|﹣2023|等于( )A.-2024B.﹣2023C.2024D.20232.如图是由5个相同的正方体搭成的几何体,这个几何体的主视图是( )3.“有一种三体文明距地球大约400 000 000千米,它们之间被大量氢气和暗物质纽带连接,看起来似乎是连在一起的三体星系,其中“400 000 000”用科学记数法表示为( ) A.4×108B.4×106C.0.4×108D.4000×1044.如图,两条直线a ,b 被第三条直线l 所截,若a ∥b ,∠1=55°,则∠2的度数为( ) A.55° B.105° C.125° D.135°(第3题图) (第9题图) (第10题图) 5.下列运算正确的是( )A.(3a 2)3=9a 6B.a 3÷a 3=aC.a 2+a 2=a 4D.a 2•a 3=a 5 6.化简m -1m÷m -1m 2的结果是( )A.mB.1m C.m -1 D.1m -17.一个不透明的口袋中有三个完全相同的小球,分别标号为1,2,3,随机摸取一个小球然后放回,再随机摸取一个球,则两次取出的小球标号相同的概率为( ) A.29 B.19 C.13 D.498.在同一平面直角坐标系中,函数y=kx-k与y=kx的大致图象可能是()9.在平面直角坐标系中,矩形ABCD的边BC在x轴上,O为线段BC的中点,矩形ABCD的顶点D(2,3),连接AC按照下列方法作图:(1)以点C为圆心,适当的长度为半径画弧分别交CA,CD于点E,F;(2)分别以E,F为圆心,大于12EF的长为半径画弧交于点G;(3)做射线CG交AD于H,则线段DH的长为()A.158 B.1 C.32D.5410.如图,抛物线y=x2+2x与直线y=x+2交于A,B两点,与直线x=2交于点P,将抛物线沿着射线AB平移3√2个单位,在整个平移过程中,点P经过的路程为()A.6B.132 C.254D.14二.填空题。
2021-2022学年人教新版中考数学冲刺试卷一.选择题(共8小题,满分24分,每小题3分)1.的相反数是()A.3B.C.﹣3D.2.如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.3.下列计算正确的是()A.b3•b3=2b3B.x16÷x4=x4C.2a2+3a2=6a4D.(a5)2=a104.某班期末进行定点投篮测试,规定每人投5次,下面是该班30名男同学的投篮统计:进球数(个)012345人数(人)587442则下列有关测试成绩的结论正确的是()A.平均数是2B.中位数是3C.众数是8D.以上都不对5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.如图,△ABC内接于⊙O,∠A=45°.若BC=,则的长为()A .πB .πC .2πD .2π7.某工程队承接了60万平方米的绿化工程,由于情况有变,….设原计划每天绿化的面积为x 万平方米,列方程为,根据方程可知省略的部分是( )A .实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B .实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C .实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D .实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务 8.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE ⊥BF ;②S △BCF =5S △BGE ;③QB =QF ; ④tan ∠BQP =.A .1B .2C .3D .4二.填空题(共8小题,满分24分,每小题3分)9.2019新型冠状病毒(2019﹣nCoV ),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为 . 10.在实数范围内分解因式:2x ﹣6= .11.如图,点D 在△ABC 的BC 边上,且CD =2BD ,点E 是AC 边的中点,连接AD ,DE ,假设可以随意在图中取点,那么这个点取在阴影部分的概率是 .12.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A、B,小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D②分别以C,D为圆心,以大于,CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F,若∠ABP=70°,则∠AFB=.13.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.14.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为.15.已知关于x的一次函数y=kx+2k﹣7,当﹣1≤x≤3时函数图象与x轴有交点,则k的取值范围是.16.如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t >0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是.三.解答题(共2小题,满分16分,每小题8分)17.先化简,再求值:(﹣1)÷,其中x是不等式组的整数解.18.如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O 作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.四.解答题(共4小题,满分40分,每小题10分)19.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按A、B、C、D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下).并将统计结果绘制成两个如图所示的不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了名学生;(2)在扇形统计图中,A级所在的扇形圆心角是;(3)请把条形统计图补充完整;(4)若该校七年级有800名学生,请根据统计结果估计全校七年级体育测试中B级和C 级学生各约有多少名.20.小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至3/层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率.(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?并说明理由.3层2层1层车库21.如图,某渔船在完成捕捞作业后准备返回港口C,途经某海域A处时,港口C的工作人员监测到点A在南偏东30°方向上,另一港口B的工作人员监测到点A在正西方向上.已知港口C在港口B的北偏西60°方向,且B、C两地相距120海里.(1)求出此时点A到港口C的距离(计算结果保留根号);(2)若该渔船从A处沿AC方向向港口C驶去,当到达点A'时,测得港口B在A'的南偏东75°的方向上,求此时渔船的航行距离(计算结果保留根号).22.如图,在Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x<0)的图象上,直线BC⊥x轴,垂足为D,连接OB,OC.(1)若OB=4、∠BOD=60°,求k的值;(2)若tan∠ABC=2,求直线OC的解析式.五.解答题(共2小题,满分20分,每小题10分)23.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE=6,求的值.24.龙华区某学校组织400名师生春游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)7045租金(元/辆)600480(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(不要求写出x的取值范围)(2)如何租车能保证所有的师生可以参加春游且租车费用最少,最少费用是多少元?六.解答题(共1小题,满分12分,每小题12分)25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.七.解答题(共1小题,满分14分,每小题14分)26.若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“完美四边形”.(1)在“平行四边形、梯形、菱形、正方形”中,一定不是“完美四边形”的有;(2)如图1,“完美四边形”A BCD内接于⊙O,AC与BD相交于点P,且对角线AC 为直径,AP=1,PC=5,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“完美四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,直线BD的解析式为y =x,且四边形ABCD的面积为15,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:依据只有符号不同的两个数互为相反数得:的相反数是.故选:D.2.解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.3.解:A、b3•b3=b6,故本选项不合题意;B、x16÷x4=x12,故本选项不合题意;C、2a2+3a2=5a2,故本选项不合题意;D、(a5)2=a10,故本选项符合题意;故选:D.4.解:由表知,平均数为×(0×5+1×8+2×7+3×4+4×4+5×2)=,故A选项错误;中位数为=2,故B选项错误;众数为1,故C选项错误;故选:D.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:连接OB、OC,∵∠A=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选:A.7.解:设原计划每天绿化的面积为x万平方米,∵所列分式方程为﹣=30,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务.故选:C.8.解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S△BCF =5S△BGE,故②正确.根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴QB=,PQ===,∴tan∠BQP==,故④错误;故选:C.二.填空题(共8小题,满分24分,每小题3分)9.解:数据0.000000125用科学记数法表示为1.25×10﹣7.故答案为:1.25×10﹣7.10.解:2x﹣6=2(x﹣3).故答案为:2(x﹣3).11.解:设阴影部分的面积是x,∵点E是AC边的中点,=2x,∴S△ACD∵CD=2BD,∴S=3x,△ACD则这个点取在阴影部分的概率是=.故答案为:.12.解:∵MN∥PQ,∴∠NAF=∠BFA,由题意得:AF平分∠NAB,∴∠NAF=∠BAF,∴∠BFA=∠BAF,∵∠ABP=∠BFA+∠BAF,∴∠ABP=2∠BFA=70°,∴∠AFB=70°÷2=35°,故答案为:35°.13.解:根据题意得△=(﹣4)2﹣4k=0,解得k=4.故答案为4.14.解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故答案为:1:2.15.解:当x=﹣1时,y=﹣k+2k﹣7=k﹣7;当x=3时,y=3k+2k﹣7=5k﹣7.当k>0时,,解得:≤k≤7;当k<0时,,不等式组无解,舍去.∴k的取值范围是≤k≤7.故答案为:≤k≤7.16.解:如图,连接AP,∵点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),∴AB=(1+t)﹣1=t,AC=1﹣(1﹣t)=t,∴AB=AC,∵∠BPC=90°,∴AP=BC=AB=t,要t最小,就是点A到⊙D上的一点的距离最小,∴点P在AD上,∵A(0,1),D(3,3),∴AD==,∴t的最小值是AP=AD﹣PD=﹣1,故答案为﹣1.三.解答题(共2小题,满分16分,每小题8分)17.解:(﹣1)÷=[]=()=﹣=﹣,由得,﹣1≤x<2.5,∵x是不等式组的整数解,x(x+1)(x﹣1)≠0,∴x=2,当x=2时,原式=﹣=﹣2.18.(1)证明:∵AD∥BC,∴∠OAD=∠OCB,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=CB,又∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:设∠ABE=x,则∠DBF=2x,由(1)得:四边形ABCD为平行四边形,∴OB=OD,∵EF⊥BD,∴BE=DE,∴∠EBD=∠EDB,∵AD∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB=∠DBF=2x,∵∠BAD+∠ABE+∠EBD+∠EDB=180°,∴100°+x+2x+2x=180°,解得:x=16°,即∠ABE=16°.四.解答题(共4小题,满分40分,每小题10分)19.解:(1)学校在七年级各班共随机调查了23÷46%=50名学生,故答案为:50;(2)360°×(1﹣46%﹣24%﹣10%)=360°×20%=72°,即在扇形统计图中,A级所在的扇形圆心角是72°,故答案为:72°;(3)A等级的学生有:50×(1﹣46%﹣24%﹣10%)=50×20%=10(人),补充完整的条形统计图如右图所示;(4)B级学生有:800×46%=368(名),C级学生有:800×24%=192(名),即估计全校七年级体育测试中B级和C级学生各约有368名、192名.20.解:(1)根据题意画图如下:共有9种等可能的情况数,其中甲、乙二人在同一层楼出电梯的有3种,则甲、乙二人在同一层楼出电梯的概率是=.(2)∵两人在相邻楼层出电梯的概率是,∴小亮获胜的概率为,∴小芳获胜的概率为,∵>,∴该游戏不公平.21.解:(1)如图所示:延长BA,过点C作CD⊥BA延长线于点D,由题意可得:∠CBD=30°,BC=120海里,则CD=BC=60海里,∵cos∠ACD==cos30°=,即=,∴AC=40(海里),答:此时点A到军港C的距离为40海里;(2)过点A′作A′N⊥BC于点N,如图:由(1)得:CD=60海里,AC=40海里,∵A'E∥CD,∴∠AA'E=∠ACD=30°,∴∠BA′A=45°,∵∠BA'E=75°,∴∠ABA'=15°,∴∠2=15°=∠ABA',即A′B平分∠CBA,∴A'E=A'N,设AA′=x,则AE=AA',A'N=A′E=AE=x,∵∠1=60°﹣30°=30°,A'N⊥BC,∴A'C=2A'N=x,∵A'C+AA'=AC,∴x+x=40,解得:x=60﹣20,∴AA'=(60﹣20)海里,答:此时渔船的航行距离为(60﹣20)海里.22.解:(1)在Rt△BOD中,BD=OB sin∠BOD=4×=2,OD=OB=2,故点B的坐标为(﹣2,2),将点B的坐标代入函数表达式得:2=,解得k=﹣4;(2)∵tan∠ABC=2,故设AC=2t,则BC=t,设点B的坐标为(m,n),则点A的坐标为(m﹣2t,n﹣t)、点C(m,n﹣t),将点A、B的坐标代入函数表达式得:(m﹣2t)(n﹣t)=mn,解得t=m+n,则点C的坐标为(m,﹣m),设直线OC的表达式为y=rx,将点C的坐标代入上式并解得:﹣m=rm,解得r=﹣,故直线OC的表达式为y=﹣x.五.解答题(共2小题,满分20分,每小题10分)23.证明:(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE=6,∴AB=3AE=6,AE=2,∴CE=4AE=8,∴BE=,∴.24.解:(1)由题意,得y=600x+480(7﹣x),化简,得y=120x+3360,即y(元)与x(辆)之间的函数表达式是y=120x+3360;(2)由题意,得70x+45(7﹣x)≥400,解得,x≥.∵y=120x+3360,x为整数,∴x=4时,租车费用最少,最少为:y=120×4+3360=3840(元),即租甲种客车4辆,乙种客车3辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3840元.六.解答题(共1小题,满分12分,每小题12分)25.(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠ABE+∠AFB=90°,∠AFB=∠CFD,∴∠ACD+∠CFD=90°,∴∠BDC=90°;(2)如图2,过A作AE⊥AD交BD于E,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,∵∠BAC=∠BDC=90°,∠AFB=∠CFD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AE=AD,∴∠ADE=∠AED=45°;(3)①如图3,在形内作∠DAE=60°,AE交BD于E点,与(2)同理△ABE≌△ACD,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.七.解答题(共1小题,满分14分,每小题14分)26.解:(1)∵菱形、正方形的对角线互相垂直,∴菱形、正方形不是“完美四边形”.故答案为:菱形、正方形;(2)过点O作OH⊥BD于点H,连接OD,如图1:∴∠OHP=∠OHD=90°,BH=DH=BD,∵AP=1,PC=5,∴⊙O直径AC=AP+PC=6,∴OA=OC=OD=3,∴OP=OA﹣AP=3﹣1=2,∵四边形ABCD 是“完美四边形”,∴∠OPH =60°,在Rt △OPH 中,sin ∠OPH ==, ∴OH =OP =,在Rt △ODH 中,由勾股定理得:DH ===, ∴BD =2DH =2.(3)过点B 作BM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,如图2:∴∠BMO =∠DNO =90°,∵四边形ABCD 是“完美四边形”,∴∠COD =60°,∴直线BD 解析式为y =x ,∵二次函数的图象过点A (﹣3,0)、C (2,0),即与x 轴交点为A 、C , ∴设二次函数解析式为y =a (x +3)(x ﹣2), 联立,整理得:ax 2+(a ﹣)x ﹣6a =0,∴x B +x D =﹣,x B •x D =﹣6,∴(x B ﹣x D )2=(x B +x D )2﹣4x B •x D =(﹣)2+24, ∵S 四边形ABCD =S △ABC +S △ACD =AC •BM +AC •DN =AC (BM +DN ) =AC (y D ﹣y B )=AC (x D ﹣x B)=(x D﹣x B),∵四边形ABCD的面积为15,∴(x D﹣x B)=15,∴x D﹣x B=6,∴(﹣)2+24=36,解得:a1=,a2=,∴a 的值为或.21。
初三冲刺数学试题及答案人教版一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415B. πC. 0.5D. √42. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π3. 一个二次方程 \( ax^2 + bx + c = 0 \) 的判别式是 \( b^2 - 4ac \),当判别式小于0时,方程的根是什么?A. 无实数根B. 有两个实数根C. 有一个实数根D. 无法判断4. 函数 \( y = 3x - 2 \) 在 \( x = 1 \) 时的值是多少?A. 1B. 2C. 3D. 45. 下列哪个是等差数列?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 5, 4, 3, 26. 一个正方体的体积是27立方厘米,它的棱长是多少?A. 3厘米B. 6厘米C. 9厘米D. 27厘米7. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为60度,那么这个三角形的面积是多少?A. 3平方厘米B. 4平方厘米C. 6平方厘米D. 12平方厘米8. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 29. 下列哪个是完全平方数?A. 15B. 16C. 17D. 1810. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少?A. 24立方米B. 12立方米C. 16立方米D. 20立方米二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是_________。
12. 一个数的绝对值是5,这个数可以是_________或_________。
13. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是_________。
14. 一个数的立方根是2,这个数是_________。
15. 一个数的平方是36,这个数可以是_________或_________。
人教版中考数学模拟测试卷一、选择题1.在1、-1、3、-2这四个数中,互为相反数的是( ) A. 1与-1B. 1与-2C. 3与-2D. -1与-22.某图书馆有图书约985000册,数据985000用科学记数法可表示为( ) A. 398510⨯B. 498.510⨯C. 59.8510⨯D. 60.98510⨯3.如图,直线//a b ,直线l 与直线a ,b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若158∠=︒,则2∠的度数为( )A. 58︒B. 42︒C. 32︒D. 28︒4.下列运算正确的是( )A. 33352x x x ﹣=-B. 3842x x x ÷=C.2xy xxy y x y=--D.3710+=5.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是( )A. 主视图B. 左视图C. 俯视图D. 主视图和俯视图6.若12x x ,是一元二次方程230x x +-=的两个实数根,则3221417-+x x 的值为( )A. ﹣2B. 6C. ﹣4D. 47.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个).关于这组数据下列结论正确的是( ) A. 方差是6B. 众数是7C. 中位数是8D. 平均数是108.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( ) A. 122y y >>B. 212y y >>C. 122y y >>D. 212y y >>9.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A. ()2020,1B. ()2020,0C. ()2020,2D. ()2019,0二、填空题11.计算3520-的结果是___.12.不等式组()32421152x xx x⎧-->⎪⎨-+≤⎪⎩的解集为_____.13.分别写有数字1,2 3、﹣1、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____.14.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.15.如图,在矩形ABCD中,2AD=.将A∠向内翻折,点A落在BC上,记为'A,折痕为DE.若将B 沿'EA向内翻折,点B恰好落在DE上,记为'B,则AB=_____.三、解答题16.先化简,再求值:223144()11a a aa a a a+++-÷---,其中a=3.17.如图,已知BC是O的切线,AC是O的直径,连接AB交O于点D,在AB上截取AE AC=,在ABC∆中,连接CE,交O于点F.(1)求证:2BAC BCE∠=∠;(2)连接OD,DF,当B∠=时,四边形OCFD是菱形.18.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下: 收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77. 八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41. 整理数据:4049x ≤≤ 5059x ≤≤6069x ≤≤7079x ≤≤8089x ≤≤90100x ≤≤七年级 0 1 0 a 7 1 八年级 1 07b2分析数据: 平均数 众数 中位数七年级 78 75c八年级 78d80.5应用数据:(1)由上表填空:a = ,b = ,c = ,d = . (2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人? (3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.19.如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.23 1.7==)20.某水产养殖户进行小龙虾养殖. 已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量()y kg 与时间第t 天之间的函数关系式为2100y t =+(180t ≤≤,t 为整数),销售单价p (元/kg )与时间第t 天之间满足一次函数关系如下表: 时间第t 天12 3 … 80 销售单价p (元/kg ) 49.5 4948. 5…10(1)写出销售单价p (元/kg )与时间第t 天之间的函数关系式;(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?21.如图,以AB 为直径的半圆上有一点C ,连接AC ,点P 是AC 上一个动点,连接BP ,作PD BP ⊥交AB 于点D ,交半圆于点E .已知:5AC cm =,设PC 的长度为x cm ,PD 的长度为1y cm ,PE 的长度为2y cm (当点P 与点C 重合时,15y =,20y =,当点P 与点A 重合时,10y =,20y =). 小青同学根据学习函数的经验,分别对函数1y ,2y 随自变量x 变化而变化的规律进行了探究. 下面是小青同学的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值,请补全表格;/x cm 00.5 1 1.52 2.53 3.54 4.5 5 1/y cm 5 2.851.981.521.21 0.970.760.560.370.19 02/y cm 00.46 1.291.611.84 1.96 1.95 1.79 141(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点()1,x y ,()2,x y ,并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题: ①当PD ,PE的长都大于1cm 时,PC 长度的取值范围约是 ;②点C ,D ,E 能否在以P 为圆心的同一个圆上? (填“能”或“否”)22.(1)【探究发现】如图1,EOF ∠的顶点O 在正方形ABCD 两条对角线的交点处,90EOF ︒∠=,将EOF ∠绕点O 旋转,旋转过程中,EOF ∠的两边分别与正方形ABCD 的边BC 和CD 交于点E 和点F (点F 与点C ,D 不重合).则,,CE CF BC 之间满足的数量关系是 . (2)【类比应用】如图2,若将(1)中“正方形ABCD ”改为“120BCD ∠=的菱形ABCD ”,其他条件不变,当60EOF ∠=时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由. (3)【拓展延伸】如图3,120BOD =∠,34OD =,4OB =,OA 平分BOD ∠,13AB =且2OB OA >,点C 是OB 上一点,60CAD ∠=,求OC 的长.23.如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.答案与解析一、选择题1.在1、-1、3、-2这四个数中,互为相反数的是( ) A. 1与-1 B. 1与-2C. 3与-2D. -1与-2【答案】A 【解析】【详解】根据只有符号不同的两个数互为相反可得: 1与﹣1互为相反数, 故选A .2.某图书馆有图书约985000册,数据985000用科学记数法可表示为( ) A. 398510⨯ B. 498.510⨯C. 59.8510⨯D. 60.98510⨯【答案】C 【解析】 【分析】科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤<,为整数.确定的值是易错点,由于985000有6位,所以可以确定615n =﹣= . 【详解】解:985000=59.8510⨯ 故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.3.如图,直线//a b ,直线l 与直线a ,b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若158∠=︒,则2∠的度数为( )A. 58︒B. 42︒C. 32︒D. 28︒【答案】C 【解析】分析:根据直角三角形两锐角互余得出∠ACB=90°-∠1,再根据两直线平行,内错角相等求出∠2即可.详解:∵AC ⊥BA , ∴∠BAC=90°,∴∠ACB=90°-∠1=90°-58°=32°, ∵直线a ∥b , ∴∠ACB=∠2, ∴∠2=∠ACB=32°. 故选C .点睛:本题考查了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补 4.下列运算正确的是( )A. 33352x x x ﹣=-B. 3842x x x ÷=C.2xy xxy y x y=--+=【答案】C 【解析】 【分析】根据合并同类项、整式的除法、分式化简,进行计算,即可得到答案.【详解】解:333352A x x x =-、﹣,故此选项错误;32842B x x x ÷=、,故此选项错误;2xy x C xy y x y=--、,正确;D 无法计算,故此选项错误.故选C .【点睛】本题考查合并同类项、整式的除法、分式化简,解题的关键是熟练掌握合并同类项、整式的除法、分式化简.5.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是( )A .主视图 B. 左视图C. 俯视图D. 主视图和俯视图【答案】B 【解析】主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图. 故选B .6.若12x x ,是一元二次方程230x x +-=的两个实数根,则3221417-+x x 的值为( )A. ﹣2B. 6C. ﹣4D. 4【答案】A 【解析】 【分析】利用根与系数的关系可得出x 1+x 2=-1、x 1•x 2=-3,211x x 3+=,将代数式2132x 4x 17+﹣进行转化后,再代入数据即可得出结论. 【详解】解:12x x ,是一元二次方程2x x 30+﹣=的两个实数根,12x x 1∴+=﹣,12x x 3=﹣,211x x 3+=,3221x 4x 17∴+﹣ 32211418--+=x x()()2222111418=-++-+x x x x()211114418=---⨯-+x x21184418=---+x x()2118418=--++x x10432=-⨯=-故选A .【点睛】本题考查了方程的解、根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则1212,b c x x x x a a+=-=. 7.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个).关于这组数据下列结论正确的是( ) A. 方差是6 B. 众数是7C. 中位数是8D. 平均数是10【答案】B 【解析】 【分析】根据平均数公式:()121n x x x x n++=+、方差公式:()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦、众数的定义和中位数的定义逐一判断即可. 【详解】解:这组数据的平均数()1791187141089710=⨯+++++++++x =9,故D 错误; 这组数据的方差为()()()()()()()()()()222222222217999119897914910989997910⎡⎤-+-+-+-+-+-+-+-+-+-⎣⎦=4.4,故A 错误;这组数据的众数为7,故B 正确;将这组数据从小到大排列可得7,7,7,8,8,9, 9,10, 11, 14 这组数据的中位数为(8+9)÷2=8.5,故C 错误. 故选B .【点睛】此题考查的是求一组数据的平均数、方差、众数和中位数,掌握平均数公式、方差公式、众数的定义和中位数的定义是解决此题的关键.8.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( ) A. 122y y >> B. 212y y >>C. 122y y >>D. 212y y >>【答案】A 【解析】 【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1) 2+2=−(1+1) 2+2=−2; 当x=2时,y 1=−(x+1) 2+2=−(2+1) 2+2=−7; 所以122y y >>. 故选A【点睛】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况9.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD【答案】D 【解析】 【分析】由作图知CM=CD=DN ,再利用圆周角定理、圆心角定理逐一判断可得. 【详解】解:由作图知CM=CD=DN , ∴∠COM=∠COD ,故A 选项正确;∵OM=ON=MN , ∴△OMN 是等边三角形, ∴∠MON=60°, ∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B 选项正确; ∵∠MOA=∠AOB=∠BON , ∴∠OCD=∠OCM=180-COD2︒∠ ,∴∠MCD=180-COD ︒∠, 又∠CMN=12∠AON=∠COD , ∴∠MCD+∠CMN=180°, ∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN , ∴3CD >MN ,故D 选项错误; 故选D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A. ()2020,1B. ()2020,0C. ()2020,2D. ()2019,0【答案】B 【解析】 【分析】观察可得点P 的变化规律, “()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.二、填空题11.计算520___. 5 【解析】 【分析】首先化简二次根式进而计算得出答案. 【详解】原式=555=5【点睛】本题考查了二次根式的加减,正确化简二次根式是解题关键.12.不等式组()324 211 52x xx x⎧-->⎪⎨-+≤⎪⎩的解集为_____.【答案】71x-≤<【解析】【分析】先分别求出不等式组中的两个不等式的解,再求不等式组的解集.【详解】解:解不等式324x x--()>,得:x<1,解不等式21152x x-+≤,得:7x≥-,则不等式组的解集为71x-≤<,故答案为71x-≤<.【点睛】本题考查解一元一次不等式组,解题的关键是熟练掌握一元一次不等式组的求解方法.13.分别写有数字1,23、﹣1、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____.【答案】0.4 【解析】【分析】直接利用无理数的定义结合概率求法得出答案. 【详解】解:∵写有数字1,2,1,0,3π-的五张大小和质地均相同的卡片,2,π是无理数,∴从中任意抽取一张,抽到无理数的概率是:0.4,故答案为0.4.【点睛】此题主要考查了概率公式以及无理数的定义,正确把握相关定义是解题关键.14.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.【答案】π﹣1.【解析】【详解】解:在Rt △ACB 中,AB=2222+=22, ∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,CD=BD=2, ∴D 为半圆的中点,S 阴影部分=S 扇形ACB ﹣S △ADC =22112(2)42π⨯-⨯=π﹣1. 故答案为π﹣1. 考点:扇形面积的计算.15.如图,在矩形ABCD 中,2AD =.将A ∠向内翻折,点A 落在BC 上,记为'A ,折痕为DE .若将B 沿'EA 向内翻折,点B 恰好落在DE 上,记为'B ,则AB =_____.3. 【解析】 【分析】利用矩形的性质,证明''30ADE A DE A DC ∠=∠=∠=︒,''90C A B D ∠=∠=︒,推出'''DB A DCA ∆≅∆,'CD B D =,设AB DC x ==,在Rt ADE ∆中,通过勾股定理可求出AB 的长度. 【详解】∵四边形ABCD 为矩形, ∴90ADC C B ∠=∠=∠=︒,AB DC =,由翻折知,'AED A ED ∆≅∆,'''A BE A B E ∆≅∆,''''90A B E B A B D ∠=∠=∠=︒, ∴'AED A ED ∠=∠,'''A EB A EB ∠=∠,'BE B E =, ∴1''180603AED A ED A EB ∠=∠=∠=⨯︒=︒, ∴9030ADE AED ∠=︒-∠=︒,'90'30A DE A EB ∠=︒-∠=︒, ∴''30ADE A DE A DC ∠=∠=∠=︒, 又∵''90C A B D ∠=∠=︒,''DA DA =, ∴()'''DB A DCA AAS ∆≅∆,∴'DC DB =, 在Rt AED ∆中,30ADE ∠=︒,2AD =,∴tan 303AE AD =⋅︒=,设AB DC x ==,则'BE B E x ==, ∵222AE AD DE +=,∴222233x x ⎛⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,解得,13x =-(负值舍去),2x =,.【点睛】本题考查了矩形的性质,轴对称的性质,解直角三角形等知识,解题关键是通过轴对称的性质证明''60AED A ED A EB ∠=∠=∠=︒.三、解答题16.先化简,再求值:223144()11a a a a a a a+++-÷---,其中a =3. 【答案】2a a +,35【解析】 【分析】先根据分式混合运算的法则把原式进行化简,再将a 的值代入进行计算即可. 【详解】.原式()()212=122a a a aa a a -+⨯=-++ 3a =,∴原式3=5【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 17.如图,已知BC 是O 的切线,AC 是O 的直径,连接AB 交O 于点D ,在AB 上截取AE AC =,在ABC ∆中,连接CE ,交O 于点F .(1)求证:2BAC BCE ∠=∠;∠=时,四边形OCFD是菱形.(2)连接OD,DF,当B【答案】(1)见解析;(2)30°【解析】【分析】(1)连接AF,根据直径所对的圆周角是直角可得∠AFC=90°,从而得出∠FAC+∠ACF=90°,然后根据三线合一可得∠BAC=2∠FAC,然后根据切线的性质可知∠BCE+∠ACF=90°,从而证出结论;(2)连接OF,根据题意,易证当△OCF为等边三角形时,此时OC= FC=FD= OD,即四边形OCFD是菱形,从而求出∠OCF=60°,然后根据直角三角形的性质即可求出结论.【详解】解:(1)连接AF∵AC为直径∴∠AFC=90°∴∠FAC+∠ACF=90°=∵AE AC∴∠BAC=2∠FAC∵BC是O的切线,∴∠ACB=90°∴∠BCE+∠ACF=90°∴∠FAC=∠BCE∴∠BAC=2∠BCE (2)连接OF∵∠CAF=∠EAF ∴FC=FD ∵OC=OD=OF ,∴当△OCF 为等边三角形时,此时OC= FC=FD= OD ,即四边形OCFD 是菱形 ∴∠OCF=60°∴∠CAF=90°-∠OCF=30° ∴∠CAE=2∠CAF=60° ∴∠B=90°-∠CAE=30°即当B ∠=30°时,四边形OCFD 是菱形 故答案为:30°.【点睛】此题考查的是圆周角定理的推论、切线的性质、等腰三角形的性质、等边三角形的判定及性质和菱形的判定,掌握圆周角定理的推论、切线的性质、等腰三角形的性质、等边三角形的判定及性质和菱形的判定是解决此题的关键.18.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下: 收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77. 八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41. 整理数据:4049x ≤≤ 5059x ≤≤6069x ≤≤7079x ≤≤8089x ≤≤90100x ≤≤七年级 0 1 0 a 7 1 八年级 17b2分析数据:应用数据:(1)由上表填空:a = ,b = ,c = ,d = . (2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人? (3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由. 【答案】(1) 11 , 10 , 78 , 81 ;(2)90人;(3) 八年级的总体水平较好 【解析】 【分析】(1)根据已知数据及中位数和众数的概念求解可得; (2)利用样本估计总体思想求解可得; (3)答案不唯一,合理均可.【详解】解:(1)由题意知11,10a b ==,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94, ∴其中位数7779782c +==, 八年级成绩的众数81d =, 故答案为11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1212009040+⨯=(人); (3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数, ∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数定义是解题的关键. 19.如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.23 1.7==) 【答案】(1)古树BH 的高为11.5米;(2)教学楼CG 的高约为25米. 【解析】 【分析】(1)由45HFE ∠︒=知10HE EF ==,据此得 1.51011.5BH BE HE ++===;(2)设DE x =米,则3DG x =米,由45GFD ∠︒=知GD DF EF DE +==310x x +=,解之求得x 的值,代入3 1.5CG DG DC x ++==计算可得. 【详解】解:(1)在Rt EFH ∆中,9045HEF HFE ∠︒∠︒=,=, 10HE EF ∴==,1.51011.5BH BE HE ∴++===, ∴古树的高为11.5米;(2)在Rt EDG ∆中,60GED ∠︒=,603DG DEtan DE ∴︒==,设DE x =米,则3DG x =米,在Rt GFD ∆中,9045GDF GFD ∠︒∠︒=,=,GD DF EF DE ∴+==,310x x +=,解得:535x =,3 1.53535 1.516.55325CG DG DC x ∴++++≈===()=, 答:教学楼CG 的高约为25米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 六、拓展探索题20.某水产养殖户进行小龙虾养殖. 已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量()y kg 与时间第t 天之间的函数关系式为2100y t =+(180t ≤≤,t 为整数),销售单价p (元/kg )与时间第t 天之间满足一次函数关系如下表:(1)写出销售单价p (元/kg )与时间第t 天之间的函数关系式;(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少? 【答案】(1)1502p t =-+;(2)第19天的日销售利润最大,最大利润是4761元. 【解析】 【分析】(1)设销售单价p (元/kg )与时间第t 天之间的函数关系式为:p=kt+b ,将(1,49.5),(2,49)代入,再解方程组即可得到结论;(2)设每天获得的利润为w 元,由题意根据利润=销售额-成本,可得到w=-(t-19)2+4761,根据二次函数的性质即可得到结论.【详解】(1)设销售单价p (元/kg )与时间第t 天之间的函数关系式为:p kt b =+,将(1,49.5),(2,49)代入,得49.5249k b k b +=⎧⎨+=⎩,解得1250k b ⎧=-⎪⎨⎪=⎩.∴销售单价p (元/kg )与时间第t 天之间的函数关系式为1502p t =-+. (2)设每天获得的利润为w 元.由题意,得1(2100)506(2100)2w t t t ⎛⎫=+-+-+ ⎪⎝⎭2384400t t =-++2(19)4761t =--+.∵10a =-<,∴w 有最大值. 当19t =时, w 最大,此时,4761w =最大(元) 答:第19天的日销售利润最大,最大利润是4761元.【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.21.如图,以AB 为直径的半圆上有一点C ,连接AC ,点P 是AC 上一个动点,连接BP ,作PD BP ⊥交AB 于点D ,交半圆于点E .已知:5AC cm =,设PC 的长度为x cm ,PD 的长度为1y cm ,PE 的长度为2y cm (当点P 与点C 重合时,15y =,20y =,当点P 与点A 重合时,10y =,20y =). 小青同学根据学习函数的经验,分别对函数1y ,2y 随自变量x 变化而变化的规律进行了探究. 下面是小青同学的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值,请补全表格;/x cm 00.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1/y cm 5 2.851.981.521.210.970.760.560.370.192/y cm 00.46 1.29 1.61 1.84 1.96 1.95 1.79 1.41 0(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点()1,x y ,()2,x y ,并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:①当PD ,PE 的长都大于1cm 时,PC 长度的取值范围约是 ; ②点C ,D ,E 能否在以P 为圆心的同一个圆上? (填“能”或“否”)【答案】(1)1x =时,20.89y =.(允许答案有误差);(2)函数图象如图所示,见解析;(3)①1.1 2.4PC <<,②否. 【解析】 【分析】(1)利用测量法可以解决问题; (2)利用描点法画出函数图象即可.(3)①利用图象法即可解决问题.②利用图象法解决问题,因为函数1y ,2y 以及直线y x =,不可能交于同一点,所以不存在满足PC PD PE ==的点P ,所以点C ,D ,E 不可能在以P 为圆心的同一个圆, 【详解】(1)利用测量法可知:1x =时,20.89y =.(允许答案有误差). (2)函数图象如图所示:(3)①观察图象可知:当PD ,PE 的长都大于1cm 时,PC 长度的取值范围约是1.1 2.4PC <<. 故答案为1.1 2.4PC <<.②因为函数1y ,2y 以及直线y x =,不可能交于同一点, 所以不存在满足PC PD PE ==的点P ,所以点C ,D ,E 不可能在以P 为圆心的同一个圆, 故答案为否.【点睛】本题考查圆综合题,函数图象问题,解题的关键是理解题意,学会利用测量法解决问题,学会利用函数图象解决问题,属于中考压轴题. 22.(1)【探究发现】如图1,EOF ∠的顶点O 在正方形ABCD 两条对角线的交点处,90EOF ︒∠=,将EOF ∠绕点O 旋转,旋转过程中,EOF ∠的两边分别与正方形ABCD 的边BC 和CD 交于点E 和点F (点F 与点C ,D 不重合).则,,CE CF BC 之间满足的数量关系是 . (2)【类比应用】如图2,若将(1)中的“正方形ABCD ”改为“120BCD ∠=的菱形ABCD ”,其他条件不变,当60EOF ∠=时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由. (3)【拓展延伸】如图3,120BOD =∠,34OD =,4OB =,OA 平分BOD ∠,13AB =,且2OB OA >,点C 是OB 上一点,60CAD ∠=,求OC 的长.【答案】(1)CE CF BC +=(2)结论不成立.12CE CF BC +=(3)14【解析】 【分析】(1)结论:CE CF BC +=.根据正方形性质,证()BOE COF ASA ∆≅∆,根据全等三角形性质可得结论;(2)结论不成立.12CE CF BC +=.连接EF ,在CO 上截取CJ CF =,连接FJ .根据菱形性质,证180EOF ECF ︒∠+∠=,,,,O E C F 四点共圆,分别证EOF∆等边三角形,CFJ ∆是等边三角形,根据等边三角形性质证()OFJ EFC SAS ∆≅∆,根据全等三角形性质可得结论;(3)由2OB OA >可知BAO ∆是钝角三角形,90BAO ∠>,作AH OB ⊥于H ,设=OH x .根据勾股定理,可得到21OA OH ==,由180COD ACD ︒∠+∠=,得,,,A C O D 四点共圆,再证ACD ∆是等边三角形,由(2)可知:OC OD OA +=,故可得OC .【详解】(1)如图1中,结论:CE CF BC +=.理由如下:∵四边形ABCD 是正方形,∴AC BD ⊥,OB OC =,45OBE OCF ︒∠=∠=, ∵90EOF BOC ︒∠=∠=, ∴BOE OCF ∠=∠, ∴()BOE COF ASA ∆≅∆, ∴BE CF =,∴CE CF CE BE BC +=+=. 故答案为CE CF BC +=.(2)如图2中,结论不成立.12CE CF BC +=.理由:连接EF ,在CO 上截取CJ CF =,连接FJ . ∵四边形ABCD 是菱形,120BCD ∠=, ∴60BCO OCF ︒∠=∠=, ∵180EOF ECF ︒∠+∠=, ∴,,,O E C F 四点共圆,∵60EOF ︒∠=, ∴EOF ∆是等边三角形, ∴OF FE =,60OFE ︒∠=, ∵CF CJ =,60FCJ ︒∠=, ∴CFJ ∆是等边三角形,∴FC FJ =,60EFC OFE ︒∠=∠=, ∴OFJ CFE ∠=∠, ∴()OFJ EFC SAS ∆≅∆, ∴OJ CE =,∴12CF CE CJ OJ OC BC +=+==, (3)如图3中,由2OB OA >可知BAO ∆是钝角三角形,90BAO ∠>,作AH OB ⊥于H ,设=OH x .在Rt ABH ∆中,2133BH x - ∵4OB =,21334x x -=, 解得32x =(舍弃)或12, ∴21OA OH ==, ∵180COD ACD ︒∠+∠=, ∴,,,A C O D 四点共圆, ∵OA 平分COD ∠,∴60ADC AOC ︒∠=∠=, ∵60CAD ︒∠=, ∴ACD ∆是等边三角形, 由(2)可知:OC OD OA +=, ∴31144OC =-=. 【点睛】考核知识点:正方形性质,全等三角形判定和性质,等边三角形判定和性质,圆的性质.综合运用各个几何性质定理是关键;此题比较综合.23.如图,抛物线y =-x 2+bx +c 与x 轴相交于A (-1,0),B (5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,链接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5(2)m 的值为7或9(3)Q 点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5) 【解析】 【分析】(1)由A 、B 的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C 点坐标,设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m 的值;(3)由(2)可求得E 点坐标,连接BE 交对称轴于点M ,过E 作EF ⊥x 轴于点F ,当BE 为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【详解】(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴102550b cb c--+=⎧⎨-++=⎩,解得45bc=⎧⎨=⎩,∴抛物线解析式y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN , 在△PQN 和△EFB 中QPN BEF PMQ EFB PQ BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PQN ≌△EFB (AAS ), ∴NQ=BF=OB ﹣OF=5﹣1=4, 设Q (x ,y ),则QN=|x ﹣2|, ∴|x ﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7, ∴Q 点坐标为(﹣2,﹣7)或(6,﹣7); ②当BE 为对角线时, ∵B (5,0),E (1,8),∴线段BE 的中点坐标为(3,4),则线段PQ 的中点坐标为(3,4), 设Q (x ,y ),且P (2,t ),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5, ∴Q (4,5);综上可知Q 点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5). 考点:二次函数综合题.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟一、选择题(本题共10小题,每小题3分,共30分)1.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)| B.﹣(﹣3﹣2) C.﹣(﹣|﹣3﹣2|) D.﹣2﹣|﹣4|2.如图是由若干个完全相同的正方体搭成的几何体,取走选项序号对应的正方体,其中三视图不会发生变化的是()A.①B.②C.③D.④3.选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A.B.C.D.6.如图,若⊙O是正方形ABCD与正六边形AEFCGH的外接圆,则正方形ABCD与正六边形AEFCGH的周长之比为()A.2:3 B.:1 C.:D.1:7.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况8.在数轴上,表示不小于﹣2且小于2之间的整数的点有()A.3个B.4个C.5个D.无数个9.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h =20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.若线段AB的端点为(﹣1,3),(1,3),线段CD与线段AB关于x轴轴对称,则线段CD上任意一点的坐标可表示为.13.“石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是.14.如图,在△ABC中,点O是△ABC的内心,∠A=48°,∠BOC=°.15.如图,正方形BEFG的顶点E在正方形ABCD的边AD上,CD、EF交于点H,AD=16,连接EC,FC,则△CEF 的面积的最小值为.三、解答题(本题共10小题,共100分)16.如图,某花园的护栏是用一些半圆形造型的钢条围成的,半圆的直径为80厘米,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0),设半圆形条钢的总个数为x个(x为正整数),护栏总长度为y厘米.(1)当a=60时,用含x的代数式表示护栏总长度y(结果要求化简);(2)用含a、x的代数式表示护栏的总长度y(结果要求化简),并求a=50,x=41时,护栏长度y的值.17.5月1日,“东疆好少年”平台公布了世界读书日暨“阅读吧,少年”第一轮网络答题进入决赛的学生名单,全市初中组有235名同学入围.某中学有300名七、八年级同学积极参与了此次活动,该校老师随机调查收集了50名学生的参赛成绩,整理得到了如下的数据分析表:分数段人数分数段人数55≤x<65 23人85≤x<95 5人65≤x<75 12人95≤x<100 3人75≤x<85 7人/ /其中分数段在65≤x<75组的成绩如下:65 65 70 7070 65 70 6565 65 70 70(1)被抽取的这50名同学成绩的中位数为65;(2)已知50名学生中男生均分为68.2分,女生均分为71.8分,你能求出这50名学生的平均分吗?若能,请求出平均分,若不能,请说明理由;(3)本次进入决赛的成绩为70分以上(包括70分),请你估计该校有多少名学生进入决赛?(4)已知该校八(1)班有三名学生(一名男生,两名女生)取得90分以上,现准备从这三名学生中选两名学生进行班级阅读分享,求恰好选到一名男生与一名女生的概率.18.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.19.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.20.新冠病毒潜伏期较长,能通过多种渠道传播,所以在生活中就要做好最基本的防护:在公共区域和陌生人保持距离,勤洗手,出门戴口罩,某区中小学陆续复学后,为了提高同学们的防疫意识,决定组织防疫知识竞赛活动,评出一、二、三等奖各若干名,并分别发给洗手液、温度计和口罩作为奖品.(1)如果温度计的单价比口罩的单价多1元,购买洗手液1瓶和口罩5个共需22元;购买2瓶洗手液比购买6支温度计多花6元,求洗手液、温度计和口罩的单价各是多少元?(2)已知本次竞赛活动获得三等奖的人数是获得二等奖人数的2倍,且获得一等奖的人数不超过获奖总人数的五分之一,如果购买这三种奖品的总费用为308元,求本次竞赛活动获得一、二、三等奖各有多少人.21.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】22.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.23.如图,在△ABC中,AC=BC,CD平分∠ACB交AB于点D,BF平分∠ABC交CD于点F,AB=6,过B、F 两点的⊙O交BA于点G,交BC于点E,EB恰为⊙O的直径.(1)判断CD和⊙O的位置关系并说明理由;(2)若cos∠A=,求⊙O的半径.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)二次函数的顶点M与A重合时,函数的图象是否过点Q(a,a﹣1),并说明理由;(3)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的解析式.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.参考答案满分150分,答题时间120分钟四、选择题(本题共10小题,每小题3分,共30分)1.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)| B.﹣(﹣3﹣2) C.﹣(﹣|﹣3﹣2|) D.﹣2﹣|﹣4|【解答】解:A.|﹣2﹣(﹣1)|=|﹣1|=1,不符合题意;B.﹣(﹣3﹣2)=﹣(﹣5)=5,不符合题意;C.﹣(﹣|﹣3﹣2|)=﹣(﹣5)=5,不符合题意;D.﹣2﹣|﹣4|=﹣2﹣4=﹣6,符合题意.故选:D.2.如图是由若干个完全相同的正方体搭成的几何体,取走选项序号对应的正方体,其中三视图不会发生变化的是()A.①B.②C.③D.④【解答】解:A、取走①,主视图会发生变化,故本选项不合题意;B、取走②,俯视图会发生变化,故本选项不合题意;C、取走③,主视图和俯视图都会发生变化,故本选项不合题意;D、取走④,三视图不会发生变化,故本选项符合题意;故选:D.3.选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式【解答】解:原式=(3y﹣2x)(3y+2x)=(3y)2﹣(2x)2=9y2﹣4x2,∴运用平方差公式最好,故选:B.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A.B.C.D.【解答】解:因为每次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率==.故选:C.6.如图,若⊙O是正方形ABCD与正六边形AEFCGH的外接圆,则正方形ABCD与正六边形AEFCGH的周长之比为()A.2:3 B.:1 C.:D.1:【解答】解:连接OA、OB.OE,如图所示:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,∴内接正方形和内接正六边形的边长之比为R:R=:1,∴正方形ABCD与正六边形AEFCGH的周长之比=内接正方形和内接正六边形的边长之比=4:6=2:3,故选:A.7.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况【解答】解:实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是50名学生的身高情况.故选:C.8.在数轴上,表示不小于﹣2且小于2之间的整数的点有()A.3个B.4个C.5个D.无数个【解答】解:在数轴上,表示不小于﹣2且小于2之间的整数有:﹣2、﹣1、0、1,共4个.故选:B.9.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°【解答】解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°﹣∠DOE﹣∠BDO﹣∠BEO=35°;故选:D.10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h =20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③【解答】解:由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得:a=﹣,∴h=﹣(t﹣3)2+40.①∵顶点为(3,40),∴小球抛出3秒时达到最高点,故①正确;②小球从抛出到落地经过的路程应为该小球从上升到落下的长度,故为40×2=80m,故②正确;③令h=20,则20=﹣(t﹣3)2+40,解得t=3±,故③错误;④令t=2,则h=﹣(2﹣3)2+40=m,故④错误.综上,正确的有①②.故选:A.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.若线段AB的端点为(﹣1,3),(1,3),线段CD与线段AB关于x轴轴对称,则线段CD上任意一点的坐标可表示为(x,﹣3)(﹣1≤x≤1).【解答】解:∵线段CD与线段AB关于x轴轴对称,∴线段CD上任意一点的坐标可表示为(x,﹣3)(﹣1≤x≤1),故答案为:(x,﹣3)(﹣1≤x≤1).13.“石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是.【解答】解:用列表法表示所有可能出现的结果有:共有9种情况,其中乙获胜的有3中,P乙获胜==.故答案为:.14.如图,在△ABC中,点O是△ABC的内心,∠A=48°,∠BOC=114°.【解答】解:∵O是△ABC的内心,∴OB,OC分别平分∠ABC,∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣48°)=66°,∴∠BOC=180°﹣66°=114°.故答案为:114.15.如图,正方形BEFG的顶点E在正方形ABCD的边AD上,CD、EF交于点H,AD=16,连接EC,FC,则△CEF 的面积的最小值为96.【解答】解:过F作FG⊥DC于点G,FM⊥AD,交AD的延长线于M,连接CF,∵S△CEF=S△CHF+S△CHE=CH•EM,∵△EMF≌△BAE,∴EM=AB=16,∴S△CEF=8CH,∵△EDH∽△BAE,∴,设AE为x,则DH=(﹣x2+16x)=﹣(x﹣8)2+4≤4,∴DH≤4,∴CH≥12,CH最小值是12,∴△CEF面积的最小值是96.故答案为:96.六、解答题(本题共10小题,共100分)16.如图,某花园的护栏是用一些半圆形造型的钢条围成的,半圆的直径为80厘米,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0),设半圆形条钢的总个数为x个(x为正整数),护栏总长度为y厘米.(1)当a=60时,用含x的代数式表示护栏总长度y(结果要求化简);(2)用含a、x的代数式表示护栏的总长度y(结果要求化简),并求a=50,x=41时,护栏长度y的值.【解答】解:(1)y=80+a(x﹣1),当a=60时,y=80+60(x﹣1)=60x+20.(2)y=80+a(x﹣1),当a=50,x=41时,y=80+50(41﹣1)=2080.17.5月1日,“东疆好少年”平台公布了世界读书日暨“阅读吧,少年”第一轮网络答题进入决赛的学生名单,全市初中组有235名同学入围.某中学有300名七、八年级同学积极参与了此次活动,该校老师随机调查收集了50名学生的参赛成绩,整理得到了如下的数据分析表:分数段人数分数段人数55≤x<65 23人85≤x<95 5人65≤x<75 12人95≤x<100 3人75≤x<85 7人/ /其中分数段在65≤x<75组的成绩如下:65 65 70 7070 65 70 6565 65 70 70(1)被抽取的这50名同学成绩的中位数为65;(2)已知50名学生中男生均分为68.2分,女生均分为71.8分,你能求出这50名学生的平均分吗?若能,请求出平均分,若不能,请说明理由;(3)本次进入决赛的成绩为70分以上(包括70分),请你估计该校有多少名学生进入决赛?(4)已知该校八(1)班有三名学生(一名男生,两名女生)取得90分以上,现准备从这三名学生中选两名学生进行班级阅读分享,求恰好选到一名男生与一名女生的概率.【解答】解:(1)把50名同学的成绩从小到大排列后处在第25、26位的两个数的平均数为=65;故答案为:65;(2)不能求出这50名学生的平均分,理由如下:因为男生女生人数不知道,相当于权重不一样.并不是男生女生各占一半;所以不能求出这50名学生的平均分;(3)因为50名同学进入决赛的人数有:6+7+5+3=21,所以300×=126(名).答:估计该校有126名学生进入决赛;(4)根据题意画出树状图:根据树状图可知:所有等可能的结果有6种,恰好选到一名男生与一名女生的有4种,所以恰好选到一名男生与一名女生的概率为:=.18.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.【解答】解:(1)在▱ABCD中,AB=DC=2,∠C=60°,DF⊥BC,∴∠BAD=∠C=60°,∠CDF=30°,∴CF=1,DF=CF=,∵DF=AD.∴AD=DF=,∵AE平分∠BAD,∴∠DAE=∠BAE=30°,∵AB∥CD,∴∠BAE=∠AED=30°,∴AD=DE=,∴EC=DC﹣DE=2﹣.(2)延长FD至M,使DM=FC,在△ADM和△DFC中,,∴△ADM≌△DFC(SAS),∴∠DAM=∠FDC,AM=DC,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAE=∠AED,∵∠BAE=∠DAE,∴∠DAE=∠AED,∴∠DAE+∠DAM=∠AED+∠FDC,即∠MAG=∠MGA,∴AM=MG,∴DC=DG+FC.19.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.【解答】解:树状图如下图所示,由树状图知共有12种等可能结果,其中恰好选到“1男1女”的有6种结果,所以恰好选到“1男1女”的概率是=.20.新冠病毒潜伏期较长,能通过多种渠道传播,所以在生活中就要做好最基本的防护:在公共区域和陌生人保持距离,勤洗手,出门戴口罩,某区中小学陆续复学后,为了提高同学们的防疫意识,决定组织防疫知识竞赛活动,评出一、二、三等奖各若干名,并分别发给洗手液、温度计和口罩作为奖品.(1)如果温度计的单价比口罩的单价多1元,购买洗手液1瓶和口罩5个共需22元;购买2瓶洗手液比购买6支温度计多花6元,求洗手液、温度计和口罩的单价各是多少元?(2)已知本次竞赛活动获得三等奖的人数是获得二等奖人数的2倍,且获得一等奖的人数不超过获奖总人数的五分之一,如果购买这三种奖品的总费用为308元,求本次竞赛活动获得一、二、三等奖各有多少人.【解答】解:(1)设洗手液的单价是x元,口罩的单价是y元,则温度计的单价是(y+1)元,依题意得:,解得:,∴y+1=3.答:洗手液的单价是12元,口罩的单价是2元,温度计的单价是3元.(2)设获得一等奖的有m人,二等奖的有n人,则三等奖的有2n人,依题意得:12m+3n+2×2n=308,∴n==44﹣m.∵获得一等奖的人数不超过获奖总人数的五分之一,∴m≤,即4m≤3n.又∵m,n均为正整数,∴m为7的倍数,∴或.答:获得一等奖的有7人,二等奖的有32人,三等奖的有64人或获得一等奖的有14人,二等奖的有20人,三等奖的有40人.21.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】【解答】解:如图,过点N作EF∥AC交AB于点E,交CD于点F,则AE=CF=MN=1.6,EF=AC=35,EN=AM,NF=MC,∠BEN=∠DFN=90°.∴DF=CD﹣CF=16.6﹣1.6=15.在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15.∴EN=EF﹣NF=35﹣15=20.在Rt△BEN中,∵,∴BE=EN⋅tan∠BNE=20×tan55°≈20×1.43=28.6.∴AB=BE+AE=28.6+1.6=30.2≈30(米).答:居民楼AB的高度约为30 米.22.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,故答案为1;(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.23.如图,在△ABC中,AC=BC,CD平分∠ACB交AB于点D,BF平分∠ABC交CD于点F,AB=6,过B、F 两点的⊙O交BA于点G,交BC于点E,EB恰为⊙O的直径.(1)判断CD和⊙O的位置关系并说明理由;(2)若cos∠A=,求⊙O的半径.【解答】解:(1)CD与⊙O相切,理由如下:连接OF,∵AC=BC,CD平分∠ACB,∴AD=BD=3,CD⊥AB,∴∠BDC=90°,∵OF=OB,∴∠OFB=∠OBF,∵BF平分∠ABC,∴∠CBF=∠FBD,∴∠OFB=∠FBD,∴OF∥DB,∴∠CFO=∠BDC=90°,∴CD与⊙O相切;(2)∵AC=BC,∴∠A=∠ABC,∴cos∠ABC=cos∠A=在Rt△BDC中,cos∠ABC==,∴BC=9,∵OF∥DB,∴△CFO∽△CDB,设⊙O的半径是r,则=,∴r=,即⊙O的半径是.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)二次函数的顶点M与A重合时,函数的图象是否过点Q(a,a﹣1),并说明理由;(3)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的解析式.【解答】解:(1)设OA所在直线的函数解析式为y=kx,∵A(2,4),∴2k=4,解得k=2,∴OA所在直线的函数解析式为y=2x;(2)不过点Q,理由:当二次函数的顶点M与A重合时,则顶点M的坐标为(2,4),∴抛物线的解析式为y=(x﹣2)2+4=x2﹣4x+8,设当x=a时,y=x2﹣4x+8=a2﹣4a+8=a﹣1,即a2﹣5a+9=0,∵△=25﹣36<0,故方程无解,则函数的图象不过点Q(a,a﹣1);(3)∵顶点M的横坐标为m,且在OA上移动,∴y=2m(0≤m≤2),∴M(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m,∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2),∴PB=m2﹣2m+4=(m﹣1)2+3(0≤m≤2),∴当m=1时,PB最短,当PB最短时,抛物线的解析式为y=(x﹣1)2+2.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=15°(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=20°(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:∠EDC=∠BAD(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC =2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=∠BAD。
备战2020中考全真模拟卷20数学(考试时间:90分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的某某、某某号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试X围:某某中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2的相反数是A.12-B.12C.2-D.2【答案】C.【解析】2的相反数是2-,故选C.2.下列几何体中,俯视图为四边形的是A.B.C.D.【答案】D.【解析】A、从上面看可得到一个五边形,不符合题意;B、从上面看可得到一个三角形,不符合题意;C、从上面看可得到一个圆,不符合题意;D、从上面看可得到一个四边形,符合题意.故选D.3.一组数据2,6,5,2,4,则这组数据的中位数是A.2 B.4 C.5 D.6【答案】B .【解析】把数据由小到大排列为:2,2,4,5,6,所以这组数据的中位数是4.故选B . 4.如图,直线//a b ,175∠=︒,235∠=︒,则3∠的度数是A .75︒B .55︒C .40︒D .35︒【答案】C .【解析】直线//a b ,175∠=︒,4175∴∠=∠=︒,234∠+∠=∠,342753540∴∠=∠-∠=︒-︒=︒. 故选C .5.如图所示,a 与b 的大小关系是A .a b <B .a b >C .a b =D .2b a =【答案】A .【解析】根据数轴得到0a <,0b >,b a ∴>,故选A . 6.在平面直角坐标系中,点(2,3)P --所在的象限是 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C .【解析】点(2,3)P --所在的象限是第三象限.故选C . 7.正八边形的每个内角为 A .120︒ B .135︒C .140︒D .144︒【答案】B .【解析】根据正八边形的内角公式得出:[(2)180][(82)180]8135n n -⨯÷=-⨯÷=︒.故选B . 8.如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是A .34B .43 C .35D .45【答案】D .【解析】由勾股定理得5OA ==,所以4cos 5α=.故选D . 9.已知方程238x y -+=,则整式2x y -的值为 A .5 B .10C .12D .15【答案】A .【解析】由238x y -+=得:2835x y -=-=,故选A .10.如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,则APC ∆的面积y 与点P 运动的路程x 之间形成的函数关系图象大致是A .B .C .D .【答案】C .【解析】设正方形的边长为a ,当P 在AB 边上运动时,12y ax =;当P 在BC 边上运动时,211(2)22y a a x ax a =-=-+;当P 在CD 边上运动时,211(2)22y a x a ax a =-=-;当P 在AD 边上运动时,211(4)222y a a x ax a =-=-+,大致图象为:故选C .第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.正五边形的外角和等于__________°. 【答案】360.【解析】任意多边形的外角和都是360︒,故正五边形的外角和为360︒. 故答案为:360︒.12.如图,菱形ABCD 的边长为6,60ABC ∠=︒,则对角线AC 的长是__________.【答案】6.【解析】四边形ABCD 是菱形,AB BC ∴=,60ABC ∠=︒,ABC ∴∆是等边三角形,6AC AB ∴==. 故答案为:6. 13.分式方程321x x=+的解是__________. 【答案】2x =.【解析】去分母得:322x x =+, 解得2x =,经检验2x =是分式方程的解. 故答案为:2x =.14.若两个相似三角形的周长比为2:3,则它们的面积比是__________. 【答案】4:9.【解析】两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.15.已知222a a +=-,则22(21)(4)a a a +++的值为__________. 【答案】6.【解析】原式222242816510165(2)16a a a a a a a a =++++=++=++,222a a +=-,∴原式10166=-+=,故答案为:6.16.观察下列一组数:12345,,,,357911,⋯,根据该组数的排列规律,可推出第10个数是__________.【答案】1021.【解析】分子为1,2,3,4,5,⋯,∴第10个数的分子为10, 分母为3,5,7,9,11,⋯,∴第10个数的分母为:121021+⨯=,∴第10个数为:1021,故答案为:1021. 17.如图,ABC ∆三边的中线AD 、BE 、CF 的公共点为G ,若12ABC S ∆=,则图中阴影部分的面积是__________.【答案】4.【解析】ABC ∆的三条中线AD 、BE ,CF 交于点G ,13CGE AGE ACF S S S ∆∆∆∴==,13BGF BGD BCF S S S ∆∆∆==,1112622ACF BCF S ABC S S ∆∆∆===⨯=,116233CGE ACF S S ∆∆∴==⨯=,116233BGF BCF S S ∆∆==⨯=,4CGE BGF S S S ∆∆∴=+=阴影. 故答案为4.三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.解方程:2320x x -+=. 【答案】11x =,22x =. 【解析】2320x x -+=,(1)(2)0x x ∴--=,10x ∴-=或20x -=,11x ∴=,22x =.19.先化简,再求值:21(1)11x x x ÷+--,其中1x =.【答案】11x +,原式=. 【解析】21(1)11x x x ÷+-- 11()(1)(1)11x x x x x x -=÷+-+-- (1)(1)1x xx x x =÷-+- 1(1)(1)x x x x x -=⨯-+ 11x =+,把1x =,代入原式11x ==+. 20.如图,已知ABC ∆中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E ,并连接DE (保留作图痕迹,不要求写作法); (2)在(1)的条件下,若4DE =,求BC 的长.【答案】(1)作图见解析;(2)8BC =.【解析】(1)作线段AC 的垂直平分线MN 交AC 于E ,点E 就是所求的点.(2)AD DB =,AE EC =,//DE BC ∴,12DE BC =,4DE =,8BC ∴=.四、解答题(二)(本大题共3小题,每小题7分,共21分)21.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%. (1)求这款空调每台的进价(利润率)-==利润售价进价进价进价. (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【答案】(1)1200元;(2)10800元.【解析】(1)设这款空调每台的进价为x元,根据题意得:16350.89%xx⨯-=,解得1200x=,经检验:1200x=是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:10012009%10800⨯⨯=元.22.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?【答案】(1)1000;(2)作图见解析;(3)3600人.【解析】(1)这次被调查的同学共有40040%1000÷=(名);故答案为:1000;(2)剩少量的人数是;1000400250150200---=,补图如下;(3)2001800036001000⨯=(人). 答:该校18000名学生一餐浪费的食物可供3600人食用一餐.23.如图,在直角坐标系中,直线1(0)y kx k =+≠与双曲线2(0)y x x=>相交于(1,)P m .(1)求k 的值;(2)若点Q 与点P 关于y x =成轴对称,则点Q 的坐标为(Q ,);(3)若过P 、Q 两点的抛物线与y 轴的交点为5(0,)3N ,求该抛物线的解析式,并求出抛物线的对称轴方程.【答案】(1)1k =;(2)(2,1);(3)34x =. 【解析】(1)把(1,)P m 代入2y x=,得2m =,(1,2)P ∴ 把(1,2)代入1y kx =+,得1k =;(2)如图所示:过点P 作PA y ⊥轴于点A ,过点Q 作QB x ⊥轴于点B , 点Q 与点P 关于y x =成轴对称,OP OQ =,POD DOQ ∴∠=∠,45AOD BOD ∠=∠=︒,AOP BOQ ∴∠=∠,在APO ∆和BQO ∆中,PAO QBO AOP BOQ PO QO ∠=∠⎧⎪∠=∠⎨⎪=⎩,()APO BQO AAS ∴∆≅∆,2AO OB ∴==,1AP QB ==,Q ∴点的坐标为:(2,1).故答案为:(2,1);(3)设抛物线的解析式为2y ax bx c =++,得:242153a b c a b c c ⎧⎪++=⎪++=⎨⎪⎪=⎩,解得23153a b c ⎧=-⎪⎪=⎨⎪⎪=⎩,故抛物线解析式为:22533y x x =-++,则对称轴方程为13242()3x =-=⨯-.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,O 是Rt ABC ∆的外接圆,90ABC ∠=︒,弦BD BA =,12AB =,5BC =,BE DC ⊥交DC 的延长线于点E .(1)求证:BCA BAD ∠=∠; (2)求DE 的长;(3)求证:BE 是O 的切线.【答案】(1)证明解解析;(2)14413DE =;(3)证明见解析. 【解析】(1)BD BA =,BDA BAD ∴∠=∠,BCA BDA ∠=∠(圆周角定理),BCA BAD ∴∠=∠.(2)BDE CAB ∠=∠(圆周角定理)且90BED CBA ∠=∠=︒,BED CBA ∴∆∆∽,∴BD DE AC AB =,即121312DE =,解得14413DE =. (3)证明:连结OB ,OD , 在ABO ∆和DBO ∆中,AB DBBO BO OA OD =⎧⎪=⎨⎪=⎩,()ABO DBO SSS ∴∆≅∆,DBO ABO ∴∠=∠,ABO OAB BDC ∠=∠=∠,DBO BDC ∴∠=∠,//OB ED ∴,BE ED ⊥,EB BO ∴⊥,BE ∴是O 的切线.25.如图,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC . (1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 的长为m ,ADE ∆的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值X 围; (3)在(2)的条件下,连接CE ,求CDE ∆面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留)π.word11 / 11 【答案】(1)9AB =,9OC =;(2)21(09)2s m m =<<;(3)72952π. 【解析】(1)已知:抛物线213922y x x =--; 当0x =时,9y =-,则:(0,9)C -;当0y =时,2139022x x --=,得:13x =-,26x =,则:(3,0)A -、(6,0)B ; 9AB ∴=,9OC =.(2)//ED BC ,AED ABC ∴∆∆∽, ∴2()AED ABC S AE S AB ∆∆=,即:2()19992s m =⨯⨯,得:21(09)2s m m =<<. (3)1199222ACE S AE OC m m ∆==⨯=, 22911981()22228CDE ACE ADE S S S m m m ∆∆∆∴=-=-=--+. 09m <<,∴当92m =时,CDE S ∆取得最大值,最大值为818.此时,99922BE AB AE =-=-=. 记E 与BC 相切于点M ,连接EM ,则EM BC ⊥,设E 的半径为r .在Rt BOC ∆中,BC ==.OBC MBE ∠=∠,90COB EMB ∠=∠=︒.BOC BME ∴∆∆∽,∴ME EB OC CB =,∴99r =r ∴==. ∴所求E的面积为:272952ππ=.。
中考数学必刷试卷01一、选择题(本大题共10个小题,每小题3分,共30分)1.下列运算中,结果为负值的是( ) A .(5)(2)-⨯-B .0(6)(8)⨯-⨯-C .6(20)-+-D .(6)(20)---【答案】C【解析】A 选项,原式=5×2=10,结果为正数; B 选项,原式=0,结果为非正非负; C 选项,原式=-(6+20)=-26,结果为负数; D 选项,原式=-6+20=14,结果为正数; 故选择C.2.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点( )A .(1,3)B .(﹣2,1)C .(﹣1,2)D .(﹣2,2)【答案】B【解析】以“将”位于点(1,﹣2)为基准点,则“炮”位于点(1﹣3,﹣2+3),即为(﹣2,1). 故选:B .3.已知直线y=2x经过点(1,a),则a的值为()A.a=2 B.a=-1C.a=-2 D.a=1【答案】A【解析】∵直线y=2x经过点P(1,a),∴a=2×1=2;故选:A4.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100-x=2(68+x) B.2(100-x)=68+xC.100+x=2(68-x) D.2(100+x)=68+x【答案】C【解析】设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68−x),故选:C.5.同时抛掷两枚均匀硬币,则两枚硬币都出现反面向上的概率是()A.15B.14C.13D.12【答案】B【解析】列表如下:所有等可能的情况有4种,其中两次反面向上的情况有1种,则14 P .故选B.6.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.DEBC=12B.ADAB=AEACC.S△DOE:S△BOC=1:2 D.△ADE∽△ABC 【答案】C【解析】∵BE和CD是△ABC的中线,∴DE是△ABC的中位线,∴DE=12BC,DE∥BC,∴DEBC=12,故A选项正确;∵DE∥BC,∴ADAB=AEAC,故B选项正确;∵DE ∥BC , ∴△DOE ∽△COB ,∴DOE COB S S ∆V =(DE BC )2=(12)2=14,故C 选项错误; ∵DE ∥BC ,∴△ADE ∽△ABC ,故D 选项正确; 故选:C .7.如图,ABC V 中,30A ∠=o,tan B =,AC =AB 的长为( )A. 3 B. 2+C .5D .92【答案】C【解析】如图,过C 作CD ⊥AB 于D ,则∠ADC =∠BDC =90︒, ∵∠A =30︒,AC=∴CD =12AC由勾股定理得:AD=3,∵tanB CD BD , ∴BD =2, ∴AB =2+3=5, 故选C.8.如图,⊙O 是△ABC 的内切圆,切点分别相为点D 、E 、F ,设△ABC 的面积、周长分别为S 、l ,⊙O 的半径为r ,则下列等式: ①∠AED +∠BFE +∠CDF =180°;②S =12l r ;③2∠EDF =∠A +∠C ;④2(AD +CF +BE )=l ,其中成立的是A .①②③④B .②③④C .①③④D .①②③【答案】A【解析】连接OD 、OE 、OF 、AO 、BO 、CO12,34,56OE OD OF==∴∠=∠∠=∠∠=∠Q°°°°12590190,590,390AED BFE CDF ∴∠+∠+∠=∴∠+∠=∠+∠=∠+∠=°153270AED BFE CDF ∴∠+∠+∠+∠+∠+∠= ∴ ∠AED +∠BFE +∠CDF =180°,故①正确;()1112221212ABC AOB BOC AOCS S S S AB OE BC OF AC OB r AB BC AC rl =++=⋅⋅+⋅⋅+⋅⋅=++=V V V V 故②正确;°90BEO BFO ∠=∠=Q∴在四边形BFOE 中有°°1802180ABC EOF EOF EDFABC BAC BCA ∠+∠=∠=∠∴∠+∠+∠=Q2EOF BAC BCAEDF BAC BCA∴∠=∠+∠∴∠=∠+∠故③正确;Q ⊙O 是△ABC 的内切圆∴AD =AE ,BE =BF ,CD =CF ∴2(AD +CF +BE )=l 故④正确. 故选A.9.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误【答案】C【解析】甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥B C.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠6=∠4.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6.∴∠1=∠3,∠5=∠4.∴AB =AF ,AB =BE .∴AF =BE . ∵AF ∥BE ,且AF =BE ,∴四边形ABEF 是平行四边形. ∵AB =AF ,∴平行四边形ABEF 是菱形. 故选C .10.如图1,抛物线 y = -x 2+ bx + c 的顶点为 P ,与 x 轴交于 A ,B 两点.若 A ,B 两点间的距离为 m , n 是 m 的 函数,且表示 n 与 m 的函数关系的图象大致如图2所示,则 n 可能为( )A .P A + AB B .P A - ABC .ABPAD .PAAB【答案】C【解析】设1212(,0),(,0)()A x B x x x <,则1x 和2x 是方程20x bx c -++=的两个不相等的根公式法解方程得:12b x =-,22b x =+由题意得:21m x x =-=根据二次函数的顶点公式可得:24(,)24b b c P +即2(,)24b m P如图,过点P 作PD AB ⊥,交x 轴于D由二次函数图象的性质可得,PAB ∆是等腰三角形,其中AB 为底边 则122m AD AB == 由点的坐标可知24m PD =则PA ==则PA AB m +=PA AB m -=ABPA=4PAAB= 由图2知,n 随m 的增大而减小,由此可判断四个选项中只有ABPA=故答案为:C.二、填空题(本大题共6小题,每小题4分,共24分)11.因式分解:ma +mb = . 【答案】m(a +b)【解析】=m(a +b).12.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】∵x 2+2(m -3)x +16是关于x 的完全平方式, ∴2(m -3)=±8, 解得:m =-1或7, 故答案为-1或7.13.如图,已知圆锥的底面⊙O 的直径BC =6,高OA =4,则该圆锥的侧面展开图的面积为 .【答案】15π.【解析】∵OB =12BC =3,OA =4,由勾股定理,AB =5,侧面展开图的面积为:12×6π×5=15π.故答案为15π.14.如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为_______.【答案】6【解析】连接OB ,OC∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=上运动,当线段AB最短时,点B的15.如图,点A的坐标为(-2,0),点B在直线y x坐标是__________.--【答案】(1,1)【解析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC =45°=∠AOC , ∴AC =OC ,由勾股定理得:2AC 2=OA 2=4,∴AC =OC ,由三角形的面积公式得:AC ×OC =OA ×CD ,=2CD , ∴CD =1, ∴OD =CD =1, ∴B (-1,-1). 故答案为:(-1,-1).16.如图,在矩形SBCD 中,点E 、F 、H 分别在边AB 、BC 、CD 、DA 上,点P 在矩形ABCD 内,若6AB =,8BC =,4AE CG ==,6BF DH ==,四边形AEPH 的面积为11,则四边形PFCG 的面积为________.【答案】11【解析】连接AP 、CP ,如图所示:设AHP V 在AH 边上的高为x ,AEP △在AE 边上的高为y ,则CFP V 在CF 边上的高为6x -,CGP V 在CG 边上的高为8y -,Q 862AH CF ==-=,4AE CG ==,∴AHP AEP AEPH S S S =+V V 四边形,1122AH x AE y =⨯⨯+⨯⨯,11241122x y =⨯+⨯=,∴2422x y +=,()()116822CGP CFP PFCG S S S CF x CG y =+=⨯-⨯+⨯-⨯V V 四边形,()()11264822x y =-⨯+-⨯,()()11442444221122x y =--⨯=-⨯=. 故答案为:11.三、解答题(本大题共7小题,共66分)17.(本小题满分6分)先化简2211121x x x x x---÷++,再任取一个你喜欢的x 的值,代入求值.【解析】1﹣22121x x x -++ ÷1x x- =1﹣()()()21111x x xx x +-⋅-+ =1﹣1xx +=11x xx +-+ =11x +, 当x =2时,原式=121+=13. 18.(本小题满分8分)甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是2S 甲=5[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8, 请作答:(1)若甲、乙射击成绩平均数都一样,则a +b = ;(2)在(1)的条件下,当甲比乙的成绩较稳定时,请列举出a ,b 的所有可能取值,并说明理由.【解析】(1)95109917a b +=⨯---= (2)在(1)的条件下,a 、b 的值有四种可能:①710a b =⎧⎨=⎩②107a b =⎧⎨=⎩③89a b =⎧⎨=⎩④98a b =⎧⎨=⎩ 第①种和第②种方差相等:2s 乙=15(1+0+0+4+1)=1.2>2s 甲,∴甲比乙的成绩较稳定.第③种和第④种方差相等:2s乙=15(1+0+0+0+1)=0.4<2s甲,∴乙比甲的成绩稳定.因此,710ab=⎧⎨=⎩或107ab=⎧⎨=⎩时,甲比乙的成绩较稳定.19.(本小题满分8分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F,D是BC边上的中点,连结A D.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.【解析】(1)∵AB=AC,∴∠C=∠ABC,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∵∠BAD=55°,∴∠C=∠ABC=90°﹣55°=35°;(2)猜想:FB=FE.证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.20.(本小题满分10分)生态公园计划在园内的坡地上造一片有A、B两种树的混合林,需要购买这两种树苗2000棵,种植A、B两种树苗的相关信息如下表:设购买A种树苗x棵,解答下列问题:(1)购买的B种树苗的数量为_______棵(含x的代数式表示);(2)请用含x的代数式表示造这片林的总费用;(3)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?【解析】(1)设购买A种树苗x棵,则购买的B种树苗的数量为(2000−x)棵,故答案为:(2000−x);(2)y=(25+3)x+(30+4)(2000−x),=−6x+68000;(3)由题意,可得0.95x+0.99(2000−x)=1960,∴x=500.当x=500时,y=−6×500+68000=65000,∴造这片林的总费用需65000元.21.(本小题满分10分)如图,在平面直角坐标系xOy内,函数y=12x的图象与反比例函数y=kx(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.【解析】(1)∵函数y =12x 的图象过点A (8,a ), ∴a =12×8=4, ∴点A 的坐标为(8,4), ∵反比例函数y =kx(k ≠0)图象过点A (8,4), ∴4=8k,得k =32, ∴反比例函数的解析式为y =32x; (2)设BP =b ,则AP =b +2, ∵点A (8,4),AB ⊥x 轴于点B , ∴AB =4,∠ABP =90°, ∴b 2+42=(b +2)2, 解得,b =3, ∴OP =8﹣3=5, 即线段OP 的长是5;(3)设点D 的坐标为(d ,12d ), ∵点A (8,4),点B (8,0),点P (5,0),S △ODP =S △ABO ,∴1258422d ⨯⨯=, 解得,d =645,∴12d =325,∴点D 的坐标为(645,325). 22.(本小题满分12分)如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA ,OC 分别在x 轴,y 轴的正半轴上,把正方形OABC 的内部及边上,横、纵坐标均为整数的点称为好点.点P 为抛物线2()2y x m m =--++的顶点.(1)当0m =时,求该抛物线下方(包括边界)的好点个数. (2)当3m =时,求该抛物线上的好点坐标.(3)若点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.【解析】(1)当0m ≡时,二次函数的表达式为22y x =-+ 画出函数图像(图1)图1Q 当0x =时,2y =;当1x =时,1y =,∴抛物线经过点(0,2)和(1,1)∴好点有:(0,0),(0,1),(0,2),(1,0)和(1,1),共5个(2)当3m =时,二次函数的表达式为2(3)5y x =--+画出函数图像(图2)图2Q 当1x =时,1y =;当2x =时,4y =;当4x =时,y 4= ∴该抛物线上存在好点,坐标分别是(1,1),(2,4)和(4,4)(3)Q 抛物线顶点P 的坐标为(,2)m m +∴点P 支直线2y x =+上由于点P 在正方形内部,则02m << 如图3,点(2,1)E ,(2,2)F图3∴当顶点P 支正方形OABC 内,且好点恰好存在8个时,抛物线与线段EF 有交点(点F除外)当抛物线经过点(2,1)E 时,2(2)21m m --++=解得:152m -=,252m +=(舍去) 当抛物线经过点(2,2)F 时,2(2)22m m --++=解得:31m =,44m =(舍去)∴1m <时,顶点P 在正方形OABC 内,恰好存在8个好点23.(本小题满分12分)如图1,⊙O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F . (1)求证:BD =BE .(2)当AF :EF =3:2,AC =6时,求AE 的长.(3)设AFEF=x ,tan ∠DAE =y . ①求y 关于x 的函数表达式;②如图2,连结OF ,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值.【解析】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG11=3 22BC AC==,∴在Rt△ABG中,=∵BF ⊥EC ,∴BF ∥AG , ∴AF BG EF EB=, ∵AF :EF =3:2,∴BE=23BG =2, ∴EG =BE +BG =3+2=5,在Rt △AEG 中,== (3)①如图1,过点E 作EH ⊥AD 于点H ,∵∠EBD =∠ABC =60°,∴在Rt △BEH 中,sin 602EH BE =︒=,∴EH BE ,BH=12BE , ∵BG AF x EB EF==, ∴BG =xBE ,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+12BE=(2x+12)BE,∴在Rt△AHE中,tan∠EAD=2141(2)2EHAH xx BE==++,∴y=;②如图2,过点O作OM⊥BC于点M,设BE=a,∵BG AFx EB EF==,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM=12EC=12a+ax,∴BM=EM﹣BE=ax-12 a,∵BF∥AG,∴△EBF∽△EGA,∴11BF BE aAG EG a ax x ===++,∵=,∴BF=11AGx=+∴△OFB的面积=11) 222BF BMax a=-g,∴△AEC的面积=1(2)22EC AGa ax=+g,∵△AEC的面积是△OFB的面积的10倍,∴111(2)=10)222a ax ax a+⨯-,∴2x2﹣7x+6=0,解得:12x=,232x=,∴y=或4++12y=⨯.。