六年级圆柱表面积和体积提高练习
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
圆柱表面积的变化题型一、平行底面切1、把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了多少平方厘米?2、把一根直径是20厘米,长是2米的圆柱形木材锯3次,表面积增加了多少平方厘米?3、把一根半径是20厘米,长是2米的圆柱形木材锯成同样的3段,表面积增加了多少平方厘米?题型二、垂直底面切割4、把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?5、把一个半径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?6、把一个底面周长为12.56厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?题型三、高度的变化7、一个圆柱,底面半径是5厘米,如果它的高增加1厘米,表面积增加多少平方厘米?8、一个高为10厘米的圆柱,底面半径是5厘米,如果它的高增加到15厘米,表面积增加多少平方厘米?9、一个高为10厘米的圆柱,底面半径是5厘米,如果它的高增加了5厘米,表面积增加多少平方厘米?练习一1、把一个底面半径6分米,高1米的圆柱切成3个小圆柱,表面积增加了多少?2、把一根直径是20 厘米,长是2 米的圆柱形木材锯成同样的4段,表面积增加多少立方厘米?3、工人叔叔把一根高1 米的圆柱形木料,沿与底面平行的方向锯成两段,这时表面积比原来增加了 25.12平方分米,求这根料的底面半径是多少?4、一根圆柱木棒,沿其横截面锯成3段,木棒表面积比原来增加了125.6平方厘米,求木棒的底面积是多少?练习二1、一圆柱底面直径是4米,高是6米,沿着底面直径把圆柱切成两半,求这个圆柱的表面积增加多少?2、一段圆柱体木料,如果截成两段,它的表面积增加6.28平方厘米;如果沿直径劈成两个半圆柱体,其表面积增加40平方厘米。
求此圆柱体的表面积。
3、一个圆柱高10厘米,如果它的高增加3厘米,那么它的表面积增加37.68平方厘米,求原来圆柱的表面积是多少平方厘米?4、一个圆柱高8厘米,如果它的高减少2厘米,那么它的表面积减少25.12平方厘米,求原来圆柱的表面积是多少平方厘米?5、一个圆柱体零件,高10cm,如果沿着它的一条底面直径往下切,切成大小相同的两份,表面积增加80cm²,那么原来这个圆柱体的表面积是多少?6、把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?7、一段长1米,横截面半径是10厘米的圆木,若沿着它的直径剧成两半,表面积增加了多少平方米?8、一段圆柱体木料,如果截成两段,它的表面积增加25.12平方厘米;如果沿直径劈成两个半圆柱体,它的面积增加100平方厘米。
<圆柱的体积>公式:长方形的表面积:长方体的体积:正方体的表面积:正方体的体积:圆柱的侧面积:圆柱的表面积:圆柱的体积:1.一个圆柱的底面半径为3cm,高为5cm,体积为( )cm2.一个圆柱的体积是325立方米,底面积是25平方厘米,这个圆柱的高是( )cm。
3.一个圆柱的底面周长为18.84cm,高为10cm, 这个圆柱的侧面积是( ),表面积是( ),体积是( )。
4.一根圆柱形木料长6m,把它锯成同样长的两段后,表面积增加了400平方厘米,这根木料原来的体积是( )。
5.一个体积80立方厘米的圆柱,底面积是20平方厘米,高是( )cm。
6.一个底面直径6cm,高1dm 的圆柱,体积是( ).7.圆柱的底面半径扩大2倍,高也扩大2倍,圆柱的体积扩大( )倍。
8.有一个圆柱形粮囤,从里面量,它的底面半径是3m,高是2.5m。
稻谷按每立方米550kg计算,这个装满粮食的粮囤约装有多少吨稻谷? (得数保留整数)9.一根圆柱形空心钢管(内直径8cm,外直径12cm)长4m,每立方厘米钢重7.8g,这根钢管重多少千克?10.一个圆柱形保暖茶杯,从里面量高6dm,底面直径2dm。
每立方分米水重1kg,它最多能装多少千克的水?11.一根长6m、底面直径4cm 的圆柱形钢材,平均每立方厘米钢重约8g,这根钢材有多重?12.一个圆柱形蓄水池,底面周长25.12m,深3m。
(1) 水池占地多大?(2) 在底面和四周抹水泥,抹水泥的面有多大? (3)它最多蓄水多少吨?13.小明每次运动前都准备好一瓶矿泉水,瓶子的内直径是6cm,运动后他喝了一些水,剩下水高5cm。
把瓶盖拧紧后倒置放平,无水部分是圆柱形,高7cm,这瓶水共多少毫升?14.一个圆柱形铁皮水桶(无盖) 的底面直径是6dm,高是5dm。
(1) 做这个水桶大约需要多少铁皮?(2) 李师博做了50个这样的水桶。
如果每平方米铁皮的售价是35 元,买做这些水桶的铁皮共需要多少钱? (得数保留整数)。
圆柱表面积与体积实际应用练习题精选一选择:(在正确答案下划线)(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)二、深化练习1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?3、用铁皮制10节同样大小的通风管,每节长是5分米,底面直径是1.2分米,至少需要多少平方分米铁皮?4、一种压路机的滚筒是圆柱形的,筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,(1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)6、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)(2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)7、一根长4米,底面直径是4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?8、用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。
(1)这个水桶的底面半径是多少?(2)这个水桶的侧面积是多少?(3)这个水桶最多能容纳多少升水?9、一个水杯从里面量底面直径10厘米,高15厘米,杯里的水面离杯口5厘米,这个杯子有水多少升?10、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4/5,第一个圆柱的体积是3.2立方厘米,第二个圆柱比第一个圆柱多多少立方厘米?11、一个零件,底面直径5厘米,高10厘米,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方厘米?(2每半个零件的表面积是多少?体积是多少?12、某宾馆大堂有6根圆柱形大柱,高10米,大柱周长25.12分米,要全部涂上油漆,如果按每平方米的油漆费为80元计算,需用多少钱?13、一根长2米,底面积半径是4厘米的圆柱形木段,把它据成同样长的4根圆柱形的木段。
小学六年级数学圆柱圆柱提高拓展题小学六年级数学圆柱提高拓展题题目一:计算圆柱的体积小明正在制作一座纸板城市模型,其中一栋建筑是一个圆柱形的大楼。
大楼的底面直径为12米,高度为25米。
请计算这座大楼的体积。
解答一:首先,计算圆柱的体积需要使用公式:V = πr²h,其中V表示体积,r表示底面半径,h表示高度。
根据题目中给出的信息可以得出:底面直径为12米,即半径为6米;高度为25米。
将得到的数值代入公式进行计算:V = π * 6² * 25计算得到:V ≈ 904.78立方米。
所以,这座大楼的体积约为904.78立方米。
题目二:求圆柱的侧面积小华正在制作一座冰淇淋模型,模型的形状类似于一个圆柱体。
圆柱的底面直径为8厘米,高度为15厘米。
请计算圆柱的侧面积。
解答二:圆柱的侧面积可以通过公式进行计算:A = 2πrh,其中A表示侧面积,r表示底面半径,h表示高度。
根据题目中给出的信息可以得出:底面直径为8厘米,即半径为4厘米;高度为15厘米。
将得到的数值代入公式进行计算:A = 2π * 4 * 15计算得到:A ≈ 377.99平方厘米。
所以,圆柱的侧面积约为377.99平方厘米。
题目三:计算圆柱的表面积小红正在制作一个水杯模型,水杯的形状是一个圆柱体,底面直径为10厘米,高度为12厘米。
请计算水杯的表面积。
解答三:圆柱的表面积可以通过公式进行计算:A = 2πr² + 2πrh,其中A表示表面积,r表示底面半径,h表示高度。
根据题目中给出的信息可以得出:底面直径为10厘米,即半径为5厘米;高度为12厘米。
将得到的数值代入公式进行计算:A = 2π * 5² + 2π * 5 * 12计算得到:A ≈ 471.24平方厘米。
所以,水杯的表面积约为471.24平方厘米。
以上是关于小学六年级数学圆柱的提高拓展题的解答。
希望能对你有所帮助!。
六年级数学同步专项训练题(圆柱圆锥的表面积和体积)姓名:评分:一、必记公式(用文字表示)及进率:圆的面积=圆的周长=圆柱的侧面积=圆柱的表面积=圆柱的体积=圆锥的体积=长方体体积=正方体体积=1平方米=()平方分米1平方分米=()平方厘米1立方米=()立方分米1立方分米=()立方厘米1升=()毫升1立方分米=()升1立方厘米=()毫升二、灵活题(只列式):1、一个直圆柱底面半径是1厘米,高是2.5厘米.它的侧面积是多少平方厘米?2、一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是多少厘米?3、一个圆柱底面周长是6.28分米,高是1.5分米,它的表面积是多少平方分米?体积是多少立方分米?4、一个圆锥体的底面周长是12.56分米,高是6分米,它的体积是多少立方分米?5、一个圆锥体底面直径和高都是6厘米,它的体积是多少立方厘米?6、一根长2米的圆木,截成两段后,表面积增加48平方厘米,这根圆木原来的体积是多少立方厘米?7、一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是多少立方厘米?(雅正辅导中心资料)8、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是多少立方米?圆锥的体积是多少立方米?9、等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆柱的体积是多少立方分米?圆锥的体积是多少立方分米?三、生活应用题1、压路机的滚筒是一个圆柱体,它的底面直径是1米,长2米.每滚动一周能压多大面积的路面?2、一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重1.5吨,这堆沙重多少吨?3、一辆货车箱是一个长方体,它的长是4米,宽是1.5米,高是4米,装满一车沙,卸后沙堆成一个高是1.5米的圆锥形,它的底面积是多少平方米?5、一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形.量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米.这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤能装稻谷多少吨?(保留一位小数)6、在明十三陵的一个大宫殿中,有四根圆柱形状的楠木柱,每根高14.3米,直径1.7米.要把它们全部涂上一层红油漆,涂油漆的面积一共是多少平方米?(得数保留整数)(雅正辅导中心资料)。
《圆柱的表面积》专项练习1、一个底面周长和高相等的圆柱,如果高增加1dm,它的侧面积就增加6.28dm²,这个圆柱的底面周长是多少?解:6.28÷1=6.28(dm)答:这个圆柱的底面周长是6.28分米。
2、一个圆柱的底面半径是20cm,高是底面直径的一半,它的表面积是多少平方厘米?解:高=20 周长=20×2×3.14表面积=底面积×2+侧面积=20×20×3.14×2+20×2×3.14×20=5024(平方厘米)答:它的表面积是5024平方厘米。
3、做5节铁皮通风管,每节长 1.2m,横截面直径是10cm,做这些通风管至少需要多少平方米铁皮?解:铁皮=0.1×3.14×1.2×5²=1.884平方米答:做这些通风管至少需要1.884平方米铁皮。
4、一个容器,从正面看和从上面看如下图,求这个立体图形的表面积是多少?解:3.14×(4÷2)²×2+3.14×4×6+5×1×4=120.48(cm²)答:这个立体图形的表面积是120.48平方厘米。
5、如图,一个高为24cm的圆柱被截去4cm后,圆柱的表面积减少了25.12cm²。
原来圆柱的侧面积是多少平方厘米?解:25.12÷4×24=150.72(cm2)答:原来圆柱的侧面积是150.72平方厘米。
6、某宾馆有4根圆柱形柱子,每根柱子高是6m,底面周长为2.512m,现要给这些柱子贴上墙纸,如果每平方米墙纸45元,给这些柱子贴墙纸一共需要多少元? 解:2.512×6×4×45=2712.96(元)答:给这些柱子贴墙纸一共需要2712.96元。
7、用一个滚刷往墙壁上刷涂料,滚刷的半径是6cm,长30cm。
人教版数学六年级下册:《圆柱体的体积和表面积》练习题一、选择题1. 一个圆柱体的高是4cm,底面半径是2cm,则该圆柱体的体积是多少?A. 8cm³B. 16cm³C. 32cm³D. 64cm³2. 一个圆柱体的高是8cm,底面半径是3cm,则该圆柱体的表面积是多少?A. 24cm²B. 48cm²C. 72cm²D. 96cm²3. 一个圆柱体的体积是24cm³,底面半径是2cm,则该圆柱体的高是多少?A. 2cmB. 3cmC. 4cmD. 6cm4. 一个圆柱体的表面积是48cm²,底面半径是3cm,则该圆柱体的高是多少?A. 2cmB. 4cmC. 6cmD. 8cm二、计算题1. 一个圆柱体的高为6cm,底面直径为4cm,求该圆柱体的体积和表面积。
答案:- 体积:V = πr²h = π(2cm)²(6cm) = 24πcm³ (约75.4cm³)- 表面积:S = 2πr² + 2πrh = 2π(2cm)² + 2π(2cm)(6cm) = 8πcm² + 24πcm² = 32πcm² (约100.5cm²)2. 一个圆柱体的体积是50.24cm³,底面直径为8cm,求该圆柱体的高。
答案:已知体积V = πr²h,底面直径为8cm,则底面半径 r = 4cm。
代入已知值:50.24cm³ = π(4cm)²h解方程,求得h ≈ 2cm,所以该圆柱体的高约为2cm。
六年级数学下册典型例题系列之第三单元圆柱的表面积问题提高部分(原卷版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第三单元圆柱的表面积问题提高部分。
本部分内容主要选取圆柱的表面积问题中较有难度的题型,包括圆柱的四种旋转构成法、圆柱的三种表面积增减变化以及不规则立体图形和组合立体图形的表面积等,这几类问题在考试中十分常见,建议作为本章核心内容进行讲解,一共划分为九个考点,欢迎使用。
【考点一】圆柱常见的四种旋转构成法。
【方法点拨】1.圆柱的旋转:一个长方形以一条边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。
2.在旋转时,以谁为轴谁就是高,而另一条边就是底面半径。
第一种旋转方法:以宽为轴进行旋转。
以宽为轴进行旋转,宽就是圆柱的高,长就是底面圆的半径。
第二种旋转方法:以长为轴进行旋转。
以长为轴进行旋转,长就是圆柱的高,宽就是底面圆的半径。
第三种旋转方法:以两条长中点的连线为轴进行旋转。
以两条长中点的连线为轴进行旋转,宽就是圆柱的高,长的一半就是底面圆的半径。
第四种旋转方法:以两条宽中点的连线为轴进行旋转。
以两条宽中点的连线为轴进行旋转,长就是圆柱的高,宽的一半就是底面圆的半径。
【典型例题1】把长为4、宽为3的长方形绕着它的一条边旋转一周,则所得到的圆柱的表面积是多少?(结果保留π)【典型例题2】正方形的边长为4厘米,按照下图中所示的方式旋转,那么得到的旋转体的表面积是多少?【典型例题3】请计算下图长方形绕虚线旋转一周后得到的圆柱的表面积。
【对应练习1】一个长方形的长是5厘米,宽是2厘米。
以它的长边为轴,旋转一周,得到的圆柱表面积是多少平方厘米?【对应练习2】下图是一张长方形纸,长12cm,宽10cm。
苏教版数学六年级下册重难点题型提高练第二单元《圆柱和圆锥》第4课时:圆柱的侧面积、表面积和体积一.选择题1.(鄞州区)李明拿了等底等高的圆锥和圆柱形容器各一个,他将圆柱形容器装满水后倒入圆锥形容器.当水全部倒完后,发现从圆锥形容器内溢出36.2毫升水.这时,圆锥形容器内还有水 (毫升.)A .36.2B .54.3C .18.1D .108.6解:36.2(31)÷-36.22=÷(毫升),18.1=答:圆锥形容器内还有水18.1毫升.故选:.C 2.(春•卢龙县期末)长方体、正方体、圆柱和圆锥的底面积和高相等,下列说法错误的是 ()A .长方体、正方体和圆柱的体积相等B .正方体体积是圆锥体积的3倍C .圆锥体积是圆柱体积的13D .长方体、正方体和圆柱的表面积相等解:.如果长方体、正方体、圆柱体的底面积和高相等,那么长方体、正方体、圆柱体的体积一A 定相等,因此,长方体、正方体和圆柱的体积相等.此说法正确..因为等底等高的圆柱的体积是圆锥体积的3倍.正方体和圆柱的底面积相等、高也相等,所以B 正方体的体积是圆锥体积的3倍.此说法正确..因为圆柱和圆锥的底面积相等、高也相等,所以圆锥的体积是圆柱体积的.此说法正确.C 13.当长方体、正方体、圆柱和圆锥的底面积相等、高也相等时,圆锥的表面积最小.因此,长方D 体、正方体和圆柱的表面积相等.此说法错误.故选:.D 3.(湘潭模拟)一个底面半径是10厘米的圆锥,它的高如果增加3厘米,它的体积将会增加 (立方厘米.)A .3.14B .78.5C .314D .7.85解:21 3.141033⨯⨯⨯1 3.1410033=⨯⨯⨯(立方厘米),314=答:它的体积将会增加314立方厘米.故选:.C 4.(兴化市)图中的正方体、圆柱体和圆锥体的底面积相等,高也相等,下面说法正确的是? ()A .圆锥的体积与圆柱的体积相等B .圆柱的体积比正方体的体积大一些C .圆锥的体积是正方体体积的13D .以上说法都不对解:正方体、圆柱体和圆锥体的底面积相等,高也相等,正方体和圆柱的体积就相等,圆锥的体积是圆柱体积(正方体体积)的.13故选:.C 5.有一个圆柱和一个圆锥的体积相等,圆柱的高是圆锥的一半,圆锥的底面积是,圆柱的底29cm 面积是 (2)cm A .6B .3C .9解:1932h h ⨯⨯÷23h h =⨯(平方厘米)6=答:圆柱的底面积是6平方厘米.故选:.A 二.填空题6.(西安模拟)如果分别从两个体积之和为的正方体木块中挖去最大的圆锥做成两个如图3120cm 所示的工件模具,那么这两个模具的体积之和为 88.6 .取3cm (π 3.14)解:设大正方体的棱长是,小正方体的棱长是,则:a b ()V V V V +-+大正方体小正方体大圆锥小圆锥332211[((]3232a b a b a b ππ=+-+33331111[]3434a b a b ππ=+-⨯+⨯333311[]1212a b a b ππ=+-+33331()12a b a b π=+-+331(1)()12a b π=-+1(1)12012π==-⨯112012012π=-⨯12010π=-12010 3.14=-⨯12031.4=-(立方厘米)88.6=答:这两个模具的体积之和为.388.6cm 故88.6.7.(揭阳期中)求下面圆锥的体积.解:21 3.14(82)63⨯⨯÷⨯3.14162=⨯⨯(立方厘米)100.48=答:这个圆锥的体积是100.48立方厘米.8.(春•上海月考)一个直角三角形的三条边长分别是、和,若以直角边为轴旋转一3cm 4cm 5cm 圈,旋转一圈形成的图形体积是 37.68或50.24 立方厘米.取(π 3.14)解:21 3.14343⨯⨯⨯1 3.14943=⨯⨯⨯(立方厘米);37.68=21 3.14433⨯⨯⨯1 3.141633=⨯⨯⨯(立方厘米);50.24=答:形成图形的体积是37.68立方厘米或50.24立方厘米.故37.68、50.24.9.(春•成武县期末)底面积是,高是的圆锥的体积是 50 ,与它等底等高的圆230cm 5cm 3cm 柱的体积是 .3cm 解:(立方厘米),1305503⨯⨯=(立方厘米),503150⨯=答:这个圆锥的体积是50立方厘米,与它等底等高的圆柱的体积是150立方厘米.故50、150.10.(防城港模拟)一个底面直径是12厘米的圆锥,从顶点沿高将它切成两半后,表面积增加了96平方厘米,这个圆锥的高是 8 厘米.解:(平方厘米)96248÷=48212⨯÷9612=÷(厘米)8=答:这个圆锥的高是8厘米.故8.11.(防城港模拟)学校食堂运进一堆煤,堆放成一个近似的圆锥.它的底面直径是6米,高是1.3米.如果每立方米煤重1.8吨,这堆煤重 22.0428吨 .解:2613.14() 1.323⨯⨯⨯3.143 1.3=⨯⨯(立方米)12.246=(吨1.812.24622.0428⨯=)答:这堆煤重22.0428吨.故22.0428吨.三.判断题12.(益阳模拟)一个圆柱体和一个圆锥体的体积和底面积分别相等,那么圆柱体的高是圆锥体的高的. (判断对错)13√解:由分析得:等底等高的圆柱的体积是圆锥体积的3倍,当圆柱与圆锥的体积相等、底面积相等时,圆柱的高是圆锥高的.13因此,一个圆柱体和一个圆锥体的体积和底面积分别相等,那么圆柱体的高是圆锥体的高的.这13种说法是正确的.故.√13.(邵阳模拟)一个圆锥的体积是,底面半径是,求它的高的算式是:39.42dm 3dm . (判断对错)219.42(3.143)3h =÷⨯⨯⨯解:29.423(3.143)⨯÷⨯所以本题列式错误;故.⨯14.(春•沛县月考)一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍. .(判断对错)√解:依据分析可得:一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍,所以原题说法正确.故.√15.(衡阳模拟)一个圆锥的体积是一个圆柱的,那么它们一定等底、等高. (判断对错)13⨯解:设圆柱的底面积为12,高为3,则圆柱的体积为:;12336⨯=圆锥的底面积为6,高为6,则圆锥的体积为:;166123⨯⨯=此时圆锥的体积是圆柱的体积的,但是它们的底面积与高都不相等,13所以原题说法错误.故.⨯四.计算题16.(保定模拟)计算圆锥的体积.解:21 3.142153⨯⨯⨯1 3.144153=⨯⨯⨯(立方分米),62.8=答:它的体积是62.8立方分米.17.(保定模拟)计算下面圆柱的表面积和体积,计算圆锥体的体积.(单位:厘米)解:(1)23.1466 3.14(62)2⨯⨯+⨯÷⨯18.846 3.1492=⨯+⨯⨯113.0456.52=+(平方厘米)169.56=23.14(62)6⨯÷⨯3.1496=⨯⨯(立方厘米)169.56=答:圆柱的表面积是169.56平方厘米,体积是169.56立方厘米.(2)21 3.14263⨯⨯⨯1 3.14243=⨯⨯3.148=⨯(立方厘米)25.12=答:圆锥体的体积是25.12立方厘米.五.应用题18.(靖州县期末)有一堆混凝土呈圆锥形,底面半径为10米,高3米,用它在东庄修一条宽4米,厚0.2米的水泥路,能修多长?(得数保留整数)解:21 3.14103(40.2)3⨯⨯⨯÷⨯1 3.1410030.83=⨯⨯⨯÷3140.8=÷(米392≈)答:能铺392米长.19.(保定模拟)李大伯将一些稻谷堆在墙角处,形状如下图.你有办法测量这堆稻谷的体积吗?请先设计一个可行的测量方案,再假设所需要的数据,算出稻谷的体积.解:先量出底面周长也就是圆周长的,再测量高,14设稻谷堆的底面周长是6.28米,高是1.5米,6.284 3.142⨯÷÷25.12 3.142=÷÷(米4=)21 3.144 1.53⨯⨯⨯1 3.1416 1.53=⨯⨯⨯(立方米)25.12=答:这堆稻谷的体积是25.12立方米.20.(亳州模拟)这块冰激凌的体积是多少?解:22113.14(62)4 3.14(62)933⨯⨯÷⨯+⨯⨯÷⨯113.1494 3.149933=⨯⨯⨯+⨯⨯⨯37.6884.78=+3122.46()cm =答:这个冰激凌的体积是.3122.46cm 21.(春•单县期末)在一个底面直径为12厘米,高20厘米,内有水深15厘米的圆柱形玻璃容器中,放入一个底面直径是10厘米的圆锥形铁块,水面升高2厘米,求放入圆锥形铁块的高是多少?解:23.14(122)2⨯÷⨯3.14362=⨯⨯(立方厘米)226.08=(厘米)1025÷=2226.083(3.145)⨯÷⨯678.2478.5=÷(厘米)8.64=答:圆锥形铁块的高是8.64厘米.22.(平舆县)一个圆锥形的沙堆,底面周长是18.84米,高是2米,用这堆沙铺在一条宽10米的公路上,铺5厘米厚,这堆沙能铺多长的公路?解:5厘米米,0.05=21 3.14(18.84 3.142)2(100.05)3⨯⨯÷÷⨯÷⨯1 3.14920.53=⨯⨯⨯÷18.840.5=÷(米,37.68=)答:这堆沙能铺37.68米长的公路.23.(春•亳州期中)将一块底面积是,高是的长方体钢坯铸造成3个完全一样的圆锥231.4cm 6cm 形铅锤,每个铅锤的底面半径是,高是多少厘米?2cm 解:(立方厘米),31.46188.4⨯=21188.43(3.142)3÷÷÷⨯62.8312.56=⨯÷188.412.56=÷(厘米),15=答:高是15厘米.六.操作题24.(汨罗市期中)画一个直径是,高的圆锥,并求出它的体积.4cm 6cm 解:所画圆锥如下图所示:圆锥的体积:213.14(42)63⨯÷⨯⨯13.14463=⨯⨯⨯,12.562=⨯(立方厘米)25.12=答:圆锥的体积是25.12立方厘米.25.求圆锥的体积.解:21 3.14 1.5(41)3⨯⨯⨯-1 3.14 2.2533=⨯⨯⨯(立方厘米)7.065=答:圆锥的体积是7.065立方厘米.七.解答题26.(亳州模拟)一个圆柱和一个圆锥的体积和高都相等,圆柱底面积是,圆锥底面积是 212cm 36 .2cm解:(平方厘米),12336⨯=答:圆锥的底面积是36平方厘米.故36.27.(衡阳模拟)如图,一个立体图形从正面看得到的是图形,从上面看得到的是图形,这个A B 图形的体积是多少立方厘米?解:21 3.14363⨯⨯⨯1 3.14963=⨯⨯⨯(立方厘米),56.52=答:这个图形的体积是56.52立方厘米.28.(春•江城区期中)计算下面各圆锥的体积.解:(1)(立方米)19 3.610.83⨯⨯=答:圆锥的体积是10.8立方米.(2)21 3.14383⨯⨯⨯1 3.14983=⨯⨯⨯3.1424=⨯(立方分米)75.36=答:圆锥的体积是75.36立方分米.(3)21 3.14(82)123⨯⨯÷⨯1 3.1416123=⨯⨯⨯3.1464=⨯(立方厘米)200.96=答:圆锥的体积是200.96立方厘米.29.(长沙模拟)图沿着图中虚线旋转一周可以得到一个立体图形(单位:厘米)(1)这个图形的名称叫 圆锥 .(2)计算这个立体图形的体积.解:(1)沿着图中的虚线旋转一周,可以得到一个立体图形,这个立体图形叫做圆锥.(2)圆锥的体积21 3.143 4.53=⨯⨯⨯1 3.149 4.53=⨯⨯⨯9.42 4.5=⨯(立方厘米);42.39=答:这个立体图形的体积是42.39立方厘米.故圆锥.30.(高邮市)把三角形沿着边或分别旋转一周,得到两个圆锥(如图1、图,ABC AB BC 2)(单位:厘米)谁的体积大?大多少立方厘米?解:图21:3.14363⨯⨯÷3.14963=⨯⨯÷(立方厘米)56.52=图22:3.14633⨯⨯÷3.143633=⨯⨯÷(立方厘米)113.04=(立方厘米)113.0456.5256.52-=答:图2的体积大,大56.52立方厘米.31.(衡阳模拟)一个圆锥形沙堆的体积是47.1立方米,高是5米,这个沙堆占地多少平方米?解:47.135⨯÷141.35=÷(平方米),28.26=答:这个沙堆占地28.26平方米.。
六年级圆柱表面积和体积提高练习
例1:表面积变化
1、一个圆柱的高减少2厘米侧面积就减少50.24平方厘米,它的体积减少多少立方厘米?
练习:一个圆柱的高增加3分米,侧面积就增加56.52平方分米,它的体积增加多少立方分米?
2、一个圆柱的侧面展开是一个正方形。
如果高增加2厘米,表面积增加12.56平方厘米。
原来这个圆柱的侧面积是多少平方厘米?
练习:一个圆柱的侧面展开是一个正方形。
如果高减少3分米,表面积减少94.2平方分米。
原来这个圆柱的体积是多少立方分米?
例2:拼、切圆柱
1、把一个高是6分米的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方分米。
原来这个圆柱的体积是多少立方分米?
练习:把两个完全一样的半个圆柱合并成一个圆柱,底面半径是3厘米,表面积减少72平方厘米。
现在这个圆柱的侧面积是多少平方厘米?
2、把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。
原来这个圆柱体积是多少立方分米?
练习:把3完全一样的圆柱,连接成一个大圆柱,长9厘米,表面积减少12.56平方分米。
原来每个圆柱的体积是多少立方厘米?
例3:加工圆柱
1、一个正方体棱长是4分米,把它削成一个最大的圆柱,削去的体积是多少?练习:一个正方体棱长是20厘米,把它削成一个最大的圆柱,这个圆柱的表面积是多少平方厘米?
2、一个长方体,长8分米,宽8分米,高12分米。
把它削成一个最大的圆柱,这个圆柱的体积为多少立方分米?
练习:一个长方体,长8厘米,宽6厘米,高8厘米。
把它削成一个最大的圆柱,这个圆柱体积是多少立方厘米?
例4:旋转圆锥1、一个直角三角形,两条直角边分别是6厘米和9厘米,沿一条直角边旋转一周后,得到一个圆锥体,求圆锥体的体积是多少?
2、一个直角三角形,两条直角边分别是6厘米和10厘米,沿斜边旋转一周后,得到一个旋转体,求旋转体的体积是多少?
综合练习:
1、一个圆柱的高是5厘米,侧面展开是一个长为31.4厘米的长方形.这个圆柱体积是多少立方厘米?
2、一个圆柱体的高和底面周长相等。
如果高缩短2厘米,表面积就减少12.56平方厘米,求这个圆柱的表面积。
3、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方厘米?
4、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方厘米。
截成后每段圆木的体积是多少立方厘米?
5、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?
6、把一根圆柱形木材沿底面直径切开成两个半圆柱体,已知一个剖面的面积是960平方厘米,半圆柱的体积是3014.4立方厘米,求原来圆柱形木材的体积和侧面积。
7、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了200平方厘米。
已知圆柱高20厘米,求圆柱的体积。
8、把一个正方体削成一个体积最大的圆柱体。
如果圆柱的侧面积是314平方厘米,求正方体的表面积。
9、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?
10、一个圆柱体和一个圆锥体的体积相等,它们底面积的比是3:5,圆柱的高8厘米,圆锥的高是()厘米。
11、一个菱形的两条对角线分别为4厘米和6厘米,以菱形的对角线为轴旋转,转成的立体图形的体积是()立方厘米或()立方厘米。
12、在一只底面半径为10厘米的圆柱形玻璃容器中,水深8厘米,要在容器中放入长和宽都是8厘米,高15厘米的一块铁块。
如果把铁块横放在水中水面上升多少厘米?。