高中数学极坐标与参数方程知识点(可编辑修改word版)
- 格式:docx
- 大小:240.80 KB
- 文档页数:4
1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程半径为的圆,半径为,注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
极坐标与参数方程基本知识点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(极坐标与参数方程基本知识点)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为极坐标与参数方程基本知识点的全部内容。
极坐标与参数方程基本知识点一、极坐标知识点1.伸缩变换:设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2。
极坐标系的概念:在平面内取一个定点O,从O 引一条射线Ox,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴。
①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.3.点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为。
有序数对叫做点的极坐标,记为。
极坐标与表示同一个点。
极点的坐标为。
4。
若,则,规定点与点关于极点对称,即与表示同一点。
如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的。
5.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合),(y x P ⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P'''ϕM M O M ||OM M ρOx OM xOM ∠M θ),(θρM ),(θρM),(θρ)Z )(2,(∈+k k πθρO )R )(,0(∈θθ0<ρ0>-ρ),(θρ-),(θρ),(θρ-),(θπρ+πθρ20,0≤≤>),(θρ),(θρ③两种坐标系中取相同的长度单位.(2)互化公式6.曲线的极坐标方程:1.直线的极坐标方程:若直线过点,且极轴到此直线的角为,则它的方程为: 几个特殊位置的直线的极坐标方程(1)直线过极点 (2)直线过点且垂直于极轴 (3)直线过且平行于极轴 方程:(1) 或写成及 (2) (3)ρsinθ=b 2.圆的极坐标方程: 若圆心为,半径为r 的圆方程为:几个特殊位置的圆的极坐标方程(1)当圆心位于极点,r 为半径 (2)当圆心位于(a 〉0),a 为半径 (3)当圆心位于,a 为半径方程:(1) (2) (3) 7。
极坐标与参数方程知识要点极坐标系1、极坐标系的概念:在平面内任取一定点O ,由点O 引一条射线Ox ,并确定一个长度单位、一个角度单位(通常取弧度)及角度的正方向(通常取逆时针),这就构成一个极坐标系.其中O 叫做极点,Ox 叫做极轴.2、点的极坐标:平面上任意一点M 的极坐标用有序数对(),ρθ表示,其中ρ是极径,表示点M 与极点O 的距离OM ,θ是极角,表示以极轴Ox 为始边,射线OM 为终边的角.(规定极点的极坐标为(0,)θ,其中θ可以取任意角)一般情况下,我们取极径0ρ≥,极角满足02θπ≤<,那么除极点外,平面上的点与极坐标(),ρθ之间就是一一对应的关系.3、极坐标(),ρθ与直角坐标(),x y 之间的互化公式:cos sin x y ρθρθ=⎧⎨=⎩ 和 222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩注意:(1)当直角坐标为()0,y 时,则当0y >时,对应的极坐标为,2y π⎛⎫⎪⎝⎭,当0y <时,对应的极坐标为3,2y π⎛⎫- ⎪⎝⎭; (2)将直角坐标转化为极坐标时,要注意根据点所在的象限恰当选取点的极角; (3)将极坐标方程转化为直角坐标方程时,一般通过构造2cos ,sin ,ρθρθρ来实现互化.4、简单曲线的极坐标方程: 特殊位置圆的极坐标方程:特殊位置直线的极坐标方程:参数方程1、参数方程的概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩,并且对于t 得每一个允许值,由方程组()()x f t y g t =⎧⎨=⎩所确定的点(,)M x y 都在这条曲线上,那么方程()()x f t y g t =⎧⎨=⎩就叫做这条曲线的参数方程.t 叫做参变数,简称参数.2、参数方程与普通方程的互化:①参数方程化成普通方程:消参(方法:代入法、加减法、三角法,如22sin cos 1αα+=); ②普通方程化成参数方程:引入参数,用代入法;③注意参数方程与普通方程互化时其方程的等价性:参数的取值范围与,x y 的取值范围有密切的关系. 3、特殊曲线的参数方程及参数的几何意义:。
第一部分:坐标系与参数方程【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换()()⎩⎨⎧>•='>•='0,0,:μμλλϕy y x x 的作用下,点()y x P ,对应到点()y x P '',,称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对()θρ,叫做点M 的极坐标,记作M ()θρ,.一般地,不作特殊说明时,我们认为θρ,0≥可取任意实数.特别地,当点M 在极点时,它的极坐标为()()R ∈θθ,0。
和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标()θρ,表示;同时,极坐标()θρ,表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是()y x ,,极坐标是()()0,≥ρθρ,于点M直角坐标()y x ,极坐标()θρ,互化公式⎩⎨⎧==θρθρsin cos y x ()0tan 222≠=+=x xyy x θρ 在一般情况下,由θ确定角时,可根据点M 所在的象限最小正角. 曲线图形极坐标方程圆心在极点,半径为r 的圆()πθρ20<≤=r圆心为()0,r ,半径为r 的圆⎪⎭⎫ ⎝⎛<≤-=222πθπρr圆心为⎪⎭⎫⎝⎛2,πr ,半径为r 的圆()πθθρ<≤=0sin 2r过极点,倾斜角为α的直线(1)()()R R ∈+=∈=ραπθραθ或(2) ()()00≥+=≥=ραπθραθ或过点()0,a ,与极轴垂直的直线⎪⎭⎫ ⎝⎛<<-=22cos πθπθρa过点⎪⎭⎫⎝⎛2,πa ,与极轴平行的直线()πθθρ<<=0sin a注:由于平面上点的极坐标的表示形式不唯一,即()()()()θπρθπρθπρθρ+--+-+,,,,2,,,都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程θρ=点⎪⎭⎫⎝⎛4,4ππM 可以表示为⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+45,424,424,4ππππππππM M M 或或等多种形式,其中,只有⎪⎭⎫⎝⎛4,4ππM 的极坐标满足方程θρ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标()y x ,都是某个变数t 的函数()()⎩⎨⎧==t g y t f x ①,并且对于t 的每一个允许值,由方程组①所确定的点()y x M ,都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数()y x ,的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数()y x ,中的一个与参数t 的关系,例如()t f x =,把它代入普通方程,求出另一个变数与参数的关系()t g y =,那么()()⎩⎨⎧==t g y t f x 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使()y x ,的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
高考复习之参数方程一、考纲要求1. 理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法. 会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念 . 会正确进行点的极坐标与直角坐标的互化 . 会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程 . 不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1) 标准式过点Po(x0,y0),倾斜角为α的直线l( 如图 ) 的参数方程是x x0t cosa为参数 )(ty y0t sin a(2) 一般式过定点 P0(x 0,y 0) 斜率 k=tg α = b的直线的参数方程是ax x0at(t 不参数 )②y y0bt在一般式②中,参数 t不具备标准式中t 的几何意义,若 a2+b2=1, ②即为标准式,此时,| t |表示直线上动点P 到定点 P0的距离;若a2+b2≠ 1,则动点 P 到定点 P0的距离是a2b2|t|.直线参数方程的应用设过点 P (x ,y), 倾斜角为α的直线 l 的参数方程是000x x0t cosa( t 为参数)y y0t sin a若 P 、 P是 l上的两点,它们所对应的参数分别为t ,t,则1212(1)P 1、 P2两点的坐标分别是(x 0+t 1cos α,y 0+t 1sin α)(x 0+t 2cos α,y 0+t 2sin α) ;(2)| P1P2|=| t 1-t 2| ;(3)线段 P1P2的中点 P所对应的参数为 t ,则t=t1t 22中点t1t 2|P 到定点 P 的距离| PP |=| t | =|002(4)若 P0为线段 P1P2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆x a r cos圆心在 (a,b) ,半径为 r 的圆的参数方程是b( φ是参数 )y r sinφ是动半径所在的直线与x 轴正向的夹角,φ∈[ 0,2π] ( 见图 ) (2)椭圆椭圆 x2y 21(a>b>0)的参数方程是a 2b2x a cosy bsin(φ为参数)椭圆y 2y2(a >b> 0) 的参数方程是a12b2x b cos( φ为参数 )y asin3.极坐标极坐标系在平面内取一个定点O,从 O引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向) ,这样就建立了一个极坐标系,O 点叫做极点,射线 Ox 叫做极轴 .①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可 .点的极坐标设M点是平面内任意一点,用ρ表示线段OM的长度,θ表示射线Ox 到OM的角度,那么ρ叫做 M点的极径,θ叫做 M点的极角,有序数对 ( ρ , θ ) 叫做 M点的极坐标 .( 见图 )极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与 x 轴的正半轴重合③两种坐标系中取相同的长度单位 .(2)互化公式x cos2x2y2 y( xy sin 'tg0)x三、知识点、能力点提示( 一 ) 曲线的参数方程,参数方程与普通方程的互化例 1在圆x2+y2-4x-2y-20=0上求两点 A 和 B,使它们到直线4x+3y+19=0 的距离分别最短和最长 .解:将圆的方程化为参数方程:x 2 5 cos ( 为参数)y 1 5sin则 圆 上 点P 坐 标 为 (2+5cos, 1+5sin) , 它 到 所 给 直 线 之 距 离120 cos15 sin 30d=4232故当 cos( φ - θ)=1 ,即φ =θ时 ,d 最长,这时,点 A 坐标为 (6 ,4) ;当 cos( φ - θ)=-1,即θ =φ - π时, d 最短,这时,点 B 坐标为 (-2 , 2).( 二 ) 极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自 1986 年以来每年都有一个小题,而且都以选择填空题出现.例 2极坐标方程ρ =1所确定的图形是( )2 3 sincosA. 直线B. 椭圆C. 双曲D. 抛 物线11 1解: ρ =231cos2[1 ()] 1 sin()2 26( 三 ) 综合例题赏析例 3x3 cos(是参数 )的两个焦点坐标是椭圆1( )y 5sinA.(-3 , 5) , (-3 , -3)B.(3 , 3) , (3 , -5)C.(1 ,1) , (-7 , 1)D.(7 , -1) ,(-1 , -1)解:化为普通方程得( x3) 2 ( y 1)21925∴ a 2=25,b 2=9, 得 c 2=16 ,c=4.∴ F(x-3,y+1)=F(0, ± 4)∴在 xOy 坐标系中,两焦点坐标是 (3 , 3) 和 (3 , -5).应选 B.例 4 参数方程xcos sin22(02 )表示y1(1sin )2A. 双曲线的一支,这支过点(1 , 1)B. 抛物线的一部分,这部分过(1 ,21 )2C. 双曲线的一支,这支过 (-1 , 1)D.抛物线的一部分,这部分过 (-1 ,21 ) 2解:由参数式得 x 2=1+sin θ=2y(x > 0)即 y= 1x 2(x > 0).2∴应选 B.例 5x sin ( )在方程( θ为参数 ) 所表示的曲线一个点的坐标是ycosA.(2,-7)B. ( 1 ,2)C.( 1 , 1)D.(1 ,0)3 322解: y=cos2 =1-2sin2 =1-2x 2将 x= 1 代入,得 y=12 2∴应选 C.例 6 下列参数方程 (t 为参数 ) 与普通方程 x 2-y=0 表示同一曲线的方程是( )x t x cost xtgtC.A.B.ycos 2t1 cos 2t yty1 cos2tx tgtD.1 cos2t y1 cos2t解:普通方程x 2-y 中的 x ∈ R , y ≥ 0, A. 中 x=| t |≥ 0, B. 中 x=cost ∈〔 -1,1 〕,故排除 A. 和 B.2cos 2 t2t=11 2C. 中 y=2t =ctg 2tx 2 =,即 x y=1,故排除 C.2sintg∴应选 D.例 7曲线的极坐标方程ρ =4 sin θ化 成直角坐标方程为 ( )A.x 2 +(y+2) 2=4B.x2+(y-2)2=4C.(x-2) 2+y 2=4D.(x+2) 2 +y 2=4解:将ρ = x 2y 2 ,sin θ =y 代入ρ =4sin θ,得 x 2+y 2=4y ,即 x 2+(y-2) 2=4. x 2 y 2∴应选 B.例 8 极坐标ρ =cos( ) 表示的曲线是 ( )4A. 双曲线B. 椭圆C.抛物线D.圆解:原极坐标方程化为ρ =12(cos θ +sin θ ) 22=ρcos θ +ρsin θ,∴普通方程为2 (x 2+y 2)=x+y ,表示圆 .应选 D. 例 9在极坐标系中,与圆ρ =4sin θ相切的条直线的方程是 ( )A. ρ sin θ =2B. ρcos θ =2C. ρ cos θ =-2D.ρcos θ =-4例 9 图解:如图 .⊙ C 的极坐标方程为ρ =4sin θ, CO ⊥ OX,OA 为直径,| OA | =4,l 和圆相切,l 交极轴于 B(2, 0) 点 P(ρ , θ ) 为 l 上任意一点,则有cos θ =OB2,得ρ cos θ =2,OP∴应选 B.例 10 4ρsin 22 =5 表示的曲线是 ()A. 圆B. 椭圆C.双曲线的一支D. 抛 物线解: 4ρ sin 2 2 =54ρ·cos2 122 cos5.把ρ = x 2y 2ρ cos θ =x ,代入上式,得2 x 2 y 2 =2x-5.平方整理得 y 2=-5x+25. . 它表示抛物线 .4∴应选 D.例 11极坐标方程 4sin 2θ =3 表示曲线是 ()A. 两条射线B.两条相交直线C.圆D. 抛 物线2y 2223x , 它表示两相交直线 .解:由 4sin θ =3, 得 4· x 2 y 2 =3, 即 y =3 x ,y=± ∴应选 B.四、能力训练( 一 ) 选择题1. 极坐标方程ρ cos θ = 4表示 ( )3A. 一条平行于 x 轴的直线B. 一条垂直于 x 轴的直线C. 一个圆D.一条抛物线2. 直线: 3x-4y-9=0 与圆:x 2 cos ( 为参数 ) 的位置关系是 ( ) y 2 sin,A. 相切B.相离C. 直线过圆心D.相交但直线不过圆心3. 若 (x , y) 与 ( ρ,θ )( ρ∈ R)分别是点 M 的直角坐标和极坐标, t 表示参数,则下列各组曲 线:①θ =和 sin θ = 1;②θ =和 tg θ =3,③ρ 2-9=0 和ρ = 3 ;④6263x22t2和x2 2t y1y3 t3 t2其中表示相同曲线的组数为 ( )A.1B.2C.3D.44. 设 M(ρ 1,θ 1) ,N(ρ 2,θ 2) 两点的极坐标同时满足下列关系:ρ 1+ρ 2=0 ,θ1+θ 2=0,则 M , N 两点位置关系是 ()A. 重合B. 关于极点对称C.关于直线θ =D. 关 于 极 轴2对称5. 极坐标方程ρ =sin θ +2cos θ所表示的曲线是 ( )A. 直线B. 圆C.双曲线D. 抛物线6. 经过点 M(1,5) 且倾斜角为的直线, 以定点 M 到动点 P 的位移 t 为参数的参数方程3是( )x 1 1tx 1 1tx 1 1tA .2 B.2 C.23 3 3yt t t5y 5y 5222y1 3 tD.2 x51t2m 2 2m7. 将参数方x am 2 2m 2y b2m 2m 2 2m 2(m 是参数, ab ≠ 0) 化为普通方程是 ( )x 2 y 2 1( x a)x 2 y 2 1( xa) A.b 2B.b 2a 2a 2C. x 2y 21( x)x 2 y 2 1( xa)a 2b 2aD.b 2a 28. 已知圆的极坐标方程ρ =2sin( θ+) ,则圆心的极坐标和半径分别为 ()6A.(1,),r=2 B.(1,),r=1C.(1,),r=1 D.(1,363- ),r=23xt19. 参数方程t (t为参数 ) 所表示的曲线是 ( )y2A. 一条射线B.两条射线C.一条直线D.两 条直线x 2 tg10. 双曲线( θ为参数 ) 的渐近线方 程为 ( )y 1 2 secA.y-1=1( x 2)B.y=1 x C.y-1=2(x2)22D.y+1= 2(x2)11. 若直线x 4 at( (t 为参数 ) 与圆 x 2+y 2-4x+1=0 相切,则直线的倾斜角为( )y btA.B.2 C.或2D.333 3 3或 53x 2 pt 2 为参数 ) 上的点 M ,N 对应的参数分别为 t 1,t 2,且 t 1+t 2=0,12. 已知曲线(ty2 pt那么 M , N 间的距离为 ()A.2p(t 1+t 2)B.2p(t 22 C.│2p(t 1-t 2)│1+t 2)D.2p(t 1-t 2) 213. 若点 P(x ,y) 在单位圆上以角速度ω按逆时针方向运动,点 M(-2xy ,y 2-x 2) 也在单位圆上运动,其运动规律是( )A. 角速度ω,顺时针方向B. 角速度ω,逆时针方向C. 角速度 2ω , 顺时针方向D.角速度 2ω,逆时针方向14. 抛物线 y=x 2-10xcos θ +25+3sin θ-25sin2θ与 x 轴两个交点距离的最大值是( )A.5B.10C.23D.315. 直线ρ =3 与直线 l 关于直线θ =( ρ∈ R)对称,则 l 的方程是 ( )2cossin4A .3B .3sin2 coscos 2 cosC .3D .32 sincos2sincos( 二 ) 填空题x3 4 t16. 若直线 l的参数方程为5 (t 为参数 ) ,则过点 (4 ,-1) 且与 l 平行的直线3 ty25在 y 轴上的截距为.xcoscos17. 参数方程1 (为参数)化成普通方程为.sinycos118. 极坐标方程ρ =tg θ sec θ表示的曲线是.19. x 1 3t(t 为参数 ) 的倾斜角为;直线上一点 P(x , y) 与点 M(-1 ,直线2 3ty 2) 的距离为.( 三 ) 解答题20. 设椭圆x 4 cos( θ为参数 ) 上一点 P ,若点 P 在第一象限, 且∠ xOP=,求y 2 3 sin3点 P 的坐标 .21. 曲线 C 的方程为x 2 pt 2y(p > 0, t 为参数 ) ,当 t ∈[ -1 , 2]时 ,曲线 C 的端2 pt点为 A , B ,设 F 是曲线 C 的焦点,且 S =14,求 P 的值 .△ AFB22. 已知椭圆 x2y 2 =1 及点 B(0 ,-2) ,过点 B 作直线 BD ,与椭圆的左半部分交于 C 、2D 两点,又过椭圆的右焦点F 2 作平行于 BD 的直线,交椭圆于G , H 两点 .(1) 试判断满足│2BD 是否存在 ?并说明理BC │·│ BD │ =3│ GF │·│ F 2H │成立的直线由 .(2) 若点 M 为弦 CD 的中点, S △ BMF2=2,试求直线 BD 的方程 .x 8 4sec23. 如果椭圆的右焦点和右顶点的分别是双曲线( θ为参数 ) 的左焦点y 3tg和左顶点,且焦点到相应的准线的距离为9,求这椭圆上的点到双曲线渐近线的最短距离. 424.A ,B 为椭圆x2y 2上的两点,且 OA⊥ OB,求△ AOB的面积的最大a2b2 =1,(a > b> 0)值和最小值 .25. 已知椭圆x2y 2=1,直线 l ∶xy=1,P 是 l 上一点,射线 OP交椭圆于点 R,24161282又点 Q在 OP上且满足│ OQ│·│ OP│ =│OR│ ,当点P在l上移动时,求点Q的轨迹方程.参考答案( 一 )1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D( 二 )16.-4 ;17.y 2=-2(x- 1),(x≤ 1);18. 抛 物线; 19.135 °,|32 t|22 ( 三 )20.(8 5 , 4 15) ; 21.2 3 ;55322.(1) 不存在, (2)x+y+2=0 ; 23. 1(27-341 ) ;24.Smax=ab, s max =a 2b 2;5 2a 2b 2(x 1) 2 ( y 1) 2不同时为零 )25.=1(x,y)5522。
极坐标与参数方程知识点总结大全一、极坐标系统极坐标系统是一种用来表示平面上点的坐标系统,它与直角坐标系统相互转化。
在极坐标系统中,一个点的位置由径向和角度两个量来确定。
常用的表示方式为(r, θ),其中r表示点到原点的距离,称为极径,而θ表示与参考轴(通常为正X 轴)的夹角,称为极角。
极坐标系统与直角坐标系统之间可以通过如下的转换关系相互转化:•直角坐标→ 极坐标:x = r * cos(θ),y = r * sin(θ)•极坐标→ 直角坐标:r = sqrt(x^2 + y^2),θ = arctan(y/x)极坐标系统适用于描述旋转对称性的图形,例如圆、花朵等。
二、参数方程参数方程是一种用参数表示函数的方式。
在参数方程中,自变量和因变量都可以是参数。
一般来说,参数方程是将自变量和因变量都用参数表示的方程组。
以平面上的曲线为例,如果将曲线上的点的坐标分别用参数t表示,则曲线上的点的坐标可以表示为(x(t), y(t))。
这种表示方式称为参数方程。
参数方程在描述含有符号导数的曲线段以及曲线段的方向时非常有用。
参数方程可以将复杂的图形分解成多个简单的函数,从而方便进行图形的分析和计算。
它在计算机图形学、物理学、工程学等领域有广泛的应用。
三、极坐标与参数方程的关系极坐标与参数方程之间存在着密切的关系。
可以通过参数方程来描述极坐标系中的曲线。
一个常见的例子是圆的极坐标方程和参数方程的表示。
以圆的极坐标方程为例,极坐标方程为r = a,其中a为圆的半径。
使用参数方程表示时,可以将极坐标方程转化为参数方程x = a * cos(θ),y = a * sin(θ)。
同样地,通过参数方程也可以得到一些特殊的极坐标曲线,例如r = a *cos(θ)可以表示一条心形曲线。
四、极坐标曲线的绘制在计算机图形学中,可以通过极坐标方程或参数方程来绘制各种各样的曲线。
对于一个极坐标曲线,可以选择一系列的角度值,然后根据极坐标方程或参数方程计算出相应的极径或坐标点,再将这些点连接起来就可以绘制出曲线。
极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,它的参数方程为:。
4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
参数方程与极坐标参数方程知识回顾:一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个参数t的函数,即 ,其中,t为参数,并且对于t每一个允许值,由方程组所确定的点⎩⎨⎧==)()(tfytfxM(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数t叫做参变数,简称参数.二、二次曲线的参数方程1、圆的参数方程:中心在(x0,y0),半径等于r的圆: (为参数,的几何意义为圆心角),θθsincosryyrxx+=+=θθ特殊地,当圆心是原点时,θθsincosryrx==注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵坐标与参数间的关系。
Eg1:已知点P(x,y)是圆x2+y2-6x-4y+12=0上的动点,求:(1)x2+y2的最值;(2)x+y的最值;(3)点P到直线x+y-1=0的距离d的最值。
Eg2:将下列参数方程化为普通方程(1) x=2+3cos(2) x=sin(3) x=t+θθt1y=3sin y=cos y=t2+θθ21t总结:参数方程化为普通方程步骤:(1)消参(2)求定义域2、椭圆的参数方程:中心在原点,焦点在x轴上的椭圆: (为参数,的几何意义是离心角,如图角AON是离心角)θθsincosbyax==θθ注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M点的轨迹是椭圆,中心在(x0,y0)椭圆的参数方程:θθsincosbyyaxx+=+=Eg :求椭圆=1上的点到M (2,0)的最小值。
203622y x +3、双曲线的参数方程:中心在原点,焦点在x 轴上的双曲线: (为参数,代表离心角),中心在θθtan sec b y a x ==θ(x 0,y 0),焦点在x 轴上的双曲线: θθtan sec 00b y y a x x +=+=4、抛物线的参数方程:顶点在原点,焦点在x 轴正半轴上的抛物线: (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数)pt y pt x 222==直线方程与抛物线方程联立即可得到。
(完整版)极坐标与参数⽅程知识点、题型总结(最新整理)极坐标与参数⽅程知识点、题型总结⼀、伸缩变换:点是平⾯直⾓坐标系中的任意⼀点,在变换),(y x P 的作⽤下,点对应到点,称伸缩变换>?='>?=').0(,y y 0),(x,x :µµλλ?),(y x P ),(y x P '''⼀、1、极坐标定义:M 是平⾯上⼀点,表⽰OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极⾓;⼀般地,,。
,点P 的直⾓坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直⾓坐标极坐标 2、极坐标直⾓坐标?cos sin x y ρθρθ=??=??222tan (0)x y y x xρθ?=+??=≠?3、求直线和圆的极坐标⽅程:⽅法⼀、先求出直⾓坐标⽅程,再把它化为极坐标⽅程⽅法⼆、(1)若直线过点M(ρ0,θ0),且极轴到此直线的⾓为α,则它的⽅程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆⼼为M (ρ0,θ0),半径为r 的圆⽅程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0⼆、参数⽅程:(⼀).参数⽅程的概念:在平⾯直⾓坐标系中,如果曲线上任意⼀点的坐标都是某个变数的函数并且对于的每⼀个允许值,由这个⽅程所确y x ,t ?==),(),(t g y t f x t 定的点都在这条曲线上,那么这个⽅程就叫做这条曲线的参数⽅程,联系变数),(y x M 的变数叫做参变数,简称参数。
相对于参数⽅程⽽⾔,直接给出点的坐标间关系的y x ,t ⽅程叫做普通⽅程。
(⼆).常见曲线的参数⽅程如下:直线的标准参数⽅程1、过定点(x 0,y 0),倾⾓为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的⼏何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t|(2)直线上对应的参数是。
极坐标与参数方程基本知识点一、极坐标知识点1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为),(θρM .极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ.4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
5.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式6.曲线的极坐标方程:1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:sin()sin()ρθ-α=ρθ-α几个特殊位置的直线的极坐标方程(1)直线过极点 (2)直线过点M(a,0)且垂直于极轴 (3)直线过(,)2M b π且平行于极轴 方程:(1))R (∈=ραθ 或写成及 (2)a =θρcos (3)ρsinθ=b 2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为:2222cos()0r ρρρθθρ--+-=几个特殊位置的圆的极坐标方程(1)当圆心位于极点,r 为半径 (2)当圆心位于)0,(a C (a>0),a 为半径 (3)当圆心位于)2,(πa C )0(>a ,a 为半径方程:(1)r =ρ (2)θρcos 2a = (3)θρsin 2a =7.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.二、参数方程知识点1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数。
⎩ ⎩ 极坐标与参数方程知识点
(一)曲线的参数方程的定义:
在取定的坐标系中,如果曲线上任意一点的坐标 x 、y 都是某个变数 t 的函数,即
⎧x = ⎨
y = f (t ) f (t )
并且对于 t 每一个允许值,由方程组所确定的点 M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:
1. 过定点(x 0,y 0),倾角为α的直线:
x = x 0 + t cos y = y 0 + t sin
(t 为参数)
其中参数 t 是以定点 P (x 0,y 0)为起点,对应于 t 点 M (x ,y )为终点的有向线段 PM 的数量,又称为点 P 与点 M 间的有向距离. 根据 t 的几何意义,有以下结论.
○1 .设 A 、B 是直线上任意两点,它们对应的参数分别为 t A 和 t B ,则 AB = t B -t A =
.
○
2 .线段 AB 的中点所对应的参数值等于 t A + t B
.
2
2. 中心在(x 0,y 0),半径等于 r 的圆:
x = x 0 + r cos y = y 0 + r sin
(为参数)
3. 中心在原点,焦点在 x 轴(或 y 轴)上的椭圆:
x = a cos x = b cos
y = b s in
(为参数)
(或
)
y = a sin
中 心 在 点 ( x0,y0) 焦 点 在 平 行 于 x 轴 的 直 线 上 的 椭 圆 的 参 数 方 程
⎧x = x 0 + a cos ,
⎨
y = y + b sin (为参数) .
4. 中心在原点,焦点在 x 轴(或 y 轴)上的双曲线:
(t B - t A ) - 4t ⋅ t
2 A B
⎨
x = a s ec y = b tg
x = b tg
(为参数) (或
)
y = a s ec
5. 顶点在原点,焦点在 x 轴正半轴上的抛物线:
x = 2 pt 2 y = 2 pt
(t 为参数,p >0)
直线的参数方程和参数的几何意义
过定点 P (x 0,y 0),倾斜角为的直线的参数方程是
⎧x = x + t cos ⎩ y = y 0 + t sin
(t 为参数).
(三)极坐标系
1、定义:在平面内取一个定点 O ,叫做极点,引一条射线 Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。
对于平面内的任意一点 M ,用ρ表示线段 OM 的长度,θ表示从 Ox 到 OM 的角,ρ叫做点 M 的极径,θ叫做点 M 的极角,有序数对(ρ, θ)就叫做点 M 的极坐标。
这样建立的坐标系叫做极坐标系。
2、极坐标有四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数、对应 惟一点 P (
,),但平面内任一个点 P 的极坐标不惟一.一个点可以有无数个坐标,这些
坐标又有规律可循的,P (
,
)(极点除外)的全部坐标为( ,+ 2k
)或( -
,+
(2k + 1)),( k ∈Z ).极点的极径为 0,而极角任意取.若对 、的取值范围加以限
制.则除极点外,平面上点的极坐标就惟一了,如限定>0,0≤< 2或<0, -<≤
等.
极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中, 点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、直线相对于极坐标系的几种不同的位置方程的形式分别为: ⑴= 0
⑵ = cos ⑶ = - cos
a
a
⑷=
a
sin
⑸=-
a
sin
⑹=
a
cos(-)
4、圆相对于极坐标系的几种不同的位置方程的形式分别为(a > 0) :
⑴=a ⑵= 2a cos⑶=-2a cos
⑷= 2a sin⑸ =-2a sin⑹= 2a cos(-)
5、极坐标与直角坐标互化公式:。