2018中考数学模拟试题二无答案
- 格式:doc
- 大小:102.36 KB
- 文档页数:4
2018年闵行区中考数学二模试卷及答案闵行区2017学年第二学期九年级数学质量调研考试试卷注意事项:1.本试卷共25题,分为三个大题。
2.答题时,请按照要求在答题纸上作答,草稿纸和试卷上的答案无效。
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸上写出证明或计算的主要步骤。
一、选择题(共6题,每题4分,满分24分)1.下列各式中,二次单项式是A。
x² + 1B。
xy² / 3C。
2xyD。
(-2)²2.下列运算结果正确的是A。
(a + b)² = a² + b²B。
(a - b)² = a² - b²C。
a³ * a² = a⁵D。
2a - 1 = 1 / (2a) (a ≠ 0)3.在平面直角坐标系中,反比例函数y = k / x (k ≠ 0)的图像在每个象限内,y随着x的增大而减小,那么它的图像的两个分支分别在A。
第一、三象限B。
第二、四象限C。
第一、二象限D。
第三、四象限4.有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A。
平均数B。
中位数C。
众数D。
方差5.已知四边形ABCD是平行四边形,下列结论中不正确的是A。
当AB = BC时,四边形ABCD是菱形B。
当AC⊥BD时,四边形ABCD是菱形C。
当∠ABC = 90o时,四边形ABCD是矩形D。
当AC = BD时,四边形ABCD是正方形6.点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是A。
相交B。
相离C。
相切或相交D。
相切或相离二、填空题(共12题,每题4分,满分48分)7.计算:-1 + 22 = 218.在实数范围内分解因式:4x² - 3 = (2x + 1)(2x - 3)9.方程2x - 1 = 1的解是 x = 110.已知关于x的方程x² - 3x - m = 0没有实数根,那么m的取值范围是 m < 9 / 411.已知直线y = kx + b(k ≠ 0)与直线y = -x平行,且截距为5,那么这条直线的解析式为 y = kx + 5已知函数f(x)=x^3-3x^2+2x+1,求其在区间[0,2]上的最大值和最小值,并确定最大值和最小值所对应的x值。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。
2018-2020年上海市中考数学各地区模拟试题分类(二)——《圆》一.选择题1.(2019•芦淞区一模)如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么∠1的大小是()A.8°B.15°C.18°D.28°2.(2019•虹口区二模)如图,在△ABC中,AB=AC,BC=4,tan B=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取()A.2 B.3 C.4 D.53.(2019•虹口区二模)正六边形的半径与边心距之比为()A.B.C.D.4.(2019•金山区二模)已知⊙O1与⊙O2内切于点A,⊙O1的半径等于5,O1O2=3,那么O2A的长等于()A.2 B.3 C.8 D.2或8 5.(2019•闵行区二模)在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆一定()A.与x轴和y轴都相交B.与x轴和y轴都相切C.与x轴相交、与y轴相切D.与x轴相切、与y轴相交6.(2019•嘉定区一模)已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,过点B、C的圆记作为圆O2,过点C、A的圆记作为圆O3,则下列说法中正确的是()A.圆O1可以经过点C B.点C可以在圆O1的内部C.点A可以在圆O2的内部D.点B可以在圆O3的内部7.(2019•崇明区一模)如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径r>1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外离D.相交8.(2019•金山区一模)如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外D.点B、点C都在⊙A外9.(2019•长宁区一模)在直角坐标平面内,点O是坐标原点,点A的坐标是(3,2),点B的坐标是(3,﹣4).如果以点O为圆心,r为半径的圆O与直线AB相交,且点A、B 中有一点在圆O内,另一点在圆O外,那么r的值可以取()A.5 B.4 C.3 D.2 10.(2019•崇明区二模)在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=﹣1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<﹣1时,点B在圆A外D.当﹣1<a<3时,点B在圆A内11.(2019•嘉定区二模)对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补12.(2018•虹口区二模)如图,在矩形ABCD中,点E是CD的中点,联结BE,如果AB=6,BC=4,那么分别以AD、BE为直径的⊙M与⊙N的位置关系是()A.外离B.外切C.相交D.内切13.(2018•松江区二模)如图,在△ABC中,∠C=90°,AC=3,BC=4,⊙B的半径为1,已知⊙A与直线BC相交,且与⊙B没有公共点,那么⊙A的半径可以是()A.4 B.5 C.6 D.7 14.(2018•长宁区一模)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能15.(2018•奉贤区二模)直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离B.相切C.相交D.不确定二.填空题16.(2020•嘉定区一模)如果正多边形的边数是n(n≥3),它的中心角是α°,那么α关于n的函数解析式为.17.(2020•崇明区一模)两圆的半径之比为3:1,当它们外切时,圆心距为4,那么当它们内切时,圆心距为.18.(2020•闵行区一模)已知在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙C与斜边AB 相切,那么⊙C的半径为.19.(2020•嘉定区一模)如图,⊙O的半径长为5cm,△ABC内接于⊙O,圆心O在△ABC的内部.如果AB =AC ,BC =8cm ,那么△ABC 的面积为 cm 2.20.(2020•闵行区一模)半径分别为3cm 与cm 的⊙O 1与⊙O 2相交于A 、B 两点,如果公共弦AB =4cm ,那么圆心距O 1O 2的长为 cm .21.(2020•奉贤区一模)公元263年左右,我国数学家刘徽发现当正多边形的边数无限增加时,这个正多边形面积可无限接近它的外接圆的面积,因此可以用正多边形的面积来近似估计圆的面积,如图,⊙O 是正十二边形的外接圆,设正十二边形的半径OA 的长为1,如果用它的面积来近似估计⊙O 的面积,那么⊙O 的面积约是 .22.(2020•闵行区一模)正五边形的边长与边心距的比值为 .(用含三角比的代数式表示)23.(2020•崇明区一模)正五边形的中心角的度数是 .24.(2019•青浦区二模)如图,在⊙O 中,OA 、OB 为半径,连接AB ,已知AB =6,∠AOB =120°,那么圆心O 到AB 的距离为 .25.(2019•杨浦区二模)如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E ,交边AD 于点F ,已知AD =5,AE =2,AF =4.如果以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,那么r 的取值范围是 .三.解答题26.(2020•静安区二模)在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.点D在边AB上(不与点A、B重合),以AD为半径的⊙A与射线AC相交于点E,射线DE与射线BC相交于点F,射线AF与⊙A交于点G.(1)如图,设AD=x,用x的代数式表示DE的长;(2)如果点E是的中点,求∠DFA的余切值;(3)如果△AFD为直角三角形,求DE的长.27.(2020•长宁区二模)已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD=CB.(1)如图1,如果BO平分∠ABC,求证:=;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.28.(2020•青浦区二模)如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为的中点时,求弦BC的长;(2)设OD=x,=y,求y与x的函数关系式;(3)当△AOD与△CDE相似时,求线段OD的长.29.(2020•浦东新区二模)已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.30.(2020•闵行区二模)如图,已知圆O是正六边形ABCDEF外接圆,直径BE=8,点G、H 分别在射线CD、EF上(点G不与点C、D重合),且∠GBH=60°,设CG=x,EH=y.(1)如图①,当直线BG经过弧CD的中点Q时,求∠CBG的度数;(2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;(3)联结AH、EG,如果△AFH与△DEG相似,求CG的长.参考答案一.选择题1.解:∵正五边形的内角的度数是×(5﹣2)×180°=108°,又∵正方形的内角是90°,∴∠1=108°﹣90°=18°;故选:C.2.解:如图,过点A作AF⊥BC于点F,连接CD交AF于点G,∵AB=AC,BC=4,∴BF=CF=2,∵tan B=2,∴,即AF=4,∴AB=,∵D为AB的中点,∴BD=,G是△ABC的重心,∴GF=AF=,∴CG=,∴CD=CG=,∵点B在⊙D内,点C在⊙D外,∴<r<,故选:B.3.解:∵正六边形的半径为R,∴边心距r=R,∴R:r=1:=2:,故选:D.4.解:设⊙O2的半径为r,∵⊙O1与⊙O2内切于点A,∴O2A=r,O1A=5,∴r﹣5=3或5﹣r=3,∴r=8或r=2,即O2A的长等于2或8.故选:D.5.解:∵点(3,4),∴点到x轴的距离是4,到y轴的距离是3,∴在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆一定与x轴相切,与y 轴相交,故选:D.6.解:∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,∴点C可以在圆O1的内部,故A错误,B正确;∵过点B、C的圆记作为圆O2,∴点A可以在圆O2的外部,故C错误;∵过点C、A的圆记作为圆O3,∴点B可以在圆O3的外部,故D错误.故选:B.7.解:∵r>1,∴2<3+r,∴这两个圆的位置关系不可能外离.故选:C.8.解:∵在Rt△ABC中,∠C=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=2BC=4,AC=BC=2,∵⊙A的半径为3,4>3,2>3,∴点B、点C都在⊙A外.故选:D.9.解:∵点A的坐标是(3,2),点B的坐标是(3,﹣4),∴OA==,OB==5,∵以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,∴<r<5,∴r=4符合要求.故选:B.10.解:如图:∵A(1,0),⊙A的半径是2,∴AC=AE=2,∴OE=1,OC=3,A、当a=﹣1时,点B在E上,即B在⊙A上,正确,故本选项不合题意;B、当a=﹣3时,B在⊙A外,即说当a<1时,点B在圆A内错误,故本选项符合题意;C、当a<﹣1时,AB>2,即说点B在圆A外正确,故本选项不合题意;D、当﹣1<a<3时,B在⊙A内正确,故本选项不合题意;故选:B.11.解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.12.解:如图所示:连接MN,可得M是AD的中点,N是BE的中点,则MN是梯形ABED的中位线,则MN=(AB+DE)=4.5,∵EC=3,BC=AD=4,∴BE=5,则⊙N的半径为2.5,⊙M的半径为2,则2+2.5=4.5.故⊙M与⊙N的位置关系是:外切.故选:B.13.解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵⊙A、⊙B没有公共点,∴⊙A与⊙B外离或内含,∵⊙B的半径为1,∴若外离,则⊙A半径r的取值范围为:0<r<5﹣1=4,若内含,则⊙A半径r的取值范围为r>1+5=6,∴⊙A半径r的取值范围为:0<r<4或r>6.故选:D.14.解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,15.解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.二.填空题(共10小题)16.解:由题意可得:边数为360°÷α=n,则α=.故答案为α=.17.解:设大圆的半径为R,小圆的半径为r,则有r:R=1:3;又R+r=4,解,得R=3,r=1,∴当它们内切时,圆心距=3﹣1=2.故答案为:2.18.解:Rt△ABC中,∠C=90°,AC=3,BC=4;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=r;∵S△ABC=AC•BC=AB•r,∴r=,故答案为:.19.解:作AD⊥BC于D,∵AB=AC,∴BD=CD=BC=4,∴AD垂直平分BC,∴圆心O在AD上,连接OB,在Rt△OBC中,∵BD=4,OB=5,∴OD===3,如图,AD=OA+OD=5+3=8,此时S△ABC=×8×8=32;故答案为:32.20.解:如图,∵⊙O1与⊙O2相交于A、B两点,∴O1O2⊥AB,且AD=BD;又∵AB=4厘米,∴AD=2厘米,∴在Rt△AO1D中,根据勾股定理知O1D=1厘米;在Rt△AO2D中,根据勾股定理知O2D=3厘米,∴O1O2=O1D+O2D=4厘米;同理知,当小圆圆心在大圆内时,解得O1O2=3厘米﹣1厘米=2厘米.故答案是:4或2;21.解:设AB为正十二边形的边,连接OB,过A作AD⊥OB于D,如图所示:∴∠AOB==30°,∵AD⊥OB,∴AD=OA=,∴△AOB的面积=OB×AD=×1×=∴正十二边形的面积=12×=3,∴⊙O的面积≈正十二边形的面积=3,故答案为:3.22.解:∵⊙O是正五边形ABCDE的外接圆,∴∠BOC=×360°=72°,∴∠1=∠BOC=×72°=36°,设这个正五边形的边长为a,半径为R,边心距为r,R2﹣r2=(a)2=a2,a=R sin36°,a=2R sin36°;a=r tan36°,∴a=2r tan36°,∴=2tan36°,故正五边形的边长与边心距的比值为2tan36°,故答案为:2tan36°.23.解:正五边形的中心角为:=72°.故答案为:72°.24.解:过O作OC⊥AB交AB于C点,如右图所示:由垂径定理可知,OC垂直平分AB,则AC=AB=3,∵OA=OB,∠AOB=120°,∴∠OAB=30°,∴tan∠OAB=tan30°=,∴OC=AC•tan30°=3×=,即圆心O到AB的距离为;故答案为:.25.解:如图,连接EF,∵四边形ABCD是矩形,∴∠BAC=90°,则EF是⊙O的直径,取EF的中点O,连接OD,作OG⊥AF,则点G是AF的中点,∴GF=AF=2,∴OG是△AEF的中位线,∴OG=AE=1,∴OF==,OD==,∵圆D与圆O有两个公共点,∴﹣<r<+,故答案为:﹣<r<+.三.解答题(共5小题)26.解:(1)如图,过点D作DH⊥AC,垂足为H.在Rt△AEH中,,.在⊙A中,AE=AD=x,∴,∴;(2)∵,∴可设BC=4k(k>0),AB=5k,则AC==3k.∵AC=15,∴3k=15,∴k=5.∴BC=20,AB=25.∵点E是的中点,由题意可知此时点E在边AC上,点F在BC的延长线上,∴∠FAC=∠BAC.∵∠FCA=∠BCA=90°,AC=AC,∴△FCA≌△BCA(ASA),∴FC=BC=20.∵,又∵∠AED=∠FEC,且∠AED、∠FEC都为锐角,∴tan∠FEC=2.∴.∴AE=AC﹣EC=20﹣10=5.过点A作AM⊥DE,垂足为M,则.∵,∴.在Rt△EFC中,.∴在Rt△AFM中,.答:∠DFA的余切值为;(3)当点E在AC上时,只有可能∠FAD=90°.∵FC=CE•tan∠FEC=2(15﹣x),∴.∴.∵,又∵∠AED=∠ADE,且∠AED、∠ADE都为锐角,∴.∴.∴AD=x=.∴.当点E在AC的延长线上时,只有可能∠AFD=90°,此时∠AFC=∠AEF.∵∠AFC、∠AEF都为锐角,∴tan∠AEF=tan∠AFC=2.∵CE=AE﹣AC=x﹣15,∴CF=CE•tan∠AEF=2(x﹣15).∴.∴AD=x=.∴.综上所述,△AFD为直角三角形时,DE的长为或.27.(1)证明:如图1中,∵BO平分∠ABC,∴∠ABO=∠CBO,∵OB=OA=OC,∴∠A=∠ABO,∠C=∠OBC,∴∠A=∠C,∵OB=OB,∴△OBA≌△OBC(AAS),∴AB=BC,∴=.(2)解:如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.∵OA⊥OB,∴∠MON=∠DMO=∠DNO=90°,∴四边形DMON是矩形,∴DN=OM=a,∵OA=OB,∠AOB=90°,∴∠A=∠ABO=45°,∵OC=OB,CD=CB,∴∠C=∠OBC,∠CDB=∠CBD,∵∠C+∠CDB+∠CBD=180°,∴3∠C+90°=180°,∴∠C=30°,∴∠CDB=∠CBD=75°,∵∠DMB=90°,∴∠MDB=∠DBM=45°,∴DM=BM,∠ODM=30°,∴DM=OM=a,DN=DM=a,AD=DN=a,∴==.(3)解:如图3﹣1中,当BO=BE时,∵CD=CB,∴∠CDB=∠CBD,∴∠A+∠AOD=∠OBA+∠OBC,∵∠A=∠ABO,∴∠AOD=∠OBC=∠C,∵AOD=∠COE,∴∠C=∠COE=∠CBO,∵∠C=∠C,∴△OCE∽△BCO,∴=,∴=,∴EC2+2EC﹣4=0,解得EC=﹣1+或﹣1﹣(舍弃),∴BC=+1.如图3﹣2中,当EO=EB时,同法可证△OEB是等腰直角三角形,∴EO=EB=EC=OB=,∴BC=2,∵∠OEB=∠C+∠COE>∠OBE,∴OE≠OB,综上所述,BC的值为+1或2.28.解:(1)如图1,联结OF,交BC于点H.∵F是中点,∴OF⊥BC,BC=2BH.∴∠BOF=∠COF.∵OA=OF,OC⊥AF,∴∠AOC=∠COF,∴∠AOC=∠COF=∠BOF=60°,在Rt△BOH中,sin∠BOH==,∵AB=6,∴OB=3,∴BH=,∴BC=2BH=3;(2)如图2,联结BF.∵AF⊥OC,垂足为点=D,∴AD=DF.又∵OA=OB,∴OD∥BF,BF=2OD=2x.∴,∴,即,∴,∴y=.(3)△AOD∽△CDE,分两种情况:①当∠DCE=∠DOA时,AB∥CB,不符合题意,舍去.②当∠DCE=∠DAO时,联结OF.∵OA=OF,OB=OC,∴∠OAF=∠OFA,∠OCB=∠OBC.∵∠DCE=∠DAO,∴∠OAF=∠OFA=∠OCB=∠OBC.∵∠AOD=∠OCB+∠OBC=2∠OAF,∴∠OAF=30°,∴OD=.即线段OD的长为.29.解:(1)作OM⊥EF于M,如图,则EM=FM,∵∠ACB=90°,∴OM⊥BC,∴OM=AC=×8=4,在Rt△OEM中,EM==3,∴EF=2EM=6;(2)CM=BC=8,∴CE=8﹣3=5,∴CE=OE,∴∠OEC=∠OCE,在Rt△OCM中,OC==4,∴sin∠OCM===,∴∠COE的正弦值为.30.解:(1)连接OQ,如图①所示:∵六边形ABCDEF是正六边形,∴BC=DE,∠ABC=120°,BE∥CD,∴=,∠EBC=∠ABC=60°,∵点Q是的中点,∴=,∴+=+,即=,∴∠BOQ=∠EOQ,∵∠BOQ+∠EOQ=180°,∴∠BOQ=∠EOQ=90°.∵BO=OQ,∴∠OBQ=∠BQO=45°,∴∠CBG=∠EBC﹣∠OBQ=60°﹣45°=15°;(2)在BE上截取EM=HE,连接HM,如图②所示:∵正六边形ABCDEF,直径BE=8,∴BO=OE=BC=4,∠BCD=∠FED=120°,∴∠FEB=∠FED=60°,∵EM=HE,∴△HEM是等边三角形,∴EM=HE=HM=y,∠HME=60°,∴∠BCD=∠HMB=120°,∵∠EBC=∠GBH=60°,∴∠EBC﹣∠GBE=∠GBH﹣∠GBE,即∠GBC=∠HBE,∴△BCG∽△BMH,∴.又∵CG=x,BE=8,CD=BC=4,∴,∴y与x的函数关系式为(0<x<4).(3)如图③,当点G在边CD上时.由于△AFH∽△EDG,且∠CDE=∠AFE=120°,①当.∵AF=ED,∴FH=DG,∴CG=EH,即:,解分式方程得:x=4.经检验x=4是原方程的解,但不符合题意舍去.②当.即:,解分式方程得:x=12.经检验x=12是原方程的解,但不符合题意舍去.如图④,当点G在CD的延长线上时.由于△AFH∽△EDG,且∠EDG=∠AFH=60°,①当.∵AF=ED,∴FH=DG,∴CG=EH,即:,解分式方程得:x=4.经检验x=4是原方程的解,但不符合题意舍去.②当.即:,解分式方程得:x=12.经检验x=12是原方程的解,且符合题意.综上所述,如果△AFH与△DEG相似,那么CG的长为12.。
第四篇图形的性质专题17 三角形及其性质☞解读考点算与证明☞2年中考【2017年题组】一、选择题1.(2017内蒙古包头市)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【答案】A.【解析】若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.2.(2017广西河池市)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【答案】A.【解析】试题分析:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.考点:1.三角形的面积;2.三角形的角平分线、中线和高;3.应用题.3.(2017贵州省遵义市)如图,△ABC的面积是12,点D,E,F,G 分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4。
5B.5C.5.5D.6【答案】A.【解析】考点:1.三角形中位线定理;2.三角形的面积.4.(2017南宁)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【答案】B.【解析】试题分析:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选B.考点:三角形内角和定理.5.(2017南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE ∥BC D.∠DAE=∠EAC【答案】D.【解析】考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.6.(2017广西贵港市)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.14B.12C.34D.1【答案】B.【解析】试题分析:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=24=12,故选B.考点:1.列表法与树状图法;2.三角形三边关系;3.概率及其应用.7.(2017江苏省扬州市)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6B.7C.11D.12【答案】C.【解析】试题分析:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.考点:三角形三边关系.8.(2017四川省雅安市)一个等腰三角形的边长是6,腰长是一元二次方程27120x x-+=的一根,则此三角形的周长是()A.12B.13C.14D.12或14【答案】C.【解析】考点:1.解一元二次方程﹣因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.9.(2017四川省巴中市)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【答案】D.【解析】试题分析:设一份为x,三内角分别为x,2x,3x,根据内角和定理得:x+2x+3x=180°,解得:x=30°,∴三内角分别为30°,60°,90°,则这个三角形为直角三角形,故选D.考点:1.三角形内角和定理;2.实数.10.(2017德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121B.362C.364D.729【答案】C.【解析】考点:1.三角形中位线定理;2.规律型:图形的变化类.二、填空题11.(2017四川省广安市)如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE的面积是.【答案】6.【解析】试题分析:∵D、E分别为AC、AB的中点,∴AD=12AC=4,DE=12BC=3,DE∥BC,∴∠ADE=∠C=90°,∴△ADE的面积=12×AD×DE=6,故答案为:6.考点:三角形中位线定理.12.(2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM.当AM⊥BM时,则BC的长为.【答案】8.【解析】考点:1.三角形中位线定理;2.等腰三角形的判定与性质.13.(2017贵州省黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE 的度数是.【答案】40°.【解析】AD,试题分析:∵P是对角线BD的中点,E是AB的中点,∴EP=12BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,同理,FP=12故答案为:40°.考点:三角形中位线定理.14.(2017黑龙江省绥化市)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2112n .【解析】考点:1.三角形中位线定理;2.等腰直角三角形;3.综合题;4.规律型;5.操作型.15.(2017四川省成都市)在△ABC 中,∠A :∠B :∠C =2:3:4,则∠A 的度数为 . 【答案】40°. 【解析】试题分析:∵∠A :∠B :∠C =2:3:4,∴设∠A =2x ,∠B =3x ,∠C =4x ,∵∠A +∠B +∠C =180°,∴2x +3x +4x =180°,解得:x =20°,∴∠A 的度数为:40°.故答案为:40°. 考点:三角形内角和定理.16.(2017四川省达州市)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 . 【答案】1<m <4. 【解析】试题分析:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD 是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ADB≌△EDC,∴EC=AB=5,在△AEC 中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.考点:1.全等三角形的判定与性质;2.三角形三边关系.17.(2017贵州省黔西南州)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.【答案】15.【解析】考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.18.(2017四川省巴中市)若a、b、c为三角形的三边,且a、b满2--=,第三边c为奇数,则c= .9(2)0a b【答案】9.【解析】试题分析:∵a、b满足2-+-=,∴a=9,b=2,∵a、b、c为三a b9(2)0角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9,故答案为:9.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.19.(2017四川省泸州市)在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.【答案】45.【解析】试题分析:连接AO并延长,交BC于H,由勾股定理得,DE=22+OE OD =25,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=45,OBC=25,∵O 是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=12是△ABC的重心,∴AO=2OH=45,故答案为:45.考点:1.三角形的重心;2.勾股定理.20.(2017山东省淄博市)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1.交于点F1,得到四边形CD1F1E1,其面积S1=13如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=1;6如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=1;10…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= ..【答案】2++n n(1)(2)【解析】考点:1.规律型:图形的变化类;2.三角形的面积;3.规律型;4.综合题.三、解答题21.(2017内蒙古呼和浩特市)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:B D=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案】(1)证明见解析;(2)四边形DEMN是正方形.【解析】试题解析:(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD=12AC,AE=12AB,∴AD=AE,在△ABD和△ACE中,∵AB=AC,∠A=∠A,AD=AE,∴△ABD≌△ACE(ASA),∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=1BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,2BC,∴ED∥MN,ED=MN, MN是△OBC的中位线,∴MN∥BC,MN=12∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,∵BE=CD,CE=BD,BC=CB,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的BC,∴BD⊥CE,∴四边距离与底边长相等,∴O到BC的距离=12形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.【2016年题组】一、选择题1.(2016贵州省铜仁市)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1B. 2 C.4D.8【答案】B.【解析】考点:1.角平分线的性质;2.含30度角的直角三角形.2.(2016贵州省毕节市)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【答案】D.【解析】试题分析:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选D.考点:1.线段垂直平分线的性质;2.角平分线的性质.3.(2016广西河池市)下列长度的三条线段不能组成三角形的是()A.5,5,10B.4,5,6C.4,4,4 D.3,4,5【答案】A.【解析】考点:三角形三边关系.4.(2016广西百色市)三角形的内角和等于()A.90°B.180°C.300°D.360°【答案】B.【解析】试题分析:因为三角形的内角和为180度.所以B正确.故选B.考点:三角形内角和定理.5.(2016广西贵港市)在△ABC中,若∠A=95°,∠B=40°,则∠C 的度数为()A.35°B.40°C.45°D.50°【答案】C.【解析】试题分析:∵三角形的内角和是180°,又∠A=95°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.考点:三角形内角和定理.6.(2016江苏省盐城市)若a、b、c为△ABC的三边长,且满足-+-=,则c的值可以为()420a bA.5B.6C.7D.8【答案】A.【解析】试题分析:∵420-+-=,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2a b<c<4+2,2<c<6,5符合条件;故选A.考点:1.三角形三边关系;2.非负数的性质:绝对值;3.非负数的性质:算术平方根.7.(2016湖南省岳阳市)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【答案】D.【解析】考点:三角形三边关系.8.(2016贵州省安顺市)已知实数x,y满足480--=,则以x,yx y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【答案】B.【解析】试题分析:根据题意得:4080x y -=⎧⎨-=⎩,解得:48x y =⎧⎨=⎩. (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .考点:1.等腰三角形的性质;2.非负数的性质;3.三角形三边关系;4.分类讨论.9.(2016湖北省荆门市)已知3是关于x 的方程2(1)20xm x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或11【答案】D .【解析】考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.10.(2016湖北省襄阳市)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C的度数为()A.50°B.40°C.30°D.20°【答案】C.【解析】试题分析:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC=∠B+∠C,∴∠C=∠EAC﹣∠B=30°.故选C.考点:1.平行线的性质;2.角平分线的定义;3.三角形的外角性质.11.(2016湖北省鄂州市)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50°B.40°C.45°D.25°【答案】B.【解析】考点:1.平行线的性质;2.三角形内角和定理.12.(2016湖北省黄石市)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°【答案】B.【解析】试题分析:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选B.考点:1.三角形的外角性质;2.线段垂直平分线的性质.13.(2016湖南省湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】试题分析:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.14.(2016青海省)已知等腰三角形的腰和底的长分别是一元二次方程2680x x-+=的根,则该三角形的周长为()A.8B.10C.8或10D.12【答案】B.【解析】考点:1.解一元二次方程—因式分解法;2.三角形三边关系;3.等腰三角形的性质.15.(2016宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F 分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD 的面积为()A.22B2C.62D.82【答案】A.【解析】试题分析:∵E,F分别是AD,CD边上的中点,EF=2,∴AC=2EF=22,又∵BD=2,∴菱形ABCD的面积S=12×AC×BD=12×22×2=22A.考点:1.菱形的性质;2.三角形中位线定理.16.(2016广东省广州市)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.5【答案】D.【解析】考点:1.线段垂直平分线的性质;2.勾股定理;3.勾股定理的逆定理;4.三角形中位线定理.17.(2016新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=12BC B.AD AEAB ACC.△ADE∽△ABCD.S△ADE:S△ABC=1:2【答案】D.【解析】试题分析:∵D 、E 分别是AB .AC 的中点,∴DE ∥BC ,DE =12BC ,∴12AD AE DE ABACBC===,△ADE ∽△ABC ,∴2ΔADE ΔABC 1:()4AD SS AB ==,∴A ,B ,C 正确,D 错误;故选D .考点:1.相似三角形的判定与性质;2.三角形中位线定理. 18.(2016广西梧州市)在△ABC 中,AB =3,BC =4,AC =2,D 、E 、F 分别为AB 、BC 、AC 中点,连接DF 、FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .11 【答案】B . 【解析】考点:三角形中位线定理.19.(2016陕西省)如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△A BC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B.【解析】试题分析:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC=22+=10,∵DE是△ABC的中位线,86+=22AB BC∴DF∥BM,DE=1BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,2AC=5,∴DF=DE+EF=3+5=8.故∴∠EFC=∠ECF,∴EC=EF=12选B.考点:1.三角形中位线定理;2.等腰三角形的判定与性质;3.勾股定理.20.(2016江苏省苏州市)如图,在四边形ABCD中,∠ABC=90°,AB=BC=22,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.3【答案】C.【解析】考点:三角形的面积.21.(2016湖北省咸宁市)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①12DE BC=;②ΔDOEΔCOB12SS =;③AD OE AB OB=;④ΔODE ΔADC 13S S = 其中正确的个数有( )A .1个B .2个C .3个D .4个 【答案】B . 【解析】故正确的是①③.故选B.考点:1.相似三角形的判定与性质;2.三角形的重心.22.(2016湖南省永州市)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短"的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B.【解析】考点:1.圆的认识;2.线段的性质:两点之间线段最短;3.垂线段最短;4.三角形的稳定性.23.(2016内蒙古包头市)如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A3B.33C.32D.22【答案】A.【解析】试题分析:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO 平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×=180°﹣2×=60°,∴tanA=tan60°3A.考点:1.角平分线的性质;2.特殊角的三角函数值.24.(2016江苏省淮安市)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再MN的长为半径画弧,两弧交于点P,分别以点M,N为圆心,大于12作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【答案】B.【解析】考点:角平分线的性质.25.(2016福建省厦门市)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE【答案】B.【解析】试题分析:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∠F,∠AED=∠CEF,AE=CE,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.考点:1.三角形中位线定理;2.全等三角形的判定与性质。
2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式一.选择题(共22小题) 1.(2020•津南区一模)计算2a (a+1)2+2(a+1)2的结果为( ) A .1B .2C .1a+1D .2a+12.(2020•和平区三模)计算a (a+b)2+b (a+b)2的结果为( ) A .1B .1a+1bC .a +bD .1a+b3.(2020•红桥区三模)计算2−x x−1+2x−3x−1的结果为( )A .2x−1x−1B .1C .1x−1D .24.(2020•河北区二模)化简x 2x−2+42−x的结果是( )A .x +2B .x +4C .x ﹣2D .2﹣x5.(2020•滨海新区二模)计算3x−1x−1+2−3x x−1的结果为( ) A .3x−1B .x ﹣1C .1x−1D .−1x−16.(2020•西青区二模)化简a 2a−1+1−2a a−1结果为( )A .a+1a−1B .a ﹣1C .aD .17.(2020•天津二模)计算x−2x−1+1x−1的结果为( )A .1B .1x−1C .12D .xx−18.(2020•滨海新区一模)计算3x(x−1)2−3(x−1)2的结果是( )A .3B .3x ﹣3C .xx−1D .3x−19.(2020•红桥区一模)计算2a−1a−1−1a−1的结果是( )A .2B .2a ﹣2C .1D .2aa−110.(2020•南开区二模)化简x 2+2xy+y 2x 2−y 2−y x−y的结果是( )A .xx−yB .y x+yC .xx+yD .yx−y11.(2020•和平区一模)计算22a+b+b 2a+b的结果为( )A .1B .2+bC .2−b2a+bD .2+b2a+b12.(2020•红桥区模拟)计算x+2x+1−x x+1的结果为( )A .1B .2C .2x+1D .2xx+113.(2020•西青区一模)化简x 2x−1+x 1−x的结果是( )A .xB .x ﹣1C .﹣xD .x +114.(2019•津南区二模)计算a a 2−b 2−1a−b的结果为( )A .bB .﹣bC .ba−bD .−b a 2−b215.(2019•西青区二模)计算m 2m−n+n 2n−m的结果为( )A .m 2+n 2B .m +nC .m ﹣nD .n ﹣m16.(2019•天津二模)化简m 2m−4+164−m的结果是( )A .m ﹣4B .m +4C .m+4m−4D .m−4m+417.(2019•河北区二模)计算x 2−2x−1+1x−1的结果为( )A .x +1B .x ﹣1C .1x+1D .1x−118.(2019•和平区一模)计算xx−2+2x−2的结果为( )A .0B .1C .2−xx−2D .x+2x−219.(2019•红桥区一模)计算2x+13x−1−2−x3x−1的结果为( )A .1B .﹣1C .33x−1D .x+33x−120.(2019•天津模拟)计算2a a 2−1−1a+1的结果为( )A .1a+1B .1a−1C .aa+1D .aa−121.(2019•河西区模拟)计算2x5x−3÷325x 2−9⋅x5x+3的结果为( )A .2x 23B .(5x+3)23 C .2x5x−3D .2x15x−922.(2019•东丽区二模)计算a(a+1)2+1(a+1)2的结果为( ) A .1B .1aC .a +1D .1a+1二.填空题(共28小题)23.(2020•津南区一模)计算(√3+√5)2的结果等于 . 24.(2020•西青区二模)计算(√5−2)(√5+2)的结果等于 . 25.(2020•滨海新区二模)计算(√3−1)2的结果等于 . 26.(2020•河北区二模)化简(√5−1)2= .27.(2020•红桥区二模)计算(√11+2)(√11−2)的结果等于 . 28.(2020•南开区二模)计算(3+√6)2的结果等于 . 29.(2020•河东区一模)计算(√5+6)•(√5−6)= . 30.(2020•和平区二模)计算(2√2−3)(3+2√2)的结果等于 . 31.(2020•和平区一模)计算(√6+2)(√6−2)的结果等于 . 32.(2020•南开区一模)计算(√5+√2)2的结果是 . 33.(2020•天津二模)计算(√3+2)(√3−2)的结果是 . 34.(2020•河西区模拟)使式子√a −1有意义的a 的取值范围是 . 35.(2020•西青区一模)计算(2√5−√2)2的结果等于 .36.(2020•滨海新区一模)已知x =√3+1,y =√3−1,则x 2+2xy +y 2的值为 . 37.(2019•宝坻区模拟)将√423化为最简二次根式的结果为 .38.(2019•北辰区二模)当x =√10−1时,多项式x 2+2x +6的值等于 . 39.(2019•津南区二模)计算(√5−√2)2的结果等 . 40.(2019•天津二模)计算(√3−√2)2的结果等于 .41.(2019•红桥区二模)计算:(√5+√2)(√5−√2)的结果等于 . 42.(2019•红桥区一模)计算(√7+2)(√7−2)的结果等于 . 43.(2019•和平区二模)计算(2√2−3)2的结果等于 . 44.(2019•滨海新区模拟)计算(√5−√3)2的结果等于 . 45.(2019•东丽区一模)计算:(√3−√2)2= . 46.(2019•大港区模拟)计算√24−√18×√13−√19= .47.(2018•和平区二模)计算(2+√3)(√3−2)的结果等于.48.(2018•北辰区二模)计算(√10+√2)(√10−√2)的结果等于.49.(2018•天津二模)计算(√7+√5)(√7−√5)的结果等于.50.(2018•南开区二模)计算√2×(√6−2√12)的结果等于.2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式参考答案与试题解析一.选择题(共22小题) 1.【解答】解:2a (a+1)2+2(a+1)2=2(a +1)(a +1)2=2a+1. 故选:D . 2.【解答】解:原式=a+b (a+b)2=1a+b . 故选:D . 3.【解答】解:2−x x−1+2x−3x−1=2−x+2x−3x−1=x−1x−1=1.故选:B . 4.【解答】解:x 2x−2+42−x=x 2x −2−4x −2 =x 2−4x −2 =(x −2)(x +2)x −2=x +2. 故选:A . 5.【解答】解:3x−1x−1+2−3x x−1=3x −1+2−3xx −1=1x−1. 故选:C .6.【解答】解:原式=a 2+1−2aa−1=(a −1)2a −1=a ﹣1. 故选:B . 7.【解答】解:x−2x−1+1x−1=x −2+1x −1=1. 故选:A . 8.【解答】解:3x (x−1)2−3(x−1)2=3x−3(x−1)2=3(x−1)(x−1)2=3x−1;故选:D . 9.【解答】解:2a−1a−1−1a−1=2a −1−1a −1=2a −2a −1 =2(a −1)a −1=2, 故选:A .10.【解答】解:原式=(x+y)2(x+y)(x−y)−yx−y=x +y x −y −yx −y=xx−y , 故选:A .11.【解答】解:原式=2+b2a+b , 故选:D . 12.【解答】解:x+2x+1−x x+1=x+2−x x+1=2x+1,故选:C .13.【解答】解:原式=x 2x−1−x x−1=x(x−1)x−1=x ,故选:A.14.【解答】解:aa2−b2−1a−b=a(a+b)(a−b)−a+b(a+b)(a−b)=−ba2−b2,故选:D.15.【解答】解:原式=m2−n2 m−n=m+n,故选:B.16.【解答】解:原式=m2m−4−16m−4=m2−16m−4=(m+4)(m−4)m−4=m+4,故选:B.17.【解答】解:原式=x2−1 x−1=x+1,故选:A.18.【解答】解:xx−2+2 x−2=x+2x−2,故选:D.19.【解答】解:原式=2x+1−2+x3x−1=3x−13x−1=1,故选:A.20.【解答】解:2aa2−1−1a+1=2a(a+1)(a−1)−a−1(a+1)(a−1)=2a−(a−1)(a+1)(a−1)=a+1(a+1)(a−1)=1a−1, 故选:B .21.【解答】解:原式=2x 5x−3•(5x+3)(5x−3)3•x5x+3=2x 23, 故选:A . 22.【解答】解:a (a+1)2+1(a+1)2=1a+1,故选:D .二.填空题(共28小题) 23.【解答】解:原式=3+2√15+5 =8+2√15. 故答案为8+2√15.24.【解答】解:原式=(√5)2﹣22 =5﹣4 =1. 故答案为1.25.【解答】解:原式=3﹣2√3+1 =4﹣2√3. 故答案为4﹣2√3.26.【解答】解:原式=5﹣2√5+1 =6﹣2√5. 故答案为6﹣2√5.27.【解答】解:原式=(√11)2﹣22 =11﹣4 =7. 故答案为728.【解答】解:原式=9+6√6+6 =15+6√6. 故答案为15+6√6.29.【解答】解:原式=(√5)2﹣62=5﹣36=﹣31.故答案为:﹣31.30.【解答】解:(2√2−3)(3+2√2)=(2√2)2﹣32=8﹣9=﹣1,故答案为:﹣1.31.【解答】解:原式=(√6)2﹣22=6﹣4=2.故答案为2.32.【解答】解:原式=(√5)2+2√10+(√2)2=5+2√10+2=7+2√10.故答案为7+2√10.33.【解答】解:原式=(√3)2﹣22=3﹣4=﹣1,故答案为:﹣1.34.【解答】解:使式子√a−1有意义,则a﹣1≥0,解得:a≥1.故答案为:a≥1.35.【解答】解:原式=20﹣4√10+2=22﹣4√10.故答案为22﹣4√10.36.【解答】解:∵x=√3+1,y=√3−1,∴x2+2xy+y2=(x+y)2=(√3+1+√3−1)2=(2√3)2=12;故答案为:12.37.【解答】解:原式=√143=√423, 故答案为:√423; 38.【解答】解:解法一:当x =√10−1时, x 2+2x +6=(√10−1)2+2(√10−1)+6 =10﹣2√10+1+2√10−2+6 =15, 故答案为15;解法二:x 2+2x +6=(x +1)2+5 =(√10−1+1)2+5 =10+5 =15, 故答案为15.39.【解答】解:原式=5﹣2√10+2 =7﹣2√10. 故答案为7﹣2√10.40.【解答】解:原式=3﹣2√6+2 =5﹣2√6. 故答案为5﹣2√6. 41.【解答】解:原式=5﹣2 =3. 故答案为3.42.【解答】解:原式=7﹣4=3. 故答案为3.43.【解答】解:原式=(2√2)2﹣2×2√2×3+32 =8﹣12√2+9 =17﹣12√2, 故答案为:17﹣12√2.44.【解答】解:原式=5﹣2√15+3=8﹣2√15.故答案为8﹣2√15.45.【解答】解:原式=(√3)2+(√2)2−2√3×√2=3+2﹣2√3×2=5﹣2√6.故答案为:5﹣2√6.46.【解答】解:原式=2√6−√18×13−13=2√6−√6−1 3=√6−13.故答案为√6−1 3.47.【解答】解:(2+√3)(√3−2)=(√3)2﹣22=3﹣4=﹣1.故答案为:﹣1.48.【解答】解:原式=10﹣2=8.故答案为8.49.【解答】解:原式=7﹣5=2.故答案为2.50.【解答】解:原式=√2×6−2√2×1 2=2√3−2.故答案为2√3−2.。
2018年湖北省黄冈市中考数学全真模拟试卷(二)一.选择题(共6小题,满分15分)1.已知x的取值能使|x﹣3|+|x+2|取得最小值,则所有中整数有()A.1个B.2个C.3个D.4个2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a73.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E 不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.98 6.(3分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>C D.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共8小题,满分24分,每小题3分)7.(3分)计算:=.8.(3分)分解因式:3x2﹣6x2y+3xy2=.9.(3分)=.10.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).12.(3分)如图,E是正方形ABCD内一点,如果△ABE为等边三角形,那么∠DCE=度.13.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).14.(3分)两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为.三.解答题(共10小题,满分64分)15.(5分)解关于x的不等式组:,其中a为参数.16.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.17.(6分)已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.18.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?19.(7分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(7分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.21.(7分)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B 两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可以近似的用二次函数y=﹣200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=(k>0)刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由.24.综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2018年湖北省黄冈市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共6小题,满分15分)1.【解答】解:∵已知x的取值能使|x﹣3|+|x+2|取得最小值,∴当x≥3时,有|x﹣3|+|x+2|=x﹣3+x+2=2x﹣1,∴当x=3时有最小值:2×3﹣1=5;∴当﹣2<x<3时,有|x﹣3|+|x+2|=3﹣x+x+2=5,∴其有最小值5;当x≤﹣2时,有|x﹣3|+|x+2|=3﹣x﹣x﹣2=1﹣2x,∴当x=﹣2时有最小值5,∴﹣2≤x≤3可以使|x﹣3|+|x+2|取得最小值,∴﹣1≤≤,∴所有中整数有﹣1,0,1,共3个,故选:C.2.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.【解答】解:原式==,故答案为:8.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)9.【解答】解:∵=﹣,∴原式=(﹣)+(﹣)+…+(﹣),=1﹣,=.故答案为.10.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.11.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°﹣60°=30°,BC=BE,∴∠ECB=∠BEC=(180°﹣30°)=75°,∴∠DCE=90°﹣75°=15°.故答案为15.13.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.14.【解答】解:当M、N分别为AC、BC的中点时,MN最小.在△ABC中,∵∠C=90°,AC=5,BC=12,∴AB==13.∵M、N分别为AC、BC的中点,∴MN=AB=.故答案为.三.解答题(共10小题,满分64分)15.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a =时,a =,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.16. 【解答】解:(1)BF =AC ,理由是:如图1,∵AD ⊥BC ,BE ⊥AC ,∴∠ADB =∠AEF =90°,∵∠ABC =45°,∴△ABD 是等腰直角三角形,∴AD =BD ,∵∠AFE =∠BFD ,∴∠DAC =∠EBC ,在△ADC 和△BDF 中,∵,∴△ADC ≌△BDF (AAS ),∴BF =AC ;(2)NE =AC ,理由是:如图2,由折叠得:MD =DC ,∵DE ∥AM ,∴AE =EC ,∵BE ⊥AC ,∴AB =BC ,∴∠ABE =∠CBE ,由(1)得:△ADC ≌△BDF ,∵△ADC ≌△ADM ,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=A C.17.【解答】解:∵x1、x2是方程2x2﹣2nx+n(n+4)=0的两根,∴x1+x2=﹣=n①,x1x2==n(n+4)②,又∵(x1﹣1)(x2﹣1)﹣1=,∴x1x2﹣(x1+x2)=,把①②代入上式得n(n+4)﹣n=,化简得n2=,即n=±.又∵△=b2﹣4ac=4n2﹣4×2×n(n+4)=﹣16n,而原方程有根,∴﹣16n≥0,∴n≤0,∴n=﹣.18.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.19.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.【解答】解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4.∴A(3,0),B(0,4).设直线AB的解析式为y=kx+b.∴解得∴直线AB的解析式为;(2)如图1,过点Q作QF⊥AO于点F.∵AQ=OP=t,∴AP=3﹣t.由△AQF∽△ABO,得.∴=.∴QF=t,∴S=(3﹣t)•t,∴S=﹣t2+t;(3)四边形QBED能成为直角梯形.①如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即=.3t=5(3﹣t),3t=15﹣5t,8t=15,解得t=;(当P从A向0运动的过程中还有两个,但不合题意舍去)②当DE经过点O时,∵DE垂直平分PQ,∴EP=EQ=t,由于P与Q相同的时间和速度,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB所以t=,当P从A向O运动时,过点Q作QF⊥OB于F,EP=6﹣t,即EQ=EP=6﹣t,AQ=t,BQ=5﹣t,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.21.【解答】解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.【解答】解:(1)∵y=﹣200x2+400x=﹣200(x﹣1)2+200,①∴当x=1时,y取得最大值,此时y=200,答:喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,∴45=,得k=225,即k的值是225;(2)该驾驶员第二天早晨7:00不能驾车去上班,理由:由(1)知k=225,∴y=,∵晚上20:00到第二天早晨7:00是11个小时,∴将x=11代入y=,得y=,∵,∴该驾驶员第二天早晨7:00不能驾车去上班.24.【解答】解:(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D为直角顶点.连接AD,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AD2+BD2=AB2,∴△ABD为直角三角形,即点A为所求的点Q.∴Q1(﹣2,0);③以点B为直角顶点.如图,设Q2点坐标为(x,y),过点Q2作Q2K⊥x轴于点K,则Q2K=﹣y,OK=x,BK=8﹣x.易证△Q2KB∽△BOD,∴,即,整理得:y=2x﹣16.∵点Q在抛物线上,∴y=x2﹣x﹣4.∴x2﹣x﹣4=2x﹣16,解得x=6或x=8,当x=8时,点Q2与点B重合,故舍去;当x=6时,y=﹣4,∴Q2(6,﹣4).综上所述,符合题意的点Q的坐标为(﹣2,0)或(6,﹣4).。
2018年福建省厦门市中考数学模拟试卷一.选择题(共10小题,满分40分)1.(4分)“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.某市预计投入31600辆共享单车服务于人们,31600用科学记数法表示为()A.3.16×104B.3.16×105C.3.16×106D.31.6×1052.(4分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(x+y)2=x2+y2B.(﹣xy2)3=﹣x3y6C.(﹣a)3÷a=﹣a2D.x6÷x3=x24.(4分)如图所示,四边形ABCD是平行四边形,已知AB=4,BC=3,则AC2+BD2的值是()A.45 B.50 C.55 D.605.(4分)有一个数值转换器,流程如下,当输入的x为256时,输出的y是()A.B.C.2 D.46.(4分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣47.(4分)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,198.(4分)图象的顶点为(﹣2,﹣2),且经过原点的二次函数的关系式是()A.y=(x+2)2﹣2 B.y=(x﹣2)2﹣2 C.y=2(x+2)2﹣2 D. y=2(x﹣2)2﹣2 9.(4分)身份证号码告诉我们很多信息,某人的身份证号码是××××××199704010012,其中前六位数字是此人所属的省(市、自治区)、市、县(市、区)的编码,1997、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是××××××200306224522的人的生日是()A.5月22日B.6月22日C.8月22日D.2月24日10.(4分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.(4分)计算:|﹣2|+(2018﹣π)0﹣cos60°=.12.(4分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠C OE=34°,则∠BOD= 度.13.(4分)若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N= 度.14.(4分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12S22(填“>”、“=”或“<”).15.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB 为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.16.(4分)如图,点D,E分别为△ABC的边AB,AC上,若△ADE≌△CFE.则下列结论①AD=CF;②AB∥CF;③AC⊥DF;④点E是AC的中点;不一定正确的是(填写序号).三.解答题(共9小题,满分86分)17.(8分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b ﹣1)﹣(a+2b)(﹣2b+a)+2b的值.18.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.19.(8分)“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.20.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点C和点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.21.(8分)已知:如图,在▱ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD 于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求四边形DEBF的周长和面积.22.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.23.如图,平面直角坐标系中,点A是直线y=x(a≠0)上一点,过点A作AB⊥x轴于点B(2,0),(1)若=,求∠AOB的度数;(2)若点C(4﹣a,b),且AC⊥OC,∠AOC=45°,OC与AB交于点D,求AB的长.24.如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.(1)求证:ED是⊙O的切线;(2)若⊙O半径为3,ED=4,求AB长.25.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ 与OQ的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin ∠ODC的值最大时,求点M的坐标.参考答案1.A.2.B.3.C.4.B.5.A.6.D.7.A.8.A.9.B10.A.11..12.56.13.1080°.14.= 15.3+.16.③.17.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.18.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.19.解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90°;(2)“了解”的人数为:60﹣15﹣30﹣10=5;补全条形统计图得:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.20.解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0),此时△MDB的周长为2+6.21.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF 即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2,∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=2,∴四边形DEBF的面积=BE×DG=2×2=4.22.解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+(2500﹣2000)×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.23.解:(1)∵点A是直线y=x(a≠0)上一点,AB⊥x轴于点B(2,0),若=,∴tan∠AOB=,即∠AOB=60°,(2)过点C作CE⊥x轴于点E,CF⊥AB于F.则四边形ECFB是矩形.∵∠ACO=∠FCE,∴∠ACF=∠OCE,∵AC=CO,∠AFC=∠CEO,∴△ACF≌△OCE,∴AF=OE=4﹣a,CF=CE=b,∴四边形ECFB是正方形,∴CF=CE=BE=2﹣a,∴b=2﹣a,∴AB=4﹣a+2﹣a=6﹣2a,令x=2代入y=,∴y=,∴A(2,)∴AB=,24.解:(1)方法一:连接OD,OE,CD,∵∠ADC=90°,∴∠CDB=90°,∵E是BC的中点,∴DE=CE,∴∠EDC=∠ECD,∵OC=OD,∴∠ODC=∠OCD,∴∠ODC+∠EDC=∠OCD+∠ECD=90°,即OD⊥ED,∴ED与⊙O相切.方法二:连接OE,OD,∵E是BC的中点,∠BDC=90°,∴DE=CE,又∵OD=OC,OE=OE,∴△ODE≌△OCE,∴∠ODE=∠OCE=90°,即OD⊥ED,∵D在⊙O上,∴ED与⊙O相切.(2)∵⊙O半径为3,即OC=3,ED=4,∴CE=ED=4,∴OE==5,∵E为BC中点,OC=OA,∴OE为△ACB的中位线,∴OE=AB,∴AB=10.答:AB长为10.25.解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<3,∴当m=2时,y最大值=,∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN==,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).。
2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。
在上,顶点C在。
的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。
以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。
2018年北京市丰台区中考数学模拟试卷(3月份)一.选择题(共8小题,满分16分,每小题2分)1. 如图,在ABCD 中,BC边上的高是()A. ECB. BHC. CDD. AF 【答案】D【解析】【分析】根据三角形的高线的定义解答.【详解】根据高的定义,AF为△ABC中BC边上的高.故选D.【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键.2. 如果代数式3xx+有意义,则实数x的取值范围是()A. x≥3﹣ B. x≠0 C. x≥3﹣且x≠0 D. x≥3【答案】C【解析】【分析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.3. 如图是某几何体的三视图,则该几何体的全面积等于( )A. 112B. 136C. 124D. 84【答案】B【解析】【详解】试题解析:该几何体是三棱柱.如图:由勾股定理22-=,543´=,326全面积为:164257267247042136.´´´+´´+´=++=2故该几何体的全面积等于136.故选B.4. 如果实数,且a在数轴上对应点的位置如图所示,其中正确的是( )A.B.C.D.【答案】C【解析】的大小,进而在数轴上找到相应的位置,即可得到答案.【详解】49911,4<<Q 由被开方数越大算术平方根越大,<<即73,2<<故选C.【点睛】考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估的大小.5. 如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数 ()A. 40°B. 50°C. 60°D. 90°【答案】B【解析】【详解】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:∵AB BC ⊥,∴∠ABC=90°,∵点B 在直线b 上,∴∠1+ABC+3=180°∠∠,∴∠3=180°-1-90°=50°∠,∵a b ∥,∴∠2=3=50°.∠故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.6. 在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为( )A. (﹣3,﹣4)或(3,4)B. (﹣4,﹣3)C. (﹣4,﹣3)或(4,3)D. (﹣3,﹣4)【答案】A【解析】【分析】分顺时针旋转,逆时针旋转两种情形求解即可.【详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【点睛】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.7. 去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A. 最低温度是32℃B. 众数是35℃C. 中位数是34℃D. 平均数是33℃【答案】D【解析】【详解】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,++´++所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是313233334357=33℃,故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.8. 如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )D.B. 2C. 52【答案】C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形BE和a.的高DE,再由图象可知,【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2...∴AD=aDE•AD=a.∴12∴DE=2.s.当点F从D到B∴Rt△DBE中,1=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a2=22+(a-1)2..解得a=52故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二.填空题(共8小题,满分16分,每小题2分)9. 在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.【答案】13【解析】【分析】根据同时同地物高与影长成比列式计算即可得解.【详解】解:设旗杆高度为x米,,由题意得,1.5x=326解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.10. 写出一个经过点(1,2)的函数表达式_____.【答案】y=x+1(答案不唯一)【解析】【分析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.,答案不唯一.【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1…故答案可以是:y=x+1(答案不唯一【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.11. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若S EBMF=1,则S FGDN=_____.【答案】1【解析】【分析】根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得S EBMF=S FGDN,得S FGDN.【详解】∵S EBMF=S FGDN,S EBMF=1,∴S FGDN=1.【点睛】本题考查面积的求解,解题的关键是读懂题意.12. 有下列各式:①·x yy x ;②x by a¸;③62x x¸;④23·a ab b.其中,计算结果为分式的是_____.(填序号)【答案】②④【解析】【分析】根据分式的定义,将每个式子计算后,即可求解.【详解】x y·y x =1不是分式,x by a¸=xayb,62x x¸=3不是分式,2a3a·b b=323ab故选②④.【点睛】本题考查分式的判断,解题的关键是清楚分式的定义.13. 如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.【答案】50【解析】【分析】由CD是⊙O的直径,弦AB CD⊥,根据垂径定理的即可求得»AD=»BD,又由圆周角定理,可得∠AOD=50°.【详解】∵CD是⊙O的直径,弦AB CD⊥,∴»AD=»BD,BCD=25°=∵∠,AOD=2BCD=50°∴∠∠,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.14. 《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.【答案】10031003x y y x +=ìïí+=ïî【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题.【详解】由题意可得,10031003x y y x +=ìïí+=ïî,故答案为:10031003x y y x +=ìïí+=ïî【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15. 标号分别为1,2,3,4……,,n 的n 张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n 可以是_____.【答案】奇数.【解析】【分析】根据概率的意义,分n 是偶数和奇数两种情况分析即可.【详解】若n 为偶数,则奇数与偶摸得奇数号标签的概率为0.5,若n 为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,故答案为奇数.【点睛】本题考查概率公式,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=.16. 阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P.用直尺和圆规作直线PQ ,使PQ l ⊥于点Q ”.小艾的作法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧.(2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧.(3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.【答案】到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss 或全等三角形对应角相等或等腰三角形的三线合一【解析】【分析】从作图方法以及作图结果入手考虑其作图依据..【详解】解:依题意,AP =AM ,BP =BM ,根据垂直平分线的定义可知PM ⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.三.解答题(共12小题,满分68分)17. 计算:27﹣(﹣2)0+|1|+2cos30°.【答案】2-.【解析】【分析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.【详解】原式1122=++´,11=+-,2=.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 解不等式组()()303129x x x -³ìí->+î.【答案】x <﹣3.【解析】【详解】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()303129x x x -³ìïí->+ïî①②,由①得x≤3,由②得x <﹣3,∴原不等式组的解集是x <﹣3.点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.19. 如图,在ABC D 中,AB AC =,D 是BC 边上的中点,DE AB ^于点E ,DF AC ^于点F .求证:DE DF =.【答案】见解析【解析】【分析】如图,连接AD .根据AB AC =,点D 是BC 边上的中点,得出AD 平分BAC Ð,DE 、DF 分别垂直AB 、AC 于点E 和F ,DE DF =即可.【详解】证明:如图,连接AD.AB AC =Q ,点D 是BC 边上的中点,AD \平分BAC Ð,DE Q 、DF 分别垂直AB 、AC 于点E 和F .DE DF \=.【点评】本题考查的是等腰三角形的性质,角平分线性质,熟知等腰三角形三线合一的性质是解答此题的关键.20. 已知关于x 的一元二次方程22220x kx k k +++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求方程的根.【答案】(1)2k < (2)1202x x ==-,【解析】【分析】(1)根据一元二次方程22220x kx k k +++-=有两个不相等的实数根,利用判别式大于零即可解答;(2)根据k 的取值范围,结合k 为正整数即可确定k 的值,将其代入原方程,解方程即可.【小问1详解】解:根据题意,得2224242b ac k k k -=()-(+-)=480k -+>.解得2k <.【小问2详解】解:∵k 为正整数且2k <,∴1k =.∴方程可化为220x x +=,解得1202x x ==-,.【点睛】此题主要考查了根的判别式,解一元二次方程,解题关键是熟练掌握根与判别式关系.21. 如图,已知菱形ABCD,AB=AC,E、F分别是BC,AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=2,求菱形的面积.【答案】(1)见解析;(2)23【解析】【分析】(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.【详解】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,⊥(等腰三角形三线合一),∴AE BC∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∥且AD=BC,∴AD BC∥且AF=EC,∴AF EC∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)在Rt ABE△中,AE=,所以,S菱形ABCD=2×=2.【点睛】本题考查平行四边形的性质和矩形的判断,解题的关键是获取题中的信息.22. 如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】(1)y=6x ,y=x1﹣;(2)x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C,点C的坐标为(﹣3,﹣2),(43,92),(﹣43,﹣92).【解析】【分析】(1)设反比例函数解析式为y=kx,将B点坐标代入,求出反比例函数解析式,将A点坐标代入反比例解析式求出m的值,确定出点A的坐标,设直线AB的解析式为y=ax+b,将A与B的坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;(2)根据图像写出答案即可;(3)分3中情况求解,延长AO交双曲线于点C1,由点A与点C1关于原点对称,求出点点C1的坐标;如图,过点C1作BO的平行线,交双曲线于点C2,将OB的解析式与C1C2的解析式联立,求出点C2的坐标;A作OB的平行线,交双曲线于点C3,,将AC3的解析式与反比例函数的解析式联立,求出点C3的坐标.【详解】解:(1)设反比例函数解析式为y=kx,把B (﹣2,﹣3)代入,可得k=2×﹣(﹣3)=6,∴反比例函数解析式为y=6x;把A (3,m )代入y=6x,可得3m=6,即m=2,∴A (3,2),设直线AB 的解析式为y=ax+b ,把A (3,2),B (﹣2,﹣3)代入,可得2332a ba b=+ìí-=-+î,解得11a b =ìí=-î,∴直线AB 的解析式为y=x 1﹣;(2)由题可得,当x 满足:x <﹣2或0<x <3时,直线AB 在双曲线的下方;(3)存在点C .如图所示,延长AO 交双曲线于点C 1,∵点A 与点C 1关于原点对称,∴AO=C 1O ,∴△OBC 1的面积等于△OAB 的面积,此时,点C 1的坐标为(﹣3,﹣2);如图,过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积,由B (﹣2,﹣3)可得OB 的解析式为y=32x ,可设直线C 1C 2的解析式为y=32x+b',把C 1(﹣3,﹣2)代入,可得﹣2=32×(﹣3)+b',解得b'=52,∴直线C 1C 2的解析式为y=32x+52,解方程组63522y x y x ì=ïïíï=+ïî,可得C 2(43,92);如图,过A 作OB 的平行线,交双曲线于点C 3,则△OBC 3的面积等于△OBA 的面积,设直线AC 3的解析式为y=32x+''b ,把A (3,2)代入,可得2=32×3+''b ,解得''b =﹣52,∴直线AC 3的解析式为y=32x ﹣52,解方程组63522y x y x ì=ïïíï=-ïî,可得C 3(﹣43,﹣92);综上所述,点C 的坐标为(﹣3,﹣2),(43,92),(﹣43,﹣92).【点睛】此题考查了反比例函数与一次函数的综合,涉及的知识有:坐标与图形性质,一次函数图像的交点与二元一次方程组的关系,反比例函数与一次函数的交点问题,利用函数图像解不等式,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.23. 如图,AB 是⊙O 的直径,PO AB ⊥,PE 是⊙O 的切线,交AB 的延长线于点C ,切点为E ,AE 交PO 于点F .(1)求证:V PEF 是等腰三角形;(2)在图中,作EH AB ⊥,垂足为H ,作弦BD PC ∥,交EH 于点G .若EG=5,sinC=35,求直径AB 的长.【答案】(1)见解析;(2)直径AB 的长为20m 【解析】【分析】(1)由切线性质得:OE PC ⊥,根据垂直定义和三角形定理可得:∠AEP=PFE ∠,根据等角对等边可得结论;(2)先根据sinC=35=OH OE ,设OH=3x ,OE=5x ,则EH=4x ,OA=OB=5x ,由平行线性质得:∠GBH=C ∠,列式为:452x x -=34,解方程可得结论.【详解】(1)证明:∵PE 为⊙O 的切线,∴OE PC ⊥,∴∠OEP=90°,∴∠OEA+AEP=90°∠,∵OP AC ⊥,∴∠AOF=90°,∴∠A+AFO=90°∠,∵∠AFO=PFE ∠,∴∠PFE+A=90°∠,∵OA=OE,∠,∴∠A=OEA∠,∴∠AEP=PFE∴PE=PF;∴△PEF是等腰三角形;∠,∠,∠COE+OEH=90°(2)解:∵∠C+COE=90°∠,∴∠C=OEH∵sin C=∠,∠=sin OEH=设OH=3x,OE=5x,则EH=4x,OA=OB=5x,﹣,∴BH=OB OH=2x﹣,GH=4x5∥,∵BG PC∠,∴∠GBH=C∠,∵sin C=∠=tan GBH∠,∴tan C=∴,x=2,∴AB=10x=20,答:直径AB的长为20m.【点睛】本题考查等腰三角形的判定与性质,垂径定理及其推论,圆周角定理及其推论,切线的性质,解题的关键是分析图形.24. 某工厂甲、乙两个部门各有员工200人,为了解这两个部门员工的生产技能情况,相关部门进行了抽样调查,过程如下.从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制,单位:分)如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 75 80 85 70 83 77乙:92 71 83 81 72 81 91 83 75 82 80 81 69 81 73 74 82 80 70 59整理、描述数据本数据:按如下分数段整理、描述这两组样(说明:成绩80分及以上为生产技能优秀,7079﹣﹣分为生产技能良好,6069﹣﹣分为生产技能合格)根据上述表格绘制甲、乙两部门员工成绩的频数分布图.分析数据两组样本数据的平均数、中位数、众数如下表所示:(1)请将上述不完整的统计表和统计图补充完整;(2)请根据以上统计过程进行下列推断;①估计乙部门生产技能优秀的员工人数是多少;②你认为甲、乙哪个部门员工的生产技能水平较高,说明理由.(至少从两个不同的角度说明推断的合理性)【答案】(1)见解析;(2)①120人;②甲或乙.【解析】【分析】(1)根据题干数据整理即可得;(2)①总人数乘以样本中优秀的人数所占比例;②根据中位数和众数等意义解答可得.【详解】解:(1)补全图表如下:=120人;(2)①估计乙部门生产技能优秀的员工人数是200×1220②甲或乙,1°、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;2°、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;或1°、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;2°、乙部门生产技较高,表示乙部门员工的生产技能水平较高.【点睛】本题考查调查收集数据的过程与方法频数(率)分布表,频数(率)分布直方图,算术平均数,中位数,众数,利用频率估计概率,解题的关键是获取题文信息. 25. 问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=2.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y 与x 的函数关系式为:_(02)_(24)x y x --££ì=í--<£î,解决问题:(2)为进一步研究y 随x 变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:(3)观察所画的图象,写出该函数的两条性质: .【答案】(1) ①y=212x ;②221(02)212(24)2x x y x x x 죣ïï=íï-+<£ïî;(2)见解析;(3)见解析【解析】【分析】(1)根据线段相似的关系得出函数关系式(2)代入①中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x ①当0≤x≤2时∵MN BD ∥∴△APM AOD ∽△∴AP AO 2PM DO==∴MP=12x∵AC 垂直平分MN ∴PN=PM=12x∴MN=x ∴y=12AP•MN=212x ②当2<x≤4时,P 在线段OC 上,∴CP=4x ﹣∴△CPM COD ∽△∴CP CO 2PII DO==∴PM=1(4)2x -∴MN=2PM=4x﹣∴y=11AP MN x(4x)22×=-=﹣2122x x+∴y=221(02)212(24)2x x x x x 죣ïïíï+<£ïî(2)由(1)当x=1时,y=12当x=2时,y=2当x=3时,y=32(3)根据(1)画出函数图象示意图可知1、当0≤x≤2时,y 随x 的增大而增大2、当2<x≤4时,y 随x 的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.26. 已知抛物线212y x bx c =-++经过点()10,,302æöç÷èø,.1()求该抛物线的函数表达式;2()将抛物线212y x bx c =-++平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】(1)抛物线解析式为21322y x x =--+;(2)向右平移一个单位,向下平移2个单位(方法不唯一),212y x =-.【解析】【分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【详解】(1)把()1,0,30,2æöç÷èø代入抛物线解析式得:10232b c c ì-++=ïïíï=ïî,解得:132b c =-ìïí=ïî,则抛物线解析式为21322y x x =--+;(2)抛物线解析式为22131(1)2222y x x x =--+=-++,将抛物线向右平移一个单位,向下平移2个单位,解析式变为212y x =-.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.27. 如图,△ABC 中,∠ACB=90°,AC=BC ,在△ABC 外侧作直线CP ,点A 关于直线CP 的对称点为D ,连接AD ,BD ,其中BD 交直线CP 于点E .(1)如图1,∠ACP=15°.①依题意补全图形;②求∠CBD 的度数;(2)如图2,若45°<∠ACP <90°,直接用等式表示线段AC ,DE ,BE 之间的数量关系.【答案】(1)①见解析;②30°;(2)DE2+BE2=2AC2,理由见解析【解析】【分析】(1)根据题意作图,进而求∠CBD的度数(2)由45°<∠ACP<90°,根据题意和图形可得DE2+BE2=2AC2 .【详解】(1)如图1所示,(2)如图1,连接CD,∵点A关于直线CP的对称点为D,∴CP是AD的垂直平分线,∴CD=AC,∠DCP=ACP=15°∠,∵∠ACB=90°,∴∠BCD=90°+15°+15°=120°,∵AC=BC=CD,∠,∴∠CBD=CDB=30°(3)DE2+BE2=2AC2,理由是:如图2,连接CD、AE,∵DC=BC=AC,∠∠,∴∠CDB=CBD=CAE∠,∵∠CGA=EGB∠,∴∠GEB=ACB=90°∴AE2+BE2=AB2,∵CP是AD的垂直平分线,∴ED=AE,∴DE2+BE2=AB2,∵△ABC是等腰直角三角形,∴AB2=AC2+BC2,且AC=BC,∴DE2+BE2=2AC2.【点睛】本题考查图形应用题,解题的关键是利用题文信息.28. 如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB 于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择 题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)8,4,45;(2)①AD=5;②P(0,2)或(0,8).【解析】【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A.①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.﹣x+8的图象与x轴,y轴分别交于点A,点C,【详解】解:(1)∵一次函数y=2∴A(4,0),C(0,8),∴OA=4,OC=8.∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4.在Rt△ABC中,根据勾股定理得,AC故答案为8,4,(2)选A.①由(1)知,BC=4,AB=8,由折叠知,CD=AD.在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5;②由①知,D(4,5),设P(0,y).∵A(4,0),﹣)2.∴AP2=16+y2,DP2=16+(y5∵△APD为等腰三角形,∴分三种情况讨论:Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,﹣)2,∴16+y2=16+(y5,∴y=52);∴P(0,52﹣)2,Ⅲ、AD=DP,25=16+(y5∴y=2或8,∴P(0,2)或(0,8).)或P(0,2)或(0,8).综上所述:P(0,3)或(0,﹣3)或P(0,52AC,DE⊥AC于E.选B.①由A①知,AD=5,由折叠知,AE=1在Rt△ADE中,DE②∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CP A≌△ABC,∴∠APC=∠ABC=90°.∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0);如图3,过点O 作ON ⊥AC 于N ,易证,△AON ∽△ACO ,∴AN OA OA AC=,∴4AN =,∴AN =5,过点N 作NH ⊥OA ,∴NH ∥OA ,∴△ANH ∽△ACO ,∴AN NH AH AC OC OA==,∴84NH AH==,∴NH =85,AH =45,∴OH =165,∴N (16855,),而点P 2与点O 关于AC 对称,∴P 2(321655,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣122455,).综上所述:满足条件的点P 的坐标为:(0,0),(321655,),(﹣122455,).【点睛】本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.。
2018年天津市西青区中考数学二模试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3.00分)计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.182.(3.00分)2cos30°的值等于()A.1 B.C.D.23.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.4.(3.00分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C. D.6.(3.00分)比较4,,的大小,正确的是()A.4<<B.4<<C.<4<D.<<4 7.(3.00分)计算﹣的结果为()A. B. C. D.8.(3.00分)二元一次方程组的解是()A.B.C.D.9.(3.00分)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′10.(3.00分)a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a11.(3.00分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.712.(3.00分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题:本大题共6小题,每小题3分,共18分)13.(3.00分)计算(a3)2÷(a2)3的结果等于.14.(3.00分)计算(2﹣)2的结果等于.15.(3.00分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.16.(3.00分)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为.17.(3.00分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.18.(3.00分)如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(I)OM的长等于;(Ⅱ)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程)19.(8.00分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8.00分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的中学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.21.(10.00分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA 于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.22.(10.00分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)23.(10.00分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(Ⅰ)根据题意,填写下表:(Ⅱ)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x 的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y,当y=12时,求x的值.24.(10.00分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).25.(10.00分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(I)求该抛物线的解析式和顶点坐标;(Ⅱ)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).2018年天津市西青区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3.00分)计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.18【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=﹣3+6=3,故选:A.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.(3.00分)2cos30°的值等于()A.1 B.C.D.2【分析】根据特殊角的三角函数值直接解答即可.【解答】解:2cos30°=2×=.故选:C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选:B.【点评】本题主要考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.4.(3.00分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C. D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:由图可得,俯视图为:.故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.(3.00分)比较4,,的大小,正确的是()A.4<<B.4<<C.<4<D.<<4【分析】直接分别将与和4比较大小,进而得出答案.【解答】解:∵=4,∴<,∵<,∴>4,∴<4<.故选:C.【点评】此题主要考查了实数比较大小,正确化简各数是解题关键.7.(3.00分)计算﹣的结果为()A. B. C. D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式====故选:A.【点评】本题考查分式的运算法则,解题的熟练运用分式的运算法则,本题属于基础题型.8.(3.00分)二元一次方程组的解是()A.B.C.D.【分析】用加减消元法解方程组即可.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选:B.【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法或代入消元法解方程组,属于中考常考题型.9.(3.00分)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选:C.【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.10.(3.00分)a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a【分析】根据反比例函数的性质可以判断a、b的大小,从而可以解答本题.【解答】解:∵y=﹣,∴反比例函数y=﹣的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,∴a<b<0,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质.11.(3.00分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选:B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.12.(3.00分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选:C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分)13.(3.00分)计算(a3)2÷(a2)3的结果等于1.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:原式=a6÷a6=1.故答案为:1.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算等知识,正确掌握相关运算法则是解题关键.14.(3.00分)计算(2﹣)222﹣4.【分析】利用完全平方公式计算.【解答】解:原式=20﹣4+2=22﹣4.故答案为22﹣4.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.(3.00分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.16.(3.00分)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A(﹣1,2)关于y轴的对称点是(1,2),∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.【点评】本题考查了一次函数图象与几何变换,关于y轴对称的点坐标特征,一次函数图象上点的坐标特征,熟练记忆函数平移规律是解题关键.17.(3.00分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】方法1、根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.方法2、先判断出BF=FG,进而得出△ABF≌△CDG,即可得出DG=BF=FG,最后得出CF=CD即可得出结论.【解答】解:方法1、∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.方法2、如图,过点C作CG⊥BD,∵AE⊥BD,∴∠AFE=∠CGD=90°,EF∥CG,∵点E是BC中点,∴BF=FG,∵四边形ABCD是矩形,∴AB=CD=,AB∥CD,∴∠ABF=∠CDG,∴△ABF≌△CDG,∴CF=CD=,故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.18.(3.00分)如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(I)OM的长等于4;(Ⅱ)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR即可得到结果.【解答】解:(Ⅰ)OM==4;故答案为4.(Ⅱ)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴当a=时,PA2+PB2取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR 交OM于P,则点P即为所求.【点评】本题考查了作图﹣应用与设计作图,轴对称﹣最短距离问题,勾股定理等知识,正确的作出图形是解题的关键.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程)19.(8.00分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x<3;(Ⅱ)解不等式②,得x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x<3.【分析】求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.【解答】解:(Ⅰ)解不等式①,得:x<3;(Ⅱ)解不等式②,得:x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为:﹣2≤x<3,故答案为:x<3、x≥﹣2、﹣2≤x<3.【点评】本题考查了一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是求出不等式组的解集.20.(8.00分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的中学生人数为250,图①中m的值是12;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.【分析】(I)由1h人数及其所占百分比可得总人数,根据百分比之和为1可得m的值;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中每天在校体育锻炼时间大于等于1.5h的人数所占比例可得.【解答】解:(I)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为:250、12;(Ⅱ)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(Ⅲ)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点评】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.21.(10.00分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA 于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.【分析】(I)如图①,连接OQ.想办法求出∠OQB,∠AQB,∠OQE的大小即可解决问题;(Ⅱ)如图②中,连接OQ,想办法求出∠OQA即可解决问题;【解答】解:(I)如图①中,连接OQ.∵EQ是切线,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(Ⅱ)如图②中,连接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切线,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【点评】本题考查切线的性质.等腰三角形的性质.三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(10.00分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)【分析】在Rt△AOC中,求出AC、OA、OC,在Rt△BOC中求出OB,即可解决问题.【解答】解:由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的长为6.0km,AB的长为1.7km.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.23.(10.00分)A ,B 两地相距20km .甲、乙两人都由A 地去B 地,甲骑自行车,平均速度为10km/h ;乙乘汽车,平均速度为40km/h ,且比甲晚1.5h 出发.设甲的骑行时间为x (h )(0≤x ≤2) (Ⅰ)根据题意,填写下表:(Ⅱ)设甲,乙两人与A地的距离为y 1(km )和y 2(km ),写出y 1,y 2关于x 的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y ,当y=12时,求x 的值. 【分析】(Ⅰ)根据“路程=速度×时间”可以得出表中数据;(Ⅱ)对于甲乙两者与A 地的距离的解析书把握住乙比甲晚1.5h 出发即可; (Ⅲ)甲,乙两人之间的距离为y 实际上是y 1,y 2的差的绝对值.【解答】解(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h 和40km/h ,且比甲晚1.5h 出发.当时间x=1.8 时,甲离开A 的距离是10×1.8=18(km ) 当甲离开A 的距离20km 时,甲的行驶时间是20÷10=2(时) 此时乙行驶的时间是2﹣1.5=0.5(时), 所以乙离开A 的距离是40×0.5=20(km ) 故填写下表:(Ⅱ)由题意知:y 1=10x (0≤x ≤1.5),(Ⅲ)根据题意,得当0≤x≤1.5时,由10x=12,得x=1.2当1.5<x≤2时,由﹣30x+60=12,得x=1.6因此,当y=12时,x的值是1.2或1.6【点评】本题根据题意写函数解析式的题目,需要注意分段函数的表达和应用,需要注意的是必须结合实际情况来解答问题.考查了学生的建模能力和分类思想.24.(10.00分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A 的长,然后利用相似三角形的对应边成比例与m=,即可求得t的值.【解答】解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OP B′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).【点评】此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.25.(10.00分)抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(I)求该抛物线的解析式和顶点坐标;(Ⅱ)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).【分析】(I)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,转化为解方程组即可.(Ⅱ)①先求出直线OA的解析式,点B坐标,抛物线的对称轴即可得出AB=7及直线OA解析式,继而得点P坐标,如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程m2+()2=52,解方程即可解决问题.②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【解答】解:(I)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,得,解得,∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.所以抛物线的顶点坐标为(,);(Ⅱ)①由题意B(5,0),A(4,4),∴直线OA的解析式为y=x,AB==7,∵抛物线的对称轴x=,∴P(,).如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四边形BOQC是平行四边形,∵BO=BC,∴四边形BOQC是菱形,设Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴点Q坐标为(﹣,)或(,);②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直线BH的解析式为y=﹣x+,当y=时,x=0,∴Q(0,).【点评】本题考查二次函数综合题、一次函数的应用、平行四边形的判定和性质、菱形的判定和性质、勾股定理、圆等知识,解题的关键是灵活运用所学知识,学会用方程的思想思考问题,学会构建一次函数,利用方程组求交点坐标,属于中考压轴题.。
中考模拟试卷二
一、 选择题:
1.下列计算正确的是( )
A .2
3
5
a a a =-;B .15
3
5
a a a =∙;C .236
a a
a =;D .1025)(a a =-
2.已知数据10,x ,8,10的平均数与众数相同,则中位数是( )
A . 8;
B .9;
C .10;
D .12
3.某商品原价为100元,现有下列四种调节器价方案,其中0<n<m<100,则调价后价格最高的方案是( )
A . 先涨价m %,再降价n %;
B .先涨价n %,再降价m %;
B . 先涨价2n m +%,再降价2
n
m +%;D .先涨价mn %,再降价mn %
4.P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 作直线截ΔABC ,使截得的三角形与ΔABC 相似,满足这样的直线共有( )
A . 1条;
B .2条;
C .3条;
D .4条
5.已知正三角形的边长为a ,其内切圆半径为r ,外接圆半径为R,则r :a :R 等于( )
A . 1:23:2;
B .1:3:2;
C .1:2:3;
D .1:3:23; 6. 学生离家去学校由于怕迟到,所以一开始就跑步,等到跑累了再走余下的路程,在下列图中,纵轴表示离学校的距离,横轴表示出发后的时间,则下列四个图中较符合该学生走法的是( )
A
7.已知ΔABC 中,∠A =30°,∠B =45°,ΔABC 的面积为
2
1
3+,若AC =m ,则m 的值为( )
A . 1;
B .2;
C .2;
D .3
8.已知a ,b ,c 分别为ΔABC 中∠A 、∠B 、∠C 对边,若关于x 的方程(b +c )x 2
-2ax +c -b =0有两相等根且sinB ·cosA -cosB ·sinA =0则ΔABC 的形状为( )
A . 角三角形;
B .等到腰三角形;
C .等边三角形;
D .等到腰直角三角形 9. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如(1101)
2表示二进制数,将它转换成十进制数形式是1×23+1×22+0×21+1×20
=13,那么,
将二进制数
1
2001)11111(个转换成二进制数是( ) A . 22002 -2; B .22001-2; C .22001-1; D .22000-1
10.两圆4cm 和2cm ,一条外公切线长为4cm ,则两圆的位置关系为(
)
A . 外切;
B .内切;
C .外离;
D .相交
二.填空题:
离离离
11.不等式组⎪⎩⎪
⎨⎧->+≤--13
24)2(3x x a x x 的解集是1≤x<1,则a =_________
12.乘某城市的一种出租车起价是10元(即行驶路程在5km 以内都需付10元车费),达到或超过5km 后,每增加1km 加价1.2元(不足1km 部分按1km 计),现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是_______
13.等到腰梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,若梯形的高8cm ,则上、下底的和为________
14.已知抛物线y =ax 2+bx +c(a ≠0)的图像如图所示,下列结论(1)abc>0;(2)b>0;(3)4a +2b +c>0;(4)(a +b)2<b 2其中正确的有________(反所有正确的结论的序号填出来)
15.把矩形ABCD 纸片沿图中EF 折叠后,ED 与BC 的交点为G ,点D 、C 分别落在D ’、C ’的位置上,并且∠EFG =50°,则∠AEG =________
16.若关于x 的方程x 2 +2(m -2)x +m 2+4=0有两个实数根,并且这两个根的平方和比两根的积大21,则m =_________
17.操场上有一根旗杆,李阳在离杆底12米的地面上放一枚平面镜,他沿这条直线继续向后退1米,恰好站着从镜中看到杆顶。
已知李阳从脚跟到眼睛的高度是1.6米,那么旗杆的高是________
18.把菱形ABCD 沿对角线BD 平行移动到A 1B 1C 1D 1的位置,这时两菱形重叠部分的面积恰为菱形面积的1/3,而且BD =3,则平行移动的距离是_________ 二、 解答题:
19. 先化简,再求值: xy
x y
xy y xy xy x +++++,其中13,13-=+=y x
20. 已知关于x 的方程:0)622(222=+++-++a x a a a a x 的两实数根互为
相反数,求a 的值。
21. 已知Rt ΔABC 中,∠ACB =90°,CA =CB ,点D 在BC 的延长线上,点E 在AC
上,且CD =CE ,延长BE 交AD 于点F ,求证:BF ⊥AD 。
22. 已知反比例函数x
k
y 2=
和一次函数12-=x y ,其中一次函数的图像经过(b a ,),(k b a ++,1)两点。
(1)求反比例函数的解析式;(2)已知点A 在第一象限,且同时在上述两函数的图像上,求A 点的坐标。
23. 已知AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB ,垂足为E ,∠POC
=∠PCE 。
(1)求证:PC 是⊙O 的切线。
(2)若OE :EA =1:2,PA =6,求⊙O 的半径。
(3)求sin ∠PCE 的值。
24. 某下表是某一周甲、乙两种股票每天的收盘价:(收盘价:股票每天交易结束
星期二比星期一获利200元,星期三比星期二获利1300元(账户上的获利金额数不含手续费、税费等)。
(1)问此人手中有甲、乙股票各多少股?(2)如果在股市交易中每买、卖一次需交千分之七点五的各种费用,问在星期五收盘时将手中所有股票全部卖出,可实际盈利多少元?(精确到1元)
E
25. 已知二次函数y = -x 2+2(m -1)x +m +1与x 轴交于A 、B 两点,且A 点在x
轴的正半轴上,B 点在x 轴的负半轴上,OA 的长是a ,OB 的长是b 。
(1)求m 的取值范围;(2)若a :b =3:1,求m 的值及抛物线的解析式;(3)设(2)中抛物线与y 轴交于点C ,抛物线的顶点是M ,问抛物线上是否存在点P ,使S ΔPAB =S ΔBCM ?若存在,求点P 的坐标,若不存在,请说明理由。
26. 如图,正方形ABCD 中,有一直径为BC 的半圆,BC =2cm ,现有两点E 、F 分别
从B 点、A 点同时出了,点E 沿线段BA 以1cm/秒的速度向点A 运动,点F 沿折线A →D →C 以2cm/秒速度向点C 运动,设点E 离开点B 的时间为t(秒)。
(1) t 为何值时,线段EF 与BC 平行;
(2) 设1<t <2,当t 为何值时,EF 与半圆相切;
(3) 当1≤t <2时,设EF 与AC 交于P ,问点E 、F 运动时点P 的位置是否
发生变化,请说明理由;若不发生变化,请给予证明,并求PC
AP
的值。
D
C。