12.3一次函数与二元一次方程组练习
- 格式:ppt
- 大小:262.50 KB
- 文档页数:11
沪科版八年级数学上册同步练习12.3一次函数与二元一次方程一、单选题1、已知直线AB ∥x 轴,且点A 的坐标是(﹣1,1),则直线y=x+3与直线AB 的交点是( )A 、(2,1)B 、(﹣2,﹣1)C 、(2,﹣1)D 、(﹣2,1) 2、过点P (8,2)且与直线y=x+1无交点的直线的解析式是( )A 、y=x+10B 、y=x ﹣10C 、y=x ﹣6D 、y=x ﹣2 3、直线y=2﹣x 与y=﹣x+21的位置关系是( ) A 、平行 B 、相交 C 、重合 D 、不确定 4、在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b 的交点不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 5、已知一次函数y=kx+b 和y=x+a 的图象交于点A ,则关于x ,y 的二元一次方程组的解为( )A 、B 、C 、D 、6、如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A、y=2x+3B、y=x﹣3C、y=2x﹣3D、y=﹣x+37、考察下列函数的图象,其中与直线y=2x+1平行的是()A、y=2x﹣3B、y=﹣2x+1C、y=x+1D、y=﹣3x8、如图,函数y=kx+b(k≠0)的图象经过点B,与函数y=2x的图象交于点A,若△AOB 的面积为2,则b等于()A、4B、3C、2D、1二、填空题9、如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1________y2.(填“>”或“<”).10、已知二元一次方程组的解是则在同一平面直角坐标系中,直线y=x﹣5与直线y=﹣x+1的交点坐标为________.11、如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P(1,﹣1),根据图象可得方程组的解是________.12、以方程组的解为坐标的点(x ,y )在平面直角坐标系中的第________象限. 13、已知直线y=kx+b 与直线y=21 x ﹣1平行,且经过点(0,3),那么该直线的表达式是________ 14、在平面直角坐标系xOy 中,点A 、B 的坐标分别为(3,m )、(3,m+2),直线y=2x+b 与线段AB 有公共点,则b 的取值范围为________(用含m 的代数式表示).三、解答题15、在同一直角坐标系内分别作出一次函数y=5﹣x 和y=2x ﹣1的图象,这两个图象有交点吗?如果有请你结合图象直接写出交点的坐标?16、点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标.17、如图,直线:与直线:相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线与直线,分别相交于C,D,若线段CD长为2,求a 的值18、如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.19、(1)求m、n的值;20、(2)求△ABO的面积;21、(3)观察图象,直接写出当x满足什么条件时,y1>y2.参考答案与解析一、单选题1、 D2、C解:设过点P(8,2)的直线为y=kx+b,∵它与直线y=x+1无交点,∴,解得,则直线的解析式是y=x﹣6.故选C.3、A解:由图形可知两直线平行.或由x的系数相等可判断两直线平行.故选A.4、D解:直线y=4x+1过一、二、三象限;当b>0时,直线y=﹣x+b过一、二、四象限,两直线交点可能在一或二象限;当b<0时,直线y=﹣x+b过二、三、四象限,两直线交点可能在二或三象限;综上所述,直线y=4x+1与直线y=﹣x+b 的交点不可能在第四象限,故选D .5、B解:∵y=kx+b 和y=x+a 的图象交于点A , ∴二元一次方程组的解是.故选:B .6、 D解:∵B 点在正比例函数y=2x 的图象上,横坐标为1, ∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b ,∵一次函数的图象过点A (0,3),与正比例函数y=2x 的图象相交于点B (1,2), ∴可得出方程组, 解得 , 则这个一次函数的解析式为y=﹣x+3,故选:D .7、 A解:与直线y=2x+1平行的直线解析式为y=2x+m (m≠1). 故选A .8、A解:∵函数y=2x 的图象过点A , ∴2=2x ,x=1,∴点A 的坐标为(1,2),∵△AOB 的面积为2,∴ 21OB×2=2, ∴OB=2,∴点B 的坐标为(2,0),∴ ,解得:,故选:A .二、填空题 9、<解:由图象知,当x <2时,y 2的图象在y 1上右, ∴y 1>y 2 .故答案为:<.10、(3,﹣2)解:联立, 上式化为 ,∴方程组的解为 , ∴直线y=x ﹣5与直线y=﹣x+1的交点坐标为(3,﹣2)故答案为:(3,﹣2)11、解:方程组的解集是. 故答案是: . 12、三解:解方程组 ,得 , ∵x=﹣23<0,y=﹣21<0, ∴点(﹣23,﹣21)在平面直角坐标系中的第三象限. 故答案为:三.13、y=21 x+3 解:∵直线y=kx+b 与直线y=21x ﹣1平行, ∴k=21,b≠﹣1. ∵直线y=21x+b 过点(0,3), ∴b=3.故答案为:y=21 x+3.14、m﹣6≤b≤m﹣4解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=2x+b经过点A时,6+b=m,则b=m﹣6;当直线y=2x+b经过点B时,6+b=m+2,则b=m﹣4;∴直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4;故答案为:m﹣6≤b≤m﹣4.三、解答题15、解:如图,根据图象得到交点坐标为(2,3)16、解:设直线AB方程为y=kx+b(k,b为常数,且k≠0)”,∴,解得:,∴直线AB的方程为:y=2x+6,同理可得:直线CD方程为解方程组,得,所以直线AB ,CD 的交点坐标为(﹣2,2)17、(1)解:把点P (1,b )代入y=2x+1,得b=2+1=3, 把点P (1,3)代入y=mx+4,得m+4=3,∴m=-1.(2)解:直线x=a 与直线l 1的交点C 为(a,2a+1),与直线l 2的交点D 为(a,-a+4). ∵CD=2,∴|2a+1-(-a+4)|=2,即|3a-3|=2,∴3a-3=2或3a-3=-2,∴a=35或a=31. 18、解:(1)把点A (2,n )代入y 2=2x 得n=2×2=4,则A 点坐标为(2,4), 把A (2,4)代入y 1=(m ﹣2)x+2得,4=(m ﹣2)×2+2 解得m=3;(2)∵m=3,∴y 1=x+2,令y=0,则x=﹣2,∴B(﹣2,0),∵A(2,4),∴△ABO 的面积=21×2×4=4; (3)由图象可知:当x <2时,y 1>y 2 .故答案为x <2.。
一次函数与二元一次方程(组) 练习题一、选择题1.图中两直线L 1,L 2的交点坐标可以看作方程组( )的解. A .121x y x y -=⎧⎨-=-⎩ B. 121x y x y -=-⎧⎨-=⎩C .321x y x y -=⎧⎨-=⎩ D. 321x y x y -=-⎧⎨-=-⎩2.把方程x+1=4y+3x化为y=kx+b 的形式,正确的是( ) A .y=13x+1 B .y=16x+14 C .y=16x+1 D .y=13x+143.若直线y=2x+n 与y=mx-1相交于点(1,-2),则( ).A .m=12,n=-52B .m=12,n=-1;C .m=-1,n=-52D .m=-3,n=-324.直线y=12x-6与直线y=-231x-1132的交点坐标是( ).A .(-8,-10)B .(0,-6);C .(10,-1)D .以上答案均不对5.在y=kx+b 中,当x=1时y=2;当x=2时y=4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B. 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D. 02k b =⎧⎨=⎩6.直线kx-3y=8,2x+5y=-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-2 二、填空题1.点(2,3)在一次函数y=2x-1的________;x=2,y=3是方程2x-y=1的_______.2.已知4,353x y ⎧=⎪⎪⎨⎪=⎪⎩ 是方程组3,12x y xy +=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x 和y=2x +1的交点是________.3.一次函数y=3x+7的图像与y 轴的交点在二元一次方程-•2x+•by=•18•上,•则b=_________.4.已知关系x ,y 的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.5.已知一次函数y=-32x+m 和y=12x+n 的图像都经过A(-2,•0)•,•则A•点可看成方程组________的解.6.已知方程组230,2360y x y x -+=⎧⎨+-=⎩的解为4,31,x y ⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P 的坐标是______.三、解答题1.若直线y=ax+7经过一次函数y=4-3x 和y=2x-1的交点,求a 的值.2.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像. (2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?_________________,•这说明方程组2,3,x y x y -=-⎧⎨-=⎩ ________.3.如图所示,求两直线的解析式及图像的交点坐标.探究应用拓展性训练1.(学科内综合题)在直角坐标系中,直线L 1经过点(2,3)和(-1,-3),直线L 2经过原点,且与直线L 1交于点(-2,a). (1)求a 的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P ,直线L 1与y 轴交于点A ,你能求出△APO 的面积吗? 2.(探究题)已知两条直线a 1x+b 1y=c 1和a 2x+b 2y=c 2,当12a a ≠12bb 时,方程组111222,,a xb yc a x b y c +=⎧⎨+=⎩ 有唯一解?•这两条直线相交?你知道当a 1,a 2,b 1,b 2,c 1,c 2分别满足什么条件时,方程组111222,,a x b y c a x b y c +=⎧⎨+=⎩无解?无数多组解?这时对应的两条直线的位置关系是怎样的?3.如图,L 1,L 2•分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h ,照明效果一样. (1)根据图像分别求出L 1,L 2的函数关系式. (2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).11.3.3 一次函数与二元一次方程(组) 同步练习答案:一、选择题1.B 解析:设L 1的关系式为y=kx-1,将x=2,y=3代入,得3=2k-1,解得k=2. ∴L 1的关系式为y=2x-1,即2x-y=1.设L 2的关系式为y=kx+1,将x=2,y=3代入,得3=2k+1,解得k=1. ∴L 2的关系式为y=x+1,即x-y=-1. 故应选B .2.B 解析:∵x+1=4y+3x ,∴4y=x+1-3x ,4y=23x+1,y=16x+14.故应选B . 3.C 解析:把x=1,y=-2代入y=2x +n 得-2=12+n ,n=-2-12,n=-52.把x=1,y=-2代入y=mx-1得-2=m-1,m=-2+1,m=-1,故应选C .4.C 解析:解方程组16,22113131y x y x ⎧=-⎪⎪⎨⎪=--⎪⎩,得10,1,x y =⎧⎨=-⎩∴直线y=12x-6与直线y=-231x-1131的交点为(10,-1),•故应选C .5.B 解析:把1,2,x y =⎧⎨=⎩ 2,4,x y =⎧⎨=⎩分别代入y=kx+b ,得2,24,k b k b +=⎧⎨+=⎩ 解得2,0,k b =⎧⎨=⎩故应选B .6.B 解析:把y=0代入2x+5y=-4,得2x=-4,x=-2. 所以交点坐标为(-2,0).把x=-2,y=0代入kx-3y=8,得-2k=8,k=-4,故应选B . 二、填空题1.解析:当x=2时,y=2x-1=2×2-1=3,∴(2,3)在一次函数y=2x-1的图像上. 即x=2,y=3是方程2x-y=1的解. 答案:图像上 解2.解析:因为方程组3,1,2x y x y +=⎧⎪⎨-=⎪⎩中的两个方程变形后为3,1,2y x xy =-+⎧⎪⎨=+⎪⎩ 所以函数y=3-x 与y=2x +1的交点坐标就是二元一次方程组的解,即为(43,53)。
2019中考数学专题练习-一次函数与二元一次方程(组)的综合应用(含解析)一、单选题1.如图,一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)在同一坐标系的图象.则的解中()A. m>0,n>0B. m>0,n<0C. m<0,n>0D. m<0,n<02.二元一次方程的图象如图所示,则这个二元一次方程为()A. x﹣3y=3B. x+3y=3C. 3x﹣y=1D. 3x+y=13.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b (a≠0)的解析式为()A. B. C.D.4.已知方程组的解也是方程kx﹣y=0的解,则k的值为()A. -4B. 4C. -D.5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B. C. D.6.如图,已知函数y=ax+y和y=kx的图象交于点P,则二元一次方程组的解是( )A. B. C. D.7.已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限8.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为()A. y=﹣2x﹣3B. y=x+C. y=﹣9x+3D. y=-x-9.函数y=ax+b与函数y=cx+d的图象是两条直线,只有一个交点,则二元一次方程组有()A. 无数解B. 无解C. 唯一解D. 不能确定10.如果直线y=3x+6与y=2x﹣4交点坐标为(a,b),则解为的方程组是()A. B. C.D.11.方程组没有解,因此直线y=﹣x+2和直线y=﹣x+在同一平面直角坐标系中的位置关系是()A. 重合B. 平行C. 相交D. 以上三种情况都有可能12.方程组没有解,说明一次函数y=ax+2与y=x+的图象必定()A. 相交B. 平行C. 重合D. 不能确定13.如图中的两直线l1、l2的交点坐标可以看作哪个方程组的解()A. B. C.D.二、填空题14.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),则二元一次方程组的解是________15.若一次函数y=3x+7的图象与y轴的交点坐标满足二元一次方程﹣2x+my=18,则m的值为________ .16.一次函数y1=kx+b与y2=x+a的图象如图所示,则关于x、y的方程组的解为________.17.用图象法解方程组.18.如图中的两条直线l1,l2可以看作方程组________的解.19.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是________.三、解答题20.若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.21.利用一次函数的图象解二元一次方程组:.22.已知:一次函数y=3x﹣5与y=2x+b的图象的交点的坐标为P(1,﹣2).求:方程组的解和b的值.四、综合题23.已知二元一次方程2x﹣y=2.(1)请任意写出此方程的三组解;(2)若为此方程的一组解,我们规定(x0,y0)为某一点的坐标,请根据你在(1)中写出的三组解,对应写出三个点的坐标,并将这三个点描在平面直角坐标系中;(3)观察这三个点的位置,你发现了什么?24.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?25.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.答案解析部分一、单选题1.如图,一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)在同一坐标系的图象.则的解中()A. m>0,n>0B. m>0,n<0C. m<0,n>0D. m<0,n<0 【答案】A【考点】一次函数与二元一次方程(组)【解析】【解答】解:方程组的解就是一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)图象的交点,∵两函数图象交点在第一象限,∴m>0,n>0,故选:A.【分析】方程组的解就是一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)图象的交点,根据交点所在象限确定m、n的取值范围.2.二元一次方程的图象如图所示,则这个二元一次方程为()A. x﹣3y=3B. x+3y=3C. 3x﹣y=1D. 3x+y=1【答案】A【考点】一次函数与二元一次方程(组)【解析】【解答】解:直线过点(3,0),(0,﹣1).代入y=kx+b,得到二元一次方程组解方程组得到.∴二元一次方程为y=,移向,并将系数化为1得到x﹣3y=3.故选A.【分析】两点确定一条直线,找到直线上的任意两点代入函数关系式y=kx+b,解出k,b,就是直线的方程.3.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b (a≠0)的解析式为()A. B. C.D.【答案】D【考点】一次函数与二元一次方程(组)【解析】【解答】∵和是二元一次方程ax+by+3=0的两个解,∴,解得:,∴一次函数y=ax+b(a≠0)的解析式为:.故选:D.【分析】由已知方程的解,可以把这对数值代入方程,得到两个含有未知数a ,b的二元一次方程,联立方程组求解,从而可以求出a ,b的值,进一步得出解析式即可.4.已知方程组的解也是方程kx﹣y=0的解,则k的值为()A. -4B. 4C. -D.【答案】C【考点】一次函数与二元一次方程(组)【解析】【解答】解:解方程组,得:;将x、y的值代入kx﹣y=0中,得4k+1=0,解得k=﹣.故选C.【分析】先解方程组,求出x、y的值,然后代入kx﹣y=0中,即可求出k的值.5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B. C. D.【答案】D【考点】一次函数与二元一次方程(组)【解析】【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是.故选D.6.如图,已知函数y=ax+y和y=kx的图象交于点P,则二元一次方程组的解是( )A. B. C. D.【答案】B【考点】一次函数与二元一次方程(组)【解析】【分析】根据一次函数y=ax+b和正比例函数y=kx的图象可知,点P就是一次函数y=ax+b和正比例函数y=kx的交点,即二元一次方程组的解.【解答】根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例函数y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例函数y=kx的图象,得二元一次方程组的解是.故选B.【点评】本题考查了一次函数与二元一次方程(组)的关系,比较简单,解题的关键是熟知方程组的解与一次函数y=ax+b和正比例函数y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.7.已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C【考点】一次函数与二元一次方程(组)【解析】【解答】解:解方程组得:,∵当x=3a+2<0时,解得:a<﹣,∴此时y=﹣2a+4>0,∴当x<0时y>0,∴点P一定不会经过第三象限,故选C.【分析】首先用含有a的代数式表示出x、y的值,然后分析x、y不能同时为负数得到其不会经过第三象限.8.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为()A. y=﹣2x﹣3B. y=x+C. y=﹣9x+3D. y=-x-【答案】D【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵和是二元一次方程ax+by+3=0的两个解,∴,解得:,∴一次函数y=ax+b(a≠0)的解析式为y=-x-故选:D.【分析】由已知方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程,联立方程组求解,从而可以求出a,b的值,进一步得出解析式即可.9.函数y=ax+b与函数y=cx+d的图象是两条直线,只有一个交点,则二元一次方程组有()A. 无数解B. 无解C. 唯一解D. 不能确定【答案】C【考点】一次函数与二元一次方程(组)【解析】【解答】解:因为函数y=ax+b与函数y=cx+d的图象是两条直线,则y=ax+b和y=cx+d是两个二元一次方程.它们有一个交点,即二元一次方程组有唯一解,故选C.【分析】函数的直线的交点即为函数所组成的方程组的解,方程组有几个解就是要看有几个交点.10.如果直线y=3x+6与y=2x﹣4交点坐标为(a,b),则解为的方程组是()A. B. C.D.【答案】D【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵直线y=3x+6与y=2x﹣4交点坐标为(a,b),∴解为的方程组是,即,故选D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.那么所求方程组的解即为两函数的交点坐标.11.方程组没有解,因此直线y=﹣x+2和直线y=﹣x+在同一平面直角坐标系中的位置关系是()A. 重合B. 平行C. 相交D. 以上三种情况都有可能【答案】B【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵方程组没有解,∴直线y=﹣x+2和直线y=﹣x+在同一平面直角坐标系中没有交点,∴直线y=﹣x+2和直线y=﹣x+在同一平面直角坐标系中的位置关系是平行.故选B.【分析】根据平行线的定义解答.12.方程组没有解,说明一次函数y=ax+2与y=x+的图象必定()A. 相交B. 平行C. 重合D. 不能确定【答案】B【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵方程组没有解,∴一次函数y=ax+2与y=x+的图象必定平行.故选B.【分析】两个方程组成的方程组无解,那么这两个方程表示的两条直线平行.13.如图中的两直线l1、l2的交点坐标可以看作哪个方程组的解()A. B. C.D.【答案】A【考点】一次函数与二元一次方程(组)的综合应用【解析】【解答】由于直线l1经过点(0,-1),(3,-2);因此直线l1的解析式为y=- x-1;同理可求得直线l2的解析式为y=-2x+4;因此直线l1,l2的交点坐标可以看作方程组的解.故答案为:A.【分析】先用待定系数法求出两条直线的解析式,联立两直线解析式所组成的方程组,即可.二、填空题14.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),则二元一次方程组的解是________【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组;∴方程组的解是.故答案为.【分析】两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.15.若一次函数y=3x+7的图象与y轴的交点坐标满足二元一次方程﹣2x+my=18,则m的值为________ .【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:一次函数y=3x+7中,令x=0,则y=7,即一次函数与y轴的交点是(0,7);把x=0,y=7代入﹣2x+my=18,得:7m=18,即m=,故答案为:【分析】本题可先求出直线y=3x+7与y轴的交点坐标,然后将其代入二元一次方程中,可求出m的值.16.一次函数y1=kx+b与y2=x+a的图象如图所示,则关于x、y的方程组的解为________.【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:由图象得:一次函数y1=kx+b与y2=x+a的图象的交点坐标为(3,1.6),∴关于x、y的方程组的解为;故答案为:.【分析】由函数图象可知,两函数的交点坐标就是方程组的解.17.用图象法解方程组.【答案】解:由题意得,两函数图象如下图:由图象可知两函数的图象交于点(3,﹣2),∴方程组的解为.【考点】一次函数与二元一次方程(组)【解析】【分析】由题意将函数y=﹣2x+4与函数y=﹣x﹣1的图象分别在坐标轴上画出来,其交点就是方程组的解.18.如图中的两条直线l1,l2可以看作方程组________的解.【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:设l1的解析式为y=kx+b,把(1,3),(0,1)代入得,解得:,所以直线l1的解析式为:y=2x+1,同样方法得到直线l2的解析式为:y=﹣x+4,所以两条直线l1,l2的交点可以看作方程组的解.故答案为.【分析】先利用待定系数法求出两直线的解析式,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行求解.19.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是________.【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【分析】由图可知:两个一次函数的交点坐标为(﹣4,﹣2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.三、解答题20.若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.【答案】解:(1)将x=﹣1代入y=﹣x,得y=1,则点A坐标为(﹣1,1).将A(﹣1,1)代入y=x+m,得﹣1+m=1,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组的解为.【考点】一次函数与二元一次方程(组)【解析】【分析】(1)先将x=﹣1代入y=﹣x,求出y的值,得到点A坐标,再将点A坐标代入y=x+m,利用待定系数法可得一次函数的解析式;(2)方程组的解就是正比例函数y=﹣x的图象与一次函数y=x+m的交点,根据交点坐标即可写出方程组的解.21.利用一次函数的图象解二元一次方程组:.【答案】解:如图,两个一次函数y=﹣x+ 与y=3x﹣2的交点坐标为(1,1);因此方程组的解.【考点】一次函数与二元一次方程(组)【解析】【分析】先把两个方程化成一次函数的形式,然后在同一坐标系中画出它们的图象,交点的坐标就是方程组的解.22.已知:一次函数y=3x﹣5与y=2x+b的图象的交点的坐标为P(1,﹣2).求:方程组的解和b的值.【答案】解:∵一次函与y=3x﹣5与y=2x+的图象的交点的坐标为P(1,﹣2)∴方程组的解是,将点P(1,﹣2)的坐标代y=2x+b,得b=﹣4.【考点】一次函数与二元一次方程(组)【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.四、综合题23.已知二元一次方程2x﹣y=2.(1)请任意写出此方程的三组解;(2)若为此方程的一组解,我们规定(x0,y0)为某一点的坐标,请根据你在(1)中写出的三组解,对应写出三个点的坐标,并将这三个点描在平面直角坐标系中;(3)观察这三个点的位置,你发现了什么?【答案】(1)解:,,(2)解:(0,﹣2);(1,0);(2,2)(3)解:这三个点在一条直线上.【考点】一次函数与二元一次方程(组)【解析】【分析】本题中实际求的是直线y=2x﹣2.求出方程的三组解实际上是求直线y=2x ﹣2上的三个点的坐标.求出的这三个点自然都在直线y=2x﹣2上.24.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?【答案】(1)解:∵直线l1经过(2,3)和(﹣1,﹣3),∴解得:,∴直线l1的解析式为:y=2x﹣1,把P(﹣2,a)代入y=2x﹣1得:a=2×(﹣2)﹣1=﹣5(2)解:设l2的解析式为y=kx,把P(﹣2,﹣5)代入得﹣5=﹣2k,解得k= ,所以l2的解析式为y= x,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得(3)解:对于y=2x﹣1,令x=0,解得y=﹣1,则A点坐标为(0,﹣1),所以S△APO= ×2×1=1【考点】一次函数与二元一次方程(组)【解析】【分析】(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;(2)利用待定系数法确定l2得解析式,由于P(﹣2,a)是l1与l2的交点,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)先确定A点坐标,然后根据三角形面积公式计算.25.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.【答案】(1)解:把y=0代入y=x+1得x+1=0,解得x=﹣1,则A点坐标为(﹣1,0);把y=0代入y=﹣2x+2得﹣2x+2=0,解得x=1,则B点坐标为(1,0);解方程组得,所以P点坐标为(,)(2)解:S△PAB= ×(1+1)× =【考点】一次函数与二元一次方程(组)【解析】【分析】(1)A,B两点在x轴上,因此纵坐标为0,代入解析式可得横坐标;C点坐标为两个函数解析式连列方程组的解。
学生做题前请先回答以下问题问题1:解多元方程组的基本思路是________,主要方法有_________法和__________法.问题2:从数和形两个方面说明一次函数和二元一次方程之间的关系.答:从数的角度来说,一次函数图象上任一点_________对应二元一次方程的一组_________;从形的角度来说,以一个二元一次方程的_________为坐标的点组成的图象与相应的一次函数图象相同.问题3:一次函数和二元一次方程组的关系:①②③处应填什么?以下是问题及答案,请对比参考:问题1:解多元方程组的基本思路是,主要方法有法和法.答:消元;代入消元;加减消元.问题2:从数和形两个方面说明一次函数和二元一次方程之间的关系.答:从数的角度来说,一次函数图象上任一点对应二元一次方程的一组;从形的角度来说,以一个二元一次方程的为坐标的点组成的图象与相应的一次函数图象相同.答:坐标;解;解.问题3:一次函数和二元一次方程组的关系:①②③处应填什么?答:一次函数计算(与二元一次方程的关系)(人教版)一、单选题(共11道,每道9分)1.两条直线和的图象如图所示,则方程组的解是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)2.已知方程组的解是,则函数与的交点坐标为( )A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)答案:A解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)3.已知以方程组的解作为坐标的点在直线上,则k的值是( )A.-4B.4C. D.答案:C解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)4.如图所示为用图象法解二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象,则所解的二元一次方程组是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)5.小亮用作图象法解二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象,如图所示,则他解的方程组是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)6.小明在用作图象法解二元一次方程组时,所画图象如图所示,那么这个方程组的解是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)7.若以一个二元一次方程组中两个方程作为一次函数作图象,所得的两条直线相交,则此方A.无解B.有唯一解C.有无数个解D.以上都有可能答案:B解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)8.若关于x,y的二元一次方程组有无穷多组解,则k与m的值分别为( )A.k=4,m=-1B.k=2,m=-2C.k=4,m=1D.k=8,m=-2答案:B解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)9.若关于x,y的二元一次方程组有无穷多组解,则( )A. B.C. D.解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)10.如果关于x,y的二元一次方程组有唯一的一组解,那么a,b,c的值应当满足( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)11.若二元一次方程组有唯一的一组解,那么应满足的条件是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一次函数与二元一次方程(组)。
习题精选一、填空题1.已知直线l1:y = k1x+b1和直线l2:y = k2x+b2(1)当__________时,l1与l2相交于一点,这个点的坐标是________.(2)当__________时,l1∥l2,此时方程组的解的情况是________.(3)当__________时,l1与l2重合,此时方程组的解的情况是________.2.无论m取何实数,直线y= x+ 3m与y= −x+1的交点不可能在第__________象限.3.一次函数的图象过点A(5,3)且平行于直线y= 3x−,则这个函数的解析式为________.4.方程2x+y=5的解有________个,请写出其中的四组解____________,在直角坐标系中分别描出以这些解为坐标的点,它们______一次函数y=5-2x的图象上(此空填“在”或“不在”)5.在一次函数y=5-2x的图象上任取一点,它的坐标________方程2x+y=5(此空填“适合”或“不一定适合”)6.以方程2x+y=5的解为坐标的所有点组成的图象与一次函数________的图象相同7.一次函数y=7-4x和y=1-x的图象的交点坐标为_______,则方程组的解为_______8.方程组的解为________,则一次函数y=2-2x,y=5-2x的图象之间________二、选择题(1)函数y = ax-3的图象与y = bx+4的图象交于x轴上一点,那么a∶b等于()A.-4∶3 B.4∶ 3 C.(−3)∶(−4) D.3∶(−4)(2)如果是方程组的解,则一次函数y= mx+n的解析式为()A.y = −x+2 B.y = x−2 C.y =−x−2 D.y = x+2(3)若直线y = 3x−1与y = x−k的交点在第四象限,则k的取值范围是()A.k<B.<k<1 C.k>1 D.k>1或k<三、已知y1 = −x−4,y2=2ax+4a+b(1)求a、b为何值时,两函数的图象重合?(2)如果两直线相交于点(−1,3),求a、b的值.参考答案一、1.(1)k1≠k2方程组的解为即交点坐标为(,)(2)k1=k2且b1≠b2,无解(3)k1 = k2且b1 = b2,无数组解2.三3.y = 3x−124.无数个 (0,5) (1,3) (2,1) (3,−1) 在5.适合6.y = 5−2x7.(2,−1)8.无解平行二、(1)D (2)D (3)B三、(1)若两函数图象重合,需使,解得∴a = 1,b = −8时,两函数的图象重合.(2)若两直线相交于点(−1,3),则,即。
二元一次方程组与一次函数专题训练含答案二元一次方程组与一次函数专题训练一.解答题(共12小题)1.(2011•葫芦岛)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为_________ 千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.2.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.3.已知函数y=kx+b的图象过点A(﹣1,2),B(3,0)(1)求直线AB的解析式;(2)在给出的直角坐标系中,画出y=|x|和y=kx+b的图象,并根据图象写出方程组的解.4.用图象法求下面二元一次方程组的近似解..二元一次方程组与一次函数专题训练含答案5.如下面第一幅图,点A的坐标为(﹣1,1)(1)那么点B,点C的坐标分别为_________ ;(2)若一个关于x,y的二元一次方程,有两个解是和请写出这个二元一次方程,并检验说明点C的坐标值是否是它的解.(3)任取(2)中方程的又一个解(不与前面的解雷同),将该解中x的值作为点D的横坐标,y的值作为点D的纵坐标,在下面第一幅图中描出点D;(4)在下面第一幅图中作直线AB与直线AC,则直线AB与直线AC的位置关系是_________ ,点D与直线AB的位置关系是_________ .(5)若把直线AB叫做(2)中方程的图象,类似地请在备用图上画出二元一次方程组中两个二元一次方程的图象,并用一句话来概括你对二元一次方程组的解与它图象之间的发现.6.在直角坐标系中,直线L1的解析式为y=2x﹣1,直线L2过原点且L2与直线L1交于点P(﹣2,a).(1)试求a的值;(2)试问(﹣2,a)可以看作是怎样的二元一次方程组的解;(3)设直线L1与x轴交于点A,你能求出△APO的面积吗?试试看;(4)在直线L1上是否存在点M,使点M到x轴和y轴的距离相等?若存在,求出点M 的坐标;不存在,说明理由.7.如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(﹣2,a),根据以上信息解答下列问题:(1)求a 的值,判断直线l3:y=﹣nx﹣2m是否也经过点P?请说明理由;(2)不解关于x,y的方程组,请你直接写出它的解;(3)若直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,求直线l2的函数解析式8.在平面直角坐标系中,直线y=﹣x+4的图象,如图所示(1)在同一坐标系中,作出一次函数y=2x﹣5的图象;(2)用作图象的方法解方程组:(3)求直线y=﹣x+4与一次函数y=2x﹣5的图象与x轴围成的三角形面积.9.二元一次方程x﹣2y=0的解有无数个,其中它有一个解为,所以在平面直角坐标系中就可以用点(2,1)表示它的一个解,(1)请在下图中的平面直角坐标系中再描出三个以方程x﹣2y=0的解为坐标的点;(2)过这四个点中的任意两点作直线,你有什么发现?直接写出结果;(3)以方程x﹣2y=0的解为坐标的点的全体叫做方程x﹣2y=0的图象.想一想,方程x﹣2y=0的图象是什么(直接回答)(4)由(3)的结论,在同一平面直角坐标系中,画出二元一次方程组的图象(画在图中)、由这两个二元一次方程的图象,能得出这个二元一次方程组的解吗?请将表示其解的点P标在平面直角坐标系中,并写出它的坐标.10.在平面直角坐标系中,一次函数y=ax+b的图象过点B(﹣1,),与x轴交于点A(4,0),与y轴交于点C,与直线y=kx交于点P,且PO=PA,(1)求a+b的值.(2)求k的值.(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.11.学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(2,b)(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+2m﹣n是否也经过点P,请说明理由.二元一次方程组与一次函数专题训练参考答案与试题解析一.解答题(共12小题)1.(2011•葫芦岛)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为120 千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.考点:一次函数的应用;待定系数法求一次函数解析式;一次函数与二元一次方程(组).专题:数形结合.分析:(1)根据点(1,120)在乙的函数关系式上可得乙车的速度;(2)根据甲的函数关系式为一次函数解析式,乙的函数关系式为正比例函数解析式,找到相应的点代入即可求得相应的函数解析式;(3)让甲的函数关系式的t=0即可求得两城之间的距离,让两个函数解析式的y相等即可求得两车相遇时t的值;(4)让甲的函数关系式减去乙的函数关系式为300或乙的函数关系式减去甲的函数关系式为300即可求得所求的时间.解答:解:(1)120÷1=120千米/时,故答案为120;(1分)(2)设s甲与t的函数关系为s甲=k1t+b,∵图象过点(3,60)与(1,420),∴解得∴s甲与t的函数关系式为s甲=﹣180t+600.(4分)设s乙与t的函数关系式为s乙=k2t,∵图象过点(1,120),∴k2=120.∴s乙与t的函数关系式为s乙=120t.(5分)(3)当t=0,s甲=600,∴两城之间的路程为600千米.(6分)∵s甲=s乙,即﹣180t+600=120t,解得t=2.∴当t=2时,两车相遇.(8分)(4)当相遇前两车相距300千米时,s甲﹣s乙=300,即﹣180t+600﹣120t=300,解得t=1.(9分)当相遇后两车相距300千米时,s乙﹣s甲=300,即120t+180t﹣600=300.解得t=3.(10分)点评:考查用待定系数法求一次函数解析式以及一次函数解析式的应用;得到两个函数的关系式是解决本题的破点;用数形结合的方法判断出所求值与得到函数关系式的关系是解决本题的难点.2.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.考点:一次函数与二元一次方程(组).专题:数形结合.分析:(1)将交点P的坐标代入直线l1的解析式中便可求出b的值;(2)由于函数图象交点坐标为两函数解析式组成的方程组的解.因此把函数交点的横坐标当作x的值,坐标当作y的值,就是所求方程组的解;(3)将P点的坐标代入直线l3的解析式中,即可判断出P点是否在直线l3的图象上.∴当x=1时,b=1+1=2;(2)方程组的解是;(3)直线y=nx+m 也经过点P .理由如下: ∵点P (1,2),在直线y=mx+n 上, ∴m+n=2,∴2=n×1+m,这说明直线y=nx+m 也经过点P .点评: 本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.3.已知函数y=kx+b 的图象过点A (﹣1,2),B (3,0)(1)求直线AB 的解析式;(2)在给出的直角坐标系中,画出y=|x|和y=kx+b 的图象,并根据图象写出方程组的解.考点: 待定系数法求一次函数解析式;一次函数的图象;正比例函数的图象;一次函数与二元一次方程(组). 分析: (1)设直线AB 的解析式为:y=kx+b (k≠0),利用待定系数法把A (﹣1,2),B (3,0),代入函数解析式,即可得到关于k 、b 的方程组,再解方程组即可;(2)首先画出函数y=|x|和y=﹣x+的图象,两函数图象的交点就是方程组的解.解答: 解:(1)设直线AB 的解析式为:y=kx+b (k≠0),∵图象过点A (﹣1,2),B (3,0),∴,解得,(2)如图所示:根据图象可得方程组的解是或.点评: 此题主要考查了待定系数法求一次函数解析式,以及方程组与函数的关系,解决问题的关键是掌握方程与函数的关系,方程组的解就是两函数图象的交点坐标.4.用图象法求下面二元一次方程组的近似解..考点: 一次函数与二元一次方程(组). 专题: 作图题;数形结合.分析: 两条直线的交点坐标应该是这个二元一次方程组的解.先根据方程组求出两直线的解析式,并画出图象(图),方程3x ﹣y=6的解析式是y=3x ﹣6,经过(2,0)、(3,3)两点,方程x+y=4的解析式是y=4﹣x ,过(2,2)、(3,1)两点,两条直线的交点坐标(2,2)应该是这个二元一次方程组的解.解答: 解:方程3x ﹣y=6的解析式是y=3x ﹣6,经过(2,0)、(3,3)两点,方程x+y=4的解析式是y=4﹣x ,经过(2,2)、(3,1)两点, 画出两条直线的图象,如图,所以这个二元一次方程组的解为是 (2,2).点评: 本题主要考查了一次函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.5.如下面第一幅图,点A 的坐标为(﹣1,1) (1)那么点B ,点C 的坐标分别为 (﹣2,2),(0,0) ; (2)若一个关于x ,y 的二元一次方程,有两个解是和请写出这个二元一次方程,并检验说明点C 的坐标值是否是它的解. (3)任取(2)中方程的又一个解(不与前面的解雷同),将该解中x 的值作为点D 的横坐标,y 的值作为点D 的纵坐标,在下面第一幅图中描出点D ;(4)在下面第一幅图中作直线AB 与直线AC ,则直线AB 与直线AC 的位置关系 是 重合 ,点D 与直线AB 的位置关系是 点D 在直线AB 上 .(5)若把直线AB 叫做(2)中方程的图象,类似地请在备用图上画出二元一次方程组中两个二元一次方程的图象,并用一句话来概括你对二元一次方程组的解与它图象之间的发现.考点: 一次函数与二元一次方程(组).专题: 综合题.分析: (1)由题意,先建立合适的坐标系,再求得点B ,点C 的坐标;(2)由(1)写出两个解,再写出这个二元一次方程,并检验点C 的坐标是否是这个二元一次方程的解(3)先找到点D 的坐标,再描出点D ;(4)分别作出直线AB 、AC ,然后再判断两条直线的位置关系以及点D 和直线AB 的位置关系;(5)通过描点、连线作出两个二元一次方程的图象,可发现两条直线的交点坐标恰好是方程组的解.解答: 解:(1)∵点A 的坐标为(﹣1,1),∴点B 的坐标为(﹣2,2),点C 的坐标为(0,0);(2)∴,,这个二元一次方程为x+y=0,∵0+0=0,∴点C 的坐标值是它的解;(3),点D 的坐标为(1,﹣1), (4)由(3)题图知,直线AB 与直线AC 重合,点D 在直线AB 上;(5)如图:直线x+y=4与直线x ﹣y=﹣2的交点为:(1,3); 将x=1,y=3代入原方程组知,是原方程组的解;因此二元一次方程组的解,是方程组中两个一次函数图象的交点坐标.点评:此题实际考查的是用图象法解二元一次方程组的方法,比较简单.6.在直角坐标系中,直线L1的解析式为y=2x﹣1,直线L2过原点且L2与直线L1交于点P(﹣2,a).(1)试求a的值;(2)试问(﹣2,a)可以看作是怎样的二元一次方程组的解;(3)设直线L1与x轴交于点A,你能求出△APO的面积吗?试试看;(4)在直线L1上是否存在点M,使点M到x轴和y轴的距离相等?若存在,求出点M的坐标;不存在,说明理由.考点:一次函数与二元一次方程(组).专题:开放型.分析:(1)由于P是两个函数的交点,因此可将P点坐标代入直线L1的解析式中,求出a的值.(2)由于直线L2过原点,因此一次函数L2是个正比例函数,根据P点坐标,可确定其解析式.联立两个线解析式所组成的方程组的解,即为两个函数图象的交点坐标.(3)根据直线L1的解析式,可求出A点坐标;以OA为底,P点纵坐标绝对值为高,可求出△OAP的面(4)若点M到x轴、y轴的距离相等,那么点M的坐标有两种情况:①横坐标与纵坐标相等;②横坐标与纵坐标互为相反数;因此本题要分情况讨论.解答:解:(1)把(﹣2,a)代入y=2x﹣1,得:﹣4﹣1=a,解得a=﹣5.(2)由(1)知:点P(﹣2,﹣5);则直线L2的解析式是y=x ;因此(﹣2,a)可以看作二元一次方程组的解.(3)直线L1与x轴交于点A(,0),所以S△APO=××5=.(4)存在点M,使得点M到x轴和y轴的距离相等.设点M的坐标为(a,b);①当a=b时,点M的坐标为(a,a);代入y=2x﹣1得:2a﹣1=a,a=1;即点M的坐标为(1,1);②当a=﹣b时,点M的坐标为(a,﹣a);代入y=2x﹣1得:2a﹣1=﹣a,a=;即点M的坐标为(,﹣综上所述,存在符合条件的点M 坐标为(1,1)或(,﹣).点评:本题是一个开放性问题,综合考查了函数图象交点、图形面积求法等知识.解答(4)题时需注意,由于M的坐标存在两种情况,因此要分类讨论,以免漏解.7.如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(﹣2,a),根据以上信息解答下列问题:(1)求a的值,判断直线l3:y=﹣nx﹣2m是否也经过点P?请说明理由;(2)不解关于x,y的方程组,请你直接写出它的解;(3)若直线l 1,l 2表示的两个一次函数都大于0,此时恰好x >3,求直线l 2的函数解析式.考点: 一次函数与二元一次方程(组);一次函数图象上点的坐标特征;待定系数法求一次函数解析式. 专题: 计算题;数形结合.分析: (1)因为(﹣2,a )在直线y=3x+1上,可求出a=﹣5;由点P (﹣2,﹣5)在直线y=mx+n 上,可得﹣2m+n=﹣5,将P 点横坐标﹣2代入y=﹣nx ﹣2m ,得y=﹣n×(﹣2)﹣2m=﹣2m+n=﹣5,这说明直线l 3也经过点P ;(2)因为直线y=3x+1直线y=mx+n 交于点P ,所以方程组的解就是P 点的坐标;(3)因为直线l 1,l 2表示的两个一次函数都大于0,此时恰好x >3,所以直线l 2过点(3,0),又有直线l 2过点P (﹣2,﹣5),可得关于m 、n 的方程组,解方程组即可.解答: 解:(1)∵(﹣2,a )在直线y=3x+1上, ∴当x=﹣2时,a=﹣5(2分) 直线y=﹣nx ﹣2m 也经过点P ,∵点P (﹣2,﹣5)在直线y=mx+n 上, ∴﹣2m+n=﹣5, ∴将P 点横坐标﹣2代入y=﹣nx ﹣2m ,得y=﹣n×(﹣2)﹣2m=﹣2m+n=﹣5,这说明直线l 3也经过点P .(4分)(2)解为.(6分)(3)∵直线l 1,l 2表示的两个一次函数都大于0,此时恰好x >3 ∴直线l 2过点(3,0),(7分) 又∵直线l 2过点P (﹣2,﹣5) ∴解得(8分)∴直线l 2的函数解析式为y=x ﹣3.(9分)点评: 用待定系数法确定函数的解析式,是常用的一种解题方法,另外本题还渗透了数形结合的思想,题出的比8.在平面直角坐标系中,直线y=﹣x+4的图象,如图所示 (1)在同一坐标系中,作出一次函数y=2x ﹣5的图象; (2)用作图象的方法解方程组:(3)求直线y=﹣x+4与一次函数y=2x ﹣5的图象与x 轴围成的三角形面积.考点: 一次函数与二元一次方程(组);一次函数的图象.专题: 计算题.分析: (1)正确画出一次函数的图象;(2)先画出一次函数y=2x ﹣5的图象,根据两图象即可得出答案; (3)先求出直线y=﹣x+4与一次函数y=2x ﹣5的图象与x 轴的交点,根据面积公式即可得答案.解答:解:(1)二元一次方程组与一次函数专题训练含答案(3)y=﹣x+4与x轴的交点A(4,0),y=2x﹣5的图象与x轴的交点B(,0),三角形面积=×|4﹣|×1=.点评:本题考查了一次函数与二元一次方程组,比较简单,关键是正确的画一次函数y=2x﹣5的图象.9.二元一次方程x﹣2y=0的解有无数个,其中它有一个解为,所以在平面直角坐标系中就可以用点(2,1)表示它的一个解,(1)请在下图中的平面直角坐标系中再描出三个以方程x ﹣2y=0的解为坐标的点;(2)过这四个点中的任意两点作直线,你有什么发现?直接写出结果;(3)以方程x﹣2y=0的解为坐标的点的全体叫做方程x﹣2y=0的图象.想一想,方程x﹣2y=0的图象是什么(直接回答)(4)由(3)的结论,在同一平面直角坐标系中,画出二元一次方程组的图象(画在图中)、由这两个二元一次方程的图象,能得出这个二元一次方程组的解吗?请将表示其解的点P标在平面直角坐标系中,并写出它的坐标.考点:一次函数与二元一次方程(组).专题:综合题.分析:(1)先解出方程x﹣2y=0的三个解,再在平面直角坐标系中利用描点法解答;(2)根据(1)的图象作答;(3)由方程x﹣2y=0变形为y=,即正比例函数,根据正比例函数图象的性质回答;(4)在平面直角坐标系中分别画出x+y=1、2x﹣y=2的图象,两个图象的交点即为所求.解答:解:(1)二元一次方程x﹣2y=0的解可以为:、、、,所以,以方程x﹣2y=0的解为坐标的点分别为:(2,1)、(4,2)、(1,)、(3,),它们在平面直角坐标系中的图象如下图所示:(2)由(1)图,知,四个点在一条直线上;(3)由原方程,得y=,∵以方程x﹣2y=0的解为坐标的点的全体叫做方程x﹣2y=0的图象,∴方程x﹣2y=0的图象就是正比例函数y=的图象,∵正比例函数y=的图象是经过第一、三象限且过原点的一条直线,∴方程x﹣2y=0的图象是经过第一、三象限且过原点的一条直线;(4)①对于方程x+y=1,当x=0时,y=1;当y=0时,x=0;所以方程x+y=1经过(0,1),(1,0)这两点;②对于方程2x﹣y=2,当x=0时,y=﹣1;当y=0时,x=1;所以方程x+y=1经过(0,﹣1),(1,0)这两点;综合①②,在平面直角坐标系中画出的二元一次方程组的图象如下所示:故原方程组的解是,并且能在坐标系中用P(1,0)表示.点评:本题主要考查的是二元一次方程组的解及其直线方程的图象,题目比较长,要注意耐心解答.10.在平面直角坐标系中,一次函数y=ax+b的图象过点B(﹣1,),与x轴交于点A(4,0),与y轴交于点C,与直线y=kx交于点P,且PO=PA,(1)求a+b的值.(2)求k的值.(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.考点:一次函数与二元一次方程(组).专题:计算题;数形结合;待定系数法.分析:(1)根据题意知,一次函数y=ax+b的图象过点B(﹣1,)和点A(4,0),把A、B代入求值即可;(2)设P(x,y),根据PO=PA,列出方程,并与y=kx组成方程组,解方程组;(3)设点D(x,﹣+2),因为点E在直线y=上,所以E(x,),F(x,0),再根据等量关系DE=2EF 列方程求解.解答:解:(1)根据题意得:,解方程组得:,∴a+b=﹣+2=,即a+b=;(2)设P(x,y),则点P即在一次函数y=ax+b上,又在直线y=kx上,由(1)得:一次函数y=ax+b的解析式是y=﹣+2,又∵PO=PA,∴,解方程组得:,∴k的值是;(3)设点D(x,﹣+2),则E(x,),F(x,0),∵DE=2EF,∴=2×,解得:x=1,则﹣+2=×1+2=,∴D(1,).点评:本题要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.11.学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?考点:一次函数与二元一次方程(组).专题:计算题;应用题.分析:(1)当两函数图象相交时,两家旅行社收费相同,由图象即可得出答案.(2)由图象比较收费y1、y2,即可得出答案.(3)当有50人时,比较收费y1、y2,即可得出答案.解答:解:(1)当两函数图象相交时,两家旅行社收费相同,由图象知为30人;(2)由图象知:当有30人以下时,y1<y2,所以选择甲旅行社合算;(3)由图象知:当有50人参加时,y1>y2,所以选择乙旅行社合算;点评:本题考查了一次函数与二元一次方程组,属于基础题,关键正确理解图象的几何意义.12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(2,b)(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+2m﹣n是否也经过点P,请说明理由.考点:两条直线相交或平行问题;一次函数与二元一次方程(组).分析:(1)把点P的坐标代入直线l1:y=x+1,计算即可求出b的值;(2)根据一次函数与二元一次方程组的关系可知,点P的坐标也就是方程组的解解答;(3)把点P坐标代入直线l2,得到关于m、n的等式,再把点P代入直线l3,如果得到同样的m、n的关系式,则点P在直线l3上,否则不在.解答:解:(1)∵点P(2,b)在直线l1上,∴2+1=b,解得b=3;(2)∵点P(2,3),∴方程组的解为;(3)在.理由如下:∵点P(2,3)在直线l2:y=mx+n上,∴2m+n=3,当x=2时,直线l3:y=2n+2m﹣n=2m+n=3,所以点P在直线l3:y=nx+2m﹣n上.点评:本题考查了两直线相交的问题,一次函数与二元一次方程组的关系,以及点在直线上的判断,把交点P 坐标代入直线l1求出b的值是解题的关键.。
一次函数与二元一次方程专题一.选择题(共10小题)1.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.2.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.4.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.5.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.用图象法解方程组时,下图中正确的是()A.B.C.D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.8.若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)9.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+210.某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33二.填空题(共10小题)11.已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),则关于x的方程组的解是.12.如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第象限.13.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.14.如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.15.如图,点A的坐标可以看成是方程组的解.16.一次函数y=x+1与y=ax+3的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是.17.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.18.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.19.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.20.如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.三.解答题(共10小题)21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.22.如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.23.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.24.汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.25.已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.26.已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.27.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.28.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.29.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=时.30.某公司一辆绿化洒水车以每分50升的速度给一片树林浇水,一段时间后关闭洒水阀门,行驶到一片草坪处,以另一洒水速度匀速给草坪浇水,直到洒水车内的水全部用光,洒水车内的水量y(升)与时间x(分)之间的函数图象如图所示.(1)求a的值;(2)求洒水车给草坪浇水时y与x之间的函数关系式.(3)当x=13时,洒水车共浇水多少升?一次函数与二元一次方程专题参考答案与试题解析一.选择题(共10小题)1.(2017•昌平区二模)如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故答案为A【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.(2016•临清市二模)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.(2016春•单县期末)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.4.(2016秋•滕州市期末)如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.【点评】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.5.(2016春•迁安市期末)直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先用含x的代数式表示y可得一次函数解析式,再根据一次函数图象与系数的关系即可求解.【解答】解:∵8x﹣4y=5,∴y=2x﹣,∵k=2>0,b=﹣<0,∴图象经过第一、三、四象限,即不经过第二象限.故选B.【点评】此题考查了一次函数与二元一次方程,任何一个二元一次方程都可以化成一个一次函数.同时考查了一次函数图象与系数的关系.6.(2015秋•连云港期末)用图象法解方程组时,下图中正确的是()A.B.C.D.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.7.(2016春•长春期中)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选A.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.(2015秋•兴化市校级月考)若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)【分析】二元一次方程可以化为一次函数,两个二元一次方程组的解就是两个函数的交点坐标.【解答】解:∵二元一次方程组的解是,∴直线与y=﹣x+5的交点坐标为(4,1).故选A.【点评】本题主要考查了一次函数与二元一次方程组,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.10.(2013•荆州模拟)某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33【分析】本题的等量关系是:捐1元的人数+捐2元的人数+捐3元的人数+捐4元的人数=40人,1元的捐款+2元的捐款+3元的捐款+4元的捐款=100元.由此可得出方程组,求出未知数的解,进而代入各选项解析式,即可得出答案.【解答】解:设捐款2元的有x人,捐款3元的有y人,则,解之得:.则捐款2元的有15人,捐款3元的有12人,当x=15,y=12时,只有代入A使得两函数解析式左右相等,故选:A.【点评】此题主要考查了二元一次方程组的应用以及两函数交点问题,解题关键是求出x,y的值.二.填空题(共10小题)11.(2017春•云梦县期中)已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P (3,1),则关于x的方程组的解是.【分析】根据方程组的解即为函数图象的交点坐标解答.【解答】解:∵一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),∴方程组的解是;故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.(2017春•威海期中)如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第二象限.【分析】方程组无解,即直线y=﹣x+1与y=(2k+1)x﹣3平行,那么﹣1=2k+1,求出k的值,进而求解即可.【解答】解:∵方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,在直线y=2x﹣3中,∵2>0,﹣3<0,∴直线y=2x﹣3经过第一、三、四象限,不经过第二象限.故答案为二.【点评】本题考查了一次函数与二元一次方程组的关系,一次函数图象与系数的关系,求出k的值是解题的关键.13.(2016•莘县二模)如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2016•重庆校级二模)如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.【分析】根据函数图象可以分别求得直线l1、l2的函数解析式,从而可以解答本题.【解答】解:由函数图象可知,直线l1过点(0,),(2,3),设解析式为:y=k1+b,则,解得,,即直线l1的解析式为:y=;直线l2过点(0,0),(2,3),设解析式为y=k2x,则3=2k2,得k2=,即直线l2的解析式为:y=,故这个方程组为:,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确一次函数与二元一次方程组的关系,利用数形结合的思想解答问题.15.(2016春•安陆市期末)如图,点A的坐标可以看成是方程组的解.【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.16.(2016秋•郓城县期末)一次函数y=x+1与y=ax+3的图象交于点P,且点P 的横坐标为1,则关于x,y的方程组的解是.【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.(2016秋•南海区期末)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.【分析】根据图象可得两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.(2016春•沙坪坝区期中)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标,属于中考常考题型.19.(2016秋•曲江区校级期中)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故答案为:.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.20.(2015•西藏一模)如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线l1与l2的交点的坐标.【解答】解:根据题意知,二元一次方程组的解就是直线l1与l2的交点的坐标,又∵交点坐标(2,3),∴原方程组的解是:.故答案是:【点评】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.三.解答题(共10小题)21.(2016春•浠水县期末)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P (1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【分析】(1)直接把P(1,b)代入y=x+1可求出b的值;(2)利用方程组的解就是两个相应的一次函数图象的交点坐标求解;(3)根据一次函数图象上点的坐标特征进行判断.【解答】解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.利用一次函数图象上点的坐标特征对(3)进行判断.22.(2014秋•陕西校级月考)如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.【分析】(1)先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案;(2)根据函数图象与坐标轴的交点坐标和两函数的交点坐标利用三角形的面积公式进行计算即可.【解答】解:(1)设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为:;(2)围成的三角形的面积为:S=[5﹣(﹣1)]×2=6.【点评】本题考查了一次函数与二元一次方程(组)的知识,函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.23.(2017•农安县模拟)某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1800(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.24.(2017•青羊区模拟)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶3h后加油,中途加油31L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)根据函数图象3小时时油箱油量变多解答;(2)利用待定系数法求一次函数解析式解答;(3)求出加油前行驶的路程和用油量,再求出从加油站到目的地所需要的油量,然后判断即可.【解答】解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45﹣14=31升;(2)因为函数图象过点(0,50)和(3,14),所以设函数关系式为y=kt+b,则,解得,因此,y=﹣12t+50;(3)油箱中的油够用.∵汽车加油前行驶了3小时,行驶了3×70=210(km),用去了50﹣14=36升油,而目的地距加油站还有210km,∴要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.【点评】本题考查了一次函数的应用,读懂题目信息并准确识图,观察出油箱中的油量的变化是解题的关键.25.(2017春•普陀区期中)已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.【分析】根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、B(4,4).∴,解得:.∴这个一次函数的解析式为:y=x+2.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.26.(2017春•沙坪坝区期中)已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.【分析】(1)根据点的坐标,利用待定系数法求出一次函数关系式即可;(2)将x=4代入一次函数关系式中,求出y值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(0,3)、(2,7)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=2x+3.(2)当x=4时,y=2x+3=2×4+3=11.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)将x=4代入一次函数关系式求出y值.27.(2016秋•二道区校级期末)已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求。
二元一次方程组与一次函数一.选择题(共16小题)1.(2014?太原二模)下面四条直线,其中直线上每个点的坐标都是二元一次方程2x﹣y=2的解的是()A B C D....2.(2013?历下区二模)已知直线 y=﹣x+4与y=x+2的图象如图,则方程组的解为()A B C D....3.(2012?贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A B C D....4.(2011?百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A B C D....5.(2005?济南)如图,是在同一坐标系内作出的一次函数l1、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,则方程组的解是()A B C D....2,3),则这两条直线对应的函数解析式可能是()6.若两条直线的交点为(A B C D....7.(2006?太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()A B..C D..8.(2013?荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()进球数0 1 2 3 4 5人数 1 5 x y 3 2A y=x+9与B y=﹣x+9与.y=x+ .y=x+C y=﹣x+9与D y=x+9与y=.y=﹣x+ .﹣x+9.(2010?聊城)如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A 3x﹣B 3x﹣2y﹣C3x﹣2y+7=0 D3x+2y﹣7=0.2y+3.5=0 . 3.5=0 ..10.如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A B..C D..11.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设点为整点时,k的值可以取()k为整数,当直线y=x﹣2与y=kx+k 的交A 4个B 5个C 6个D 7个....12.若方程组的解为,则一次函数y= 与y= 交点坐标()A (b,a)B (a,a)C (a,b)D (b,b)....13.已知,如图,方程组的解是()A B C D....14.(2013?台湾)图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A 5B 10C 15D 20....15.(2013?建邺区一模)为迎接 2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是()A 31分B 33分C 36分D 38分....16.(2009?烟台)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A 73cmB 74cmC 75cmD 76cm....二.填空题(共10小题)17.(2014?丹徒区二模)已知直线 y= x﹣1与y=﹣x+5的交点坐标是(4,1),则方程组的解是_________ .18.(2012?南宁)如图,已知函数 y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是_________ .19.(2012?威海)如图,直线 l1,l2交于点A,观察图象,点A的坐标可以看作方程组_________ 的解.20.(2012?仪征市一模)已知函数 y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),则方程组的解为_________ .21.(2011?苍南县一模)如图,已知一次函数y=ax+b 和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是_________ .22.(2010?高淳县二模)一次函数y=kx+b的图象上一部分点的坐标见下表:x ⋯﹣1 0 1 2 3 ⋯y ⋯﹣7 ﹣4 ﹣1 2 5 ⋯正比例函数的关系式为y=x,则方程组的解为x= _________ ,y= _________ .23.已知函数 y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是_________ .24.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m 是否也经过点P?请说明理由._________ .25.已知是方程组的解,那么由这两个方程得到的一次函数y=_________ 和y=_________ 的图象的交点坐标是_________.26.若m、n为全体实数,那么任意给定m、n,两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的交点组成的图象方程是_________.三.解答题(共4小题)27.(2009?台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.28.(2008?台州)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①_________ ;②_________ ;③_________(2)如果点;④_________ ;C的坐标为(1,3),那么不等式kx+b≥k1x+b1的解集是_________ .29.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?30.如图所示的是函数y1=kx+b与y2=mx+n的图象,(1)方程的解是_________ ;(2)y1中变量y1随x的增大而_________ ;(3)在平面直角坐标系中,将点P(3,4)向下平移1个单位,恰好在正比例函数的图象上,求这个正比例函数的关系式.二元一次方程组与一次函数参考答案与试题解析一.选择题(共16小题)1.(2014?太原二模)下面四条直线,其中直线上每个点的坐标都是二元一次方程2x﹣y=2 的解的是()A B C D....考点:一次函数与二元一次方程(组).分析:根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.解答:解:∵2x﹣y=2,∴y=2x﹣2,∴当x=0,y=﹣2;当y=0,x=1,∴一次函数 y=2x﹣2,与y轴交于点(0,﹣2),与x轴交于点(1,0),即可得出选项 B符合要求,故选:B.点评:此题主要考查了一次函数与二元一次方程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是解题关键.2.(2013?历下区二模)已知直线 y=﹣x+4与y=x+2的图象如图,则方程组的解为()A B C D....考点:分析:解答:一次函数与二元一次方程(组).二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.解:根据题意知,二元一次方程组的解就是直线y=﹣x+4 与y=x+2 的交点坐标,又∵交点坐标为( 1,3),∴原方程组的解是:.故选B.点评:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.3.(2012?贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A B C D....考点:专题:分析:解答:一次函数与二元一次方程(组).推理填空题.根据图象求出交点P的坐标,根据点P的坐标即可得出答案.解:∵由图象可知:一次函数 y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故选A.点评:本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.4.(2011?百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A B C D....考点:专题:一次函数与二元一次方程(组)计算题..分析:由题意,两条直线y=kix+b1和y=k2x+b2相交于点 A(﹣2,3),所以x=﹣2、y=3就是方程组的解.解答:解:∵两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),∴x=﹣2、y=3就是方程组的解.∴方程组的解为:.点评:本题主要考查了二元一次方程(组)和一次函数的综合问题,两直线的交点就是两直线解析式所组成方程组的解,认真体会一次函数与一元一次方程之间的内在联系.5.(2005?济南)如图,是在同一坐标系内作出的一次函数l1、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,则方程组的解是()A B C D....考点:一次函数与二元一次方程(组).专题:数形结合.分析:本题需用待定系数法求出两个直线的函数解析式,然后联立两个函数的解析式组成方程组,所求得的解即为方程组的解.解答:解:由图可知:两个一次函数的图形分别经过:(1,2),(4,1),(﹣1,0),(0,﹣3);因此两条直线的解析式为y=﹣x+ ,y=﹣3x﹣3;联立两个函数的解析式:,解得:.故选B.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.6.若两条直线的交点为(2,3),则这两条直线对应的函数解析式可能是()A B C D ....考点:分析:一次函数与二元一次方程(组).将交点坐标代入四个选项中,若同时满足两个函数关系式,即可得到答案.解答:解:将交点(2,3)代入,使得两个函数关系式成立,故选D.点评:本题考查了一元一次方程与一次函数的知识,解题的关键是了解两个函数的交点坐标就是两个函数关系式组成的二元一次方程组的解.7.(2006?太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()A B..C D..考点:一次函数与二元一次方程(组).专题:压轴题;数形结合.分析:两个一次函数的交点为两个一次函数解析式所组方程组的解.因此本题需根据图中直线所经过的点的坐标,用待定系数法求出两个一次函数的解析式.然后联立两个函数的解析式,即可得出所求的方程组.解答:解:由图可知:直线l1过(2,﹣2),(0,2),因此直线l1的函数解析式为:y=﹣2x+2;直线l2 过(﹣2,0),(2,﹣2),因此直线l2的函数解析式为:y=﹣x﹣1;因此所求的二元一次方程组为;故选D点评:本题主要考查二元一次方程组与一次函数的关系.函数图象交点坐标为两函数解析式组成的方程组的解.8.(2013?荆州)体育课上, 20人一组进行足球比赛,每人射点球记录如下表,其中进2个球的有 x人,进3个球的有y人,若(的解析式是()进球数0 1 2 3 45次,已知某一组的进球总数为49个,进球情况x,y)恰好是两条直线的交点坐标,则这两条直线人数 1 5 x y 3 2A y=x+9与B y=﹣x+9与.y=x+ .y=x+C y=﹣x+9与D y=x+9与y= .y=﹣x+ .﹣x+考点:分析:解答:一次函数与二元一次方程(组).根据一共 20个人,进球49个列出关于 x、y的方程即可得到答案.解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+ ,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.点评:本题考查了一次函数与二元一次方程组的知识,解题的关键是根据题目列出方程并整理成函数的形式.9.(2010?聊城)如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A 3x﹣B 3x﹣2y﹣C 3x﹣2y+7=0D3x+2y﹣7=0.2y+3.5=0 . 3.5=0 ..考点:一次函数与二元一次方程(组).专题:数形结合.分析:如果设这个一次函数的解析式为y=kx+b,那么根据这条直线经过点P(1,2)和点Q(0,3.5),用待定系数法即可得出此一次函数的解析式.解答:解:设这个一次函数的解析式为y=kx+b.∵这条直线经过点P(1,2)和点Q(0,3.5),∴,解得.故这个一次函数的解析式为y=﹣1.5x+3.5,即:3x+2y﹣7=0.故选D.点评:本题主要考查了一次函数与方程组的关系及用待定系数法求一次函数的解析式.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.10.如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A B..C D..考点:一次函数与二元一次方程(组).分析:由于函数图象交点坐标为两函数解析式组成的方程组的解.因此是联立两直线函数解析式所组方程组的解.由此可判断出正确的选项.解答:解:一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组,即的解.故选C.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.11.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设点为整点时,k的值可以取()k为整数,当直线y=x﹣2与y=kx+k 的交A 4个B 5个C 6个D 7个....考点:专题:分析:解答:一次函数与二元一次方程(组).计算题.让这两条直线的解析式组成方程组,求得整数解即可.解:①当k=0时,y=kx+k=0,即为x轴,则直线y=x﹣2和x轴的交点为(2.0)满足题意,∴k=0②当k≠0时,,∴x﹣2=kx+k,∴(k﹣1)x=﹣(k+2),∵k,x都是整数,k≠1,k≠0,∴x= =﹣1﹣是整数,∴k﹣1=±1或±3,∴k=2或k=4或k=﹣2;综上,k=0或k=2或k=4或k=﹣2.故k共有四种取值.故选A.点评:的整数解.本题考查了一次函数与二元一次方程组,属于基础题,解决本题的难点是根据分数的形式得到相应12.若方程组的解为,则一次函数y= 与y= 交点坐标()A (b,a)B (a,a)C (a,b)D (b,b)....考点:一次函数与二元一次方程(组).专题:计算题.分析:由于函数图象交点坐标为两函数解析式组成的方程组的解,因此联立两函数解析式所得方程组的解,就是两个函数图象的交点坐标.解答:解:将方程组的两个方程变形后可得:y= ,y= ;因此两个函数图象的交点坐标就是方程组的解.故选C.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.13.已知,如图,方程组的解是()A B C D....考点:一次函数与二元一次方程(组).分析:根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.解答:解:根据函数y=kx+b和y=mx+n的图象知,一次函数y=kx+b与y=mx+n的交点(﹣1,1)就是该方程组的解.故选C.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2013?台湾)图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,被移动石头的重量为多少克?()2个各10克的如图(②)所示.求A 5B 10C 15D 20 ....考点:分析:可以得出方程解答:三元一次方程组的应用.设左天平的一袋石头重x克,右天平的一袋石头重y克,被移动的石头重z千克,根据题意及图象x=y+20及x﹣z=y+z+10,由两个方程构成方程组求出其解即可.解:设左天平的一袋石头重x克,右天平的一袋石头重y克,被移动的石头重z克,由题意,得:,解得:z=5.故选:A.点评:本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.15.(2013?建邺区一模)为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是()A 31 分B 33分C 36分D 38分....考点:三元一次方程组的应用.分析:先设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,再根据小明、小君、小红的成绩分别是29分、43分和33分,列出方程组,求出x,y,z的值,再根据小华所投的飞镖,列出式子,求出结果即可.解答:解:设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,根据题意得:,解得:.则小华的成绩是18+11+7=36(分).故选C.点评:此题考查了三元一次方程组的应用,解题的关键是根据图形设出相应的未知数,再根据各自的得分列出相应的方程.16.(2009?烟台)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A73cm B74cm C75cm D 76cm....考点:三元一次方程组的应用.专题:应用题.分析:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,建立关于h,x,y的方程组求解.解答:解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h﹣y+x=80,由第二个图形可知桌子的高度为:h﹣x+y=70,两个方程相加得:(h﹣y+x)+(h﹣x+y)=150,解得:h=75cm.故选C.点评:本题是一道能力题,考查方程思想、整体思想的应用及观察图形的能力.二.填空题(共10小题)17.(2014?丹徒区二模)已知直线y= x﹣1与y=﹣x+5的交点坐标是(4,1),则方程组的解是.考点:一次函数与二元一次方程(组).分析:根据一次函数与二元一次方程组的关系,方程组的解为两直线的交点坐标.解答:解:∵直线 y= x﹣1与y=﹣x+5的交点坐标是(4,1),∴方程组的解为.故答案为:.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.18.(2012?南宁)如图,已知函数 y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是.考点:一次函数与二元一次方程(组).专题:压轴题;推理填空题.分析:先由图象得出两函数的交点坐标,根据交点坐标即可得出方程组的解.解答:解:∵由图象可知:函数y=x﹣2和y=﹣2x+1的图象的交点P的坐标是(1,﹣1),又∵由y=x﹣2,移项后得出x﹣y=2,由y=﹣2x+1,移项后得出2x+y=1,∴方程组的解是,故答案为:.点评:本题考查了一次函数与二元一次方程组的应用,主要考查学生的观察图形的能力和理解能力,题目具有一定的代表性,是一道比较好但又比较容易出错的题目.19.(2012?威海)如图,直线 l1,l2交于点A,观察图象,点 A的坐标可以看作方程组的解.考点:一次函数与二元一次方程(组).专题:计算题.分析:设直线l1的解析式是y=kx﹣1,设直线l2的解析式是y=kx+2,把A(1,1)代入求出k的值,即可得出方程组.解答:解:设直线l1的解析式是y=k1 x﹣1,设直线l2的解析式是y=k2x+2,∵把A(1,1)代入l1得:k1=2,∴直线l1的解析式是y=2x﹣1∵把A(1,1)代入l2得:k2=﹣1,∴直线l2的解析式是y=﹣x+2,∵A是两直线的交点,∴点A的坐标可以看作方程组的解,故答案为:.点评:本题考查了一元一次函数与二元一次方程组的应用,主要考查学生的理解能力和计算能力.20.(2012?仪征市一模)已知函数 y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),则方程组的解为.考点:一次函数与二元一次方程(组).分析:根据函数图象交点坐标为两函数解析式组成的方程组的解可直接写出答案.解答:解:方程组可变为:,∵函数y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),∴方程组的解为:,故答案为:.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.21.(2011?苍南县一模)如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是.考点:一次函数与二元一次方程(组).分析:根据一次函数 y=ax+b和正比例y=kx的图象可知,点P就是一次函数y=ax+b和正比例y=kx的交点,即二元一次方程组的解.解答:解:根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组的解是.故答案为:.点评:此题很简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.22.(2010?高淳县二模)一次函数y=kx+b的图象上一部分点的坐标见下表:x ⋯﹣1 0 1 2 3 ⋯y ⋯﹣7 ﹣4 ﹣1 2 5 ⋯正比例函数的关系式为y=x,则方程组的解为x=2,y= 2.考点:一次函数与二元一次方程(组).专题:计算题;图表型.分析:根据函数图象上的坐标,可以求出k和b的值,然后把k、b的值代入方程组即可求得x、y的值.解答:解:点(﹣1,﹣7),(0,﹣4)是函数图象上的点,∴,把b=﹣4代入方程,可得:k=3,∴,把(2)代入(1)得:x=2,∴y=2.点评:本题考查了根据函数图象与坐标求k、b的值,以及解二元一次方程组.23.已知函数 y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.考点:一次函数与二元一次方程(组).分析:函数图象的交点坐标即是方程组的解,有几个交点,就有几组解.解答:解:∵函数 y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴点P(﹣4,﹣2),满足二元一次方程组;∴方程组的解是.故答案为.点评:本题不用解答,关键是理解两个函数图象的交点即是两个函数组成方程组的解.24.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于 x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.经过.考点:一次函数与二元一次方程(组).专题:压轴题.分析:(1)将P(1,b)代入y=x+1即可求出b的值;(2)交点P的坐标即为方程组的解;(3)将P点坐标代入y=nx+m,若等式成立,则点P在函数图象上,否则不在函数图象上.解答:解:(1)将P(1,b)代入y=x+1,得b=1+1=2;(2)由于P点坐标为(1,2),所以.(3)将P(1,2)代入解析式y=mx+n得,m+n=2;将x=1代入y=nx+m得y=m+n,由于m+n=2,所以y=2,故P(1,2)也在y=nx+m上.点评:此题综合性较强,考查了经过某点的函数应适合这个点的横纵坐标、函数图象交点坐标为相应函数解析式组成的方程组的解等知识,难度适中,是一道好题.25.已知是方程组的解,那么由这两个方程得到的一次函数y= x﹣和y= ﹣2x+8 的图象的交点坐标是(2,4).考点:一次函数与二元一次方程(组).分析:根据方程组的解为组成方程组的两个方程的函数图象的交点解答.解答:解:由7x﹣3y=2得,y= x﹣,由2x+y=8得,y=﹣2x+8,所以,由这两个方程得到的一次函数y= x﹣和y=﹣2x+8的图象的交点坐标是(2,4).故答案为:x﹣;﹣2x+8;(2,4).点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.26.若m、n为全体实数,那么任意给定m、n,两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的交点组成的图象方程是x=1.考点:一次函数与二元一次方程(组).分析:根据两个一次函数的图象的交点求法,得到y1=y2,求出交点,即可得出两函数图象的交点组成的图象方程.解答:解:∵当两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的有交点时,∴y1=y2,∴m x+n=nx+m,mx﹣nx=m﹣n,(m﹣n)x=m﹣n,∵m≠n,∴x=1,故答案为:x=1.点评:此题主要考查了一次函数与二元一次方程组,利用方程组的解就是两个一次函数相应的交点坐标得到y1=y2,进而求出x是解决问题的关键.三.解答题(共4小题)27.(2009?台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.考点:一次函数与二元一次方程(组).专题:压轴题;数形结合.分析:(1)将交点 P的坐标代入直线l1的解析式中便可求出b的值;(2)由于函数图象交点坐标为两函数解析式组成的方程组的解.因此把函数交点的横坐标当作作y的值,就是所求方程组的解;(3)将P点的坐标代入直线l3的解析式中,即可判断出 P点是否在直线l3的图象上.解答:解:(1)∵(1,b)在直线y=x+1上,x的值,纵坐标当∴当x=1时,b=1+1=2;(2)方程组的解是;(3)直线y=nx+m也经过点P.理由如下:∵当x=1时,y=nx+m=m+n=2,∴(1,2)满足函数y=nx+m的解析式,则直线经过点P.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.28.(2008?台州)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①kx+b=0;②;③kx+b>0 ;④kx+b<0.;(2)如果点C 的坐标为(1,3),那么不等式kx+b≥k1x+b1的解集是x≤1.考点:一次函数与二元一次方程(组);一次函数与一元一次方程;一次函数与一元一次不等式.专题:综合题.分析:(1)①由于点B是函数y=kx+b与x轴的交点,因此B点的横坐标即为方程kx+b=0的解;②因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b中,当y>0时,kx+b>0,因此x的取值范围是不等式kx+b>0的解集;同理可求得④的结论.(2)由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值.解答:解:(1)根据观察:①kx+b=0;②;③kx+b>0;④kx+b<0.(2)如果C点的坐标为(1,3),那么当x≤1时,不等式kx+b≥k1x+b1才成立.点评:此题主要考查了一次函数与一元一次方程及一元一次不等式,二元一次方程,二元一次方程组之间的内在联系是解答本题的关键.29.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?考点:一次函数与二元一次方程(组).专题:计算题;待定系数法.分析:(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;(2)利用待定系数法确定L2得解析式,由于P(﹣2,a)是L1与L2的交点,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)先确定A点坐标,然后根据三角形面积公式计算.。