七年级数学下册4.1认识三角形第1课时三角形的内角和练习课件新版北师大版2
- 格式:ppt
- 大小:1.93 MB
- 文档页数:23
4.1认识三角形4.1.1三角形的内角和1.如图1,已知∠A=50°,求:∠1+∠2+∠3+∠4.解:在∆ADE中180,∠A=50°∵∠A+ +∠2=︒∴ +∠2=180°-∠A=180°-=在∆ABC中180,∠A=50°∵∠A+ +∠3=︒∴ +∠4=180°-∠A=180°-=∠1+∠2+∠3+∠4= +=2.如图2,已知AB∥CD,∠B=52°,∠AOB=72°,求∠OCD和∠ODE的度数。
解:在∆ABO中∵∠B=52°,∠AOB=72°(已知)且∠AOB+ +∠B=180°(三角形内角和为)∴∠A=180°-∠AOB-∠B=180°- -=∵AB∥CD,∠B=52°(已知)∴∠OCD= =52°()∠ADC=∠A=56°又∵∠ADC+∠ADE=180°()∴∠ADE=180°-=180°-56°=3.如图3,(1)图中一共有_____个三角形,它们分别是________________;(2)以AB为边的三角形共有_____个,它们分别是_________________;(3)以∠A为内角的三角形有_____个,它们分别是_________________;4.如图4,AC∥DE, ∠EBD =64°,∠C=58°,∠A=80°,求:∠E和∠EBA的度数。
5.在⊿ABC中,∠A:∠B:∠C=7:3:5,求∠A、∠B、∠C的度数,4.1认识三角形4.1.2三角形的三边关系1、下面各组数分别表示三条线段的长度,试判断以它们为边是否能组成三角形。
(1)1 ;4 ;5 (2)3 ;3 ;5(3)3x ;5x ;7x(x为正数)(4)三条线段长度之比为4:7:62、有下列长度的三条线段能否构成三角形?为什么?(1)3 ;4 ;8 (2)5 ;6 ;11 (3)5 ;7 ;10(4)4 ;4 ;9 (5)5 ;5 ;53、小明要制作一个三角形铁丝架,已知有两根铁丝长度分别是3cm,5cm(1)他该如何选择第三根铁丝?你能帮助小明确定它的长度或范围吗?(2)如果要求第三根铁丝的长度是整数,那么小明有几种选择?4、已知两条线段的长为5cm和8cm,要订成一个三角形,试求:(1)第三条线段的长度范围;(2)若第三条线段的长度为奇数,求此时三角形的周长。
三角形的认识段【根底知识】从三角形的一个顶知识点1三角形的定义点向它的对边所在1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形的高线的直线作垂线,顶点表示:三角形可用符号“△〞表示,如右图和垂足之间的线段三角形记作:△ABC b CAc a三角形中,连结一个B 顶点和它对边中点2.一个三角形有三条边,三个角、三个顶点三角形的中线的线段如图三角形中三边可表示为AB,BC,AC,顶点A所对的边BC也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表示为c 三角形一个内角的知识点2三角形的性质平分线与它的对边1.三角形三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于三角形的角平分相交,这个角顶点与第三边。
线交点之间的线段3.4.三角形的内角关系:三角形内角和为1805.三角形的分类:三角形按内角的大小可以分为锐角三角形、直角三角形、钝角结论总结:三角形。
其中直角三角形的两个锐角互余知识点3三角形的中线、角平分线和高线三角形的重要线概念图形表示法AE是△ABC的AB上的高线.CE⊥AB∠AEC=∠BEC=90°.AD是△ABC的BC上的中线.BD=CD=?BC.AE是△ABC的∠ABC的平分线1∴∠1=∠2=2ABC-1-/12【典例剖析】例1.有两根长度分别为5cm和8cm的木棒,再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?如果取一根长度为13cm的木棒呢?聪明的你能取一根木棒,与原来的两根木棒摆成三角形吗?(4)要选取的第三根木棒的长度x要满足什么条件呢?例2.假设△ABC的三边长a,b,c都是正整数,且满足a.bc,如果b=4,问这样的三角形有几个?例3.一个三角形有两边相等,并且周长为56cm,两不等边之比为3︰2,求这个三角形各边的长。
锐角三角形直角三角形钝角三角形角平分线〔有几中线条,是否相交,交高线点在那〕例4.判断满足以下条件的VABC是锐角三角形、直角三角形还是钝角三角形;〔1〕A80o,B25o〔2〕A B30o,BC36oA11CB6〔3〕2例5.三角形ABC的一个内角度数为40o,且A B,求C的外角的度数。
第四章三角形4.1.1 认识三角形〖教学目标〗1.了解三角形的概念。
2.掌握一类图形中的三角形计数方法,渗透分类思想。
3.掌握三角形的内角和规律及其应用。
4.培养分析、归纳问题和逻辑推理能力,激发学生的创造思维和探索精神。
〖教材分析〗教材从观察小木屋屋顶框架图入手,要求学生找出四个不同的三角形,并说明这些图形有什么共同点。
考虑到学生的认知水平,设计用动画“画”三角形,学生“观察”,总结、归纳出三角形定义。
本课时内容是在学生已了解三角形内角和知识的基础上学习的,主要引导学生参与探索发现三角形的内角和规律,为灵活运用三角形内角和规律打下坚实的基础。
整个教学内容力图让学生通过“感知―概括―应用”的思维过程去发现知识、掌握规律,并通过师生间和生生间的多层次、多通道的主体信息交流,发展学生的逻辑推理能力。
〖教学设计〗三角形是生活中常见的几何图形,学生都认识,但是对定义的理解不够准确。
为加深学生的理解,教学中让学生从自己的认识出发,教师给予引导、明晰,再得到定义。
“三角形的计数”是本节难点,为让每个学生都得到经历数学思考的体验,采用小组活动的方式,使每个学生都得到训练,发展个性化的学习。
同时,结合学生的认知水平,制作课件,生动、形象地帮助学生学习,降低学习难度。
(一)创设情境,引入新课师:同学们认识三角形吗?生:认识。
师:在生活中见过应用三角形的例子吗?生:见过。
师:哪一位同学能举一些例子?生1:三角形的屋顶。
生2:自行车的三角架。
师:很好。
老师也给同学们准备了一些生活中应用三角形的例子,我们一起来看看。
(屏幕显示一组图片。
)师:这些例子说明了三角形在我们的生活中随处可见。
为什么三角形具有这么多应用呢?等我们学完这一章后,同学们就会有更深的理解。
下面我们一起来认识三角形。
(二)得出三角形定义师:请同学们观察屏幕上动画画三角形的过程,然后用自己的语言来描述怎么样的图形叫做三角形。
屏幕显示三角形:图1师:哪一位同学能根据自己的观察说一下什么样的图形叫三角形?生3:由三条线段组成的图形叫三角形。