【学案导学设计】-学年高中数学 1.2习题课课时作业 苏教版必修3
- 格式:doc
- 大小:568.01 KB
- 文档页数:9
1.2.1 顺序结构1.流程图流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.预习交流1在描述算法时,用流程图描述比用自然语言描述有哪些优点?提示:用流程图描述算法,比用自然语言看起来更清晰、更直观明确,也更接近于计算机的程序设计.预习交流2流程图中的各图框的作用是固定的吗?怎样表示它们的执行顺序?提示:各图框都有其固定的作用,提示性文字说明或信息可写在框内.用带箭头的流程线将图框连接起来,表示算法步骤的执行路径.3.顺序结构依次进行多个处理的结构称为顺序结构.如图,虚线框内是一个顺序结构,其中A 和B 两个框是依次执行的.顺序结构是一种最简单、最基本的结构.预习交流3顺序结构是任何算法都离不开的基本结构吗?提示:任何一个算法都离不开顺序结构,顺序结构是最简单、最基本的结构. 预习交流4(1)下列关于流程线的说法,不正确的是__________. ①流程线表示操作的先后次序,用来连接图框 ②流程线无论什么方向,总要按箭头的指向执行 ③流程线是带有箭头的线,它可以画成折线④流程线只要是上下方向就表示自上向下执行,可以不要箭头提示:流程线是带有箭头的线段或折线,其中箭头表示算法步骤执行的顺序,不能丢掉,故④不正确.(2)如图所示,对本题流程图表示的算法,描述最准确的是__________.(填序号)①可用来判断a,b,c是否为一组勾股数②可用来判断a,b,c之间的大小顺序③可用来判断点(a,b)是否在直线x=c上④可用来判断点(a,b)与圆心在原点,半径为c的圆的位置关系提示:④一、对流程图的认识和理解关于对流程图的图形符号的理解正确的序号是__________.①任何一个完整的流程图都必须有起止框;②输入框只能放在开始框后,输出框只能放在结束框前;③判断框是唯一具有超过一个出口的图形符号;④对于一个流程图来说,判断框内的条件的写法是唯一的.思路分析:正确把握流程图中各个图形的作用及使用规则是解题的关键.答案:①③解析:任何一个流程图都必须有开始和结束,从而必须有起止框;输入框和输出框可以用在算法中任何需要输入、输出的位置;判断框内的条件不是唯一的,如a>b也可以写成a≤b,所以②④是错误的,①③是正确的.故填①③.1.下列功能中是处理框功能的是__________.①赋值;②计算;③判断;④输入,输出.答案:①②解析:处理框的功能是赋值或计算;判断则是判断框的功能;输入、输出则要通过输入、输出框来完成.故赋值和计算都属于处理框的功能.2.下列关于流程图的说法正确的是__________.①流程图是描述算法的语言②流程图中可以没有输出框,但必须要有输入框给变量赋值③流程图虽可以描述算法,但不如用自然语言描述算法直观④一个流程图中一定有顺序结构答案:①④解析:由于算法设计时要求返回执行的结果,故必须要有输出框.对于变量的赋值,则可以通过处理框完成,故算法设计时不一定要有输入框,所以②是错误的;相对于自然语言,用流程图描述算法的优点主要是直观、形象,容易理解,在步骤上表达简单了许多,所以③是错误的;顺序结构是任何一个流程图中都必有的基本结构,所以④正确.正确理解流程图的概念,对构成流程图的各种图形符号的功能要准确把握,具体应用时注意其特点.掌握流程图的画法规则,画流程图的规则如下:(1)使用标准的图形符号;(2)一般按从上到下、从左到右的方向画;(3)除判断框外,大多数流程图的符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)判断框分两大类:一类判断框是“Y”与“N”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.二、应用顺序结构表示算法已知正方体的棱长为2,设计一个算法求其内切球的体积,并画出流程图.思路分析:先求正方体内切球的半径→代入公式求其内切球的体积→把算法画成流程图解:S1 a←2;S2 R←12a;S3 V←43πR3;S4 输出V.流程图如图所示:1.如图所示的流程图,输入a1=3,a2=4,则输出的结果是__________.答案:12解析:b=a1a2=3×4=12.2.写出如图所示流程图的运行结果.(1)(2)(1)S =__________;(2)若R =8,则a =__________.答案:(1)52(2)4解析:(1)∵a =2,b =4,∴S =b a +a b =42+24=52.(2)由R =8得b =R2=2.故a =2b =4.3.画出由梯形两底a ,b 和高h 求梯形面积的算法流程图. 解:应用顺序结构画出算法流程图如图所示.顺序结构是一种最简单、最常用的程序结构,它不存在条件判断、控制转移和重复执行的操作.一个顺序结构的各个部分是按语句出现的先后次序自上而下顺序执行的.任何一种算法都离不开顺序结构.用顺序结构表示算法的步骤:(1)仔细审题,理清题意,找到解决问题的方法;(2)梳理解题步骤;(3)用数学语言描述算法、明确输入量、计算过程、输出量;(4)用流程图表示算法过程.三、流程图的读图问题如图所示是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1)该流程图解决的是怎样的一个问题?(2)若最终输出的结果y 1=3,y 2=-2,当x 取5时输出的结果5a +b 的值应该是多少? (3)在(2)的前提下,输入的x 值越大,输出的ax +b 是不是越大?为什么? (4)在(2)的前提下,当输入的x 值为多大时,输出结果ax +b 等于0? 思路分析:解答本题可先分析流程图的功能,然后根据函数关系式中变量间的关系依次解答,同时还要注意流程图中不同形式的图框的功能.解:(1)该流程图解决的是求函数f (x )=ax +b 的函数值的问题.(2)y 1=3即2a +b =3,y 2=-2即-3a +b =-2.解方程组2+=3,3+=2,a b a b ⎧⎨--⎩得1,=1.a b =⎧⎨⎩∴f (x )=x +1.∴当x 取5时,5a +b =f (5)=5+1=6.(3)输入的x 值越大,输出的函数值ax +b 越大, ∵f (x )=x +1是R 上的增函数.(4)令f (x )=x +1=0,得x =-1.因此当输入的x 值为-1时,输出的函数值为0.1.如图是一个算法的流程图,已知a 1=3,输出的结果为7,则a 2的值为__________.答案:11解析:由输出的结果为7,可知a1+a2=14.又a1=3,∴a2=11.2.阅读流程图,回答下列问题:(1)图框①中x←4的含义是什么?(2)图框②中y1←ax2+bx+c的含义是什么?(3)图框④中y2←ax2+bx+c的含义是什么?解:(1)图框①的功能是赋值.x←4表示将4赋给变量x.(2)图框②中,y1←ax2+bx+c的含义,是在执行①的前提下,即当x=4时,计算y1=ax2+bx+c 的值.(3)图框④中,y2←ax2+bx+c的含义,是在执行③的前提下,即当x=-2时,计算y2=ax2+bx+c的值.已知与流程图有关的函数问题,将流程图所表示的算法翻译成自然语言,是由用自然语言表达的算法画出流程图的逆向过程.对这两种语言的互译有助于熟练掌握算法的设计,而将流程图翻译成自然语言相对而言比较陌生,是一个难点.1.流程图中表示判断的图框是__________.答案:菱形框2.算法的三种基本结构是____________________________________________________.答案:顺序结构、选择结构、循环结构3.“”的功能是__________.答案:输入和输出信息4.写出x=2时,求函数y=x2-2x的函数值的一个算法,并用流程图表示.解:算法如下:S1 x←2;S2 y←x2-2x;S3 输出y.上述算法用流程图表示为:。
2017-2018学年苏教版高中数学必修三学案目录第一单元1.1算法的含义含答案第一单元1.2.1顺序结构含答案第一单元1.2.2选择结构含答案第一单元1.2.3循环结构含答案第一单元1.3.1赋值语句-1.3.2输入、输出语句含答案第一单元1.3.3条件语句含答案第一单元1.4算法案例含答案第一单元习题课含答案第一单元章末复习课含答案疑难规律方法:第一章算法初步含答案第二单元2.1.1简单随机抽样含答案第二单元2.1.2系统抽样含答案第二单元2.2.1频率分布表-2.2.2频率分布直方图与折线图(一)含答案第二单元2.2.2频率分布直方图与折线图(二)- 2.2.3茎叶图含答案第二单元2.3.1平均数及其估计含答案第二单元2.3.2方差与标准差含答案第二单元2.4线性回归方程含答案第二单元章末复习课含答案疑难规律方法:第二章统计含答案第三单元3.1.1随机现象-3.1.2随机事件的概率含答案第三单元3.2古典概型(一)含答案第三单元3.2古典概型(二)含答案第三单元3.3几何概型含答案第三单元3.4互斥事件含答案疑难规律方法:第三章概率含答案第一章算法初步1.1算法的含义学习目标 1.了解算法的特征;2.初步建立算法的概念;3.会用自然语言表述简单的算法.知识点一算法的概念思考1有一碗酱油,一碗醋和一个空碗.现要把两碗盛的物品交换过来,试用自然语言表述你的操作办法.思考2某笑话有这样一个问题:把大象装进冰箱总共分几步?答案是分三步.第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.这是一个算法吗?梳理算法概念:知识点二算法的特征思考1设想一下电脑程序需要计算无限多步,会怎么样?梳理算法特征:有穷性、可行性、顺序性、不唯一性、普遍性.思考2求解某一个问题的算法是不是唯一的?思考3任何问题都可以设计算法解决吗?梳理算法的设计要求:(1)写出的算法,必须能解决一类问题,并且能够重复使用.(2)要使算法尽量简单、通俗易懂.(3)要保证算法正确,且计算机能够执行.类型一算法的特征例1一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.试问他们怎样渡过河去?请写出一个渡河方案.反思与感悟算法的特点:(1)有穷性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.(2)确定性:算法的计算规则及相应的计算步骤必须是确定的.(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.跟踪训练1某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.请设计安全过河的算法.类型二算法的阅读理解例2下面算法要解决的问题是______________________________________________.第一步输入三个数,并分别用a、b、c表示.第二步比较a与b的大小,如果a<b,则交换a与b的值.第三步比较a与c的大小,如果a<c,则交换a与c的值.第四步比较b与c的大小,如果b<c,则交换b与c的值.第五步输出a、b、c.反思与感悟一个算法的作用往往并不显然,这需要我们结合具体数值去执行一下才知道.跟踪训练2下面给出了一个问题的算法:第一步输入a.第二步若a≣4,则执行第三步,否则执行第四步.第三步输出2a-1.第四步输出a2-2a+3.这个算法解决的问题是____________________________________________________.类型三算法的步骤设计例3设计一个算法,判断7是否为质数.反思与感悟设计一个具体问题的算法,通常按以下步骤:(1)认真分析问题,找出解决此题的一般数学方法.(2)借助有关变量或参数对算法加以表述.(3)将解决问题的过程划分为若干步骤.(4)用简练的语言将这个步骤表示出来.跟踪训练3设计一个算法,判断35是否为质数.1.下列不是算法的是________.(填序号)①解方程2x-6=0的过程是移项和系数化为1;②从济南到温哥华要先乘火车到北京,再转乘飞机;③解方程2x2+x-1=0;④利用公式S=πr2计算半径为3的圆的面积.2.下列对算法的理解正确的是________.(填序号)①算法有一个共同特点就是对一类问题都有效(而不是个别问题);②算法要求是一步步执行,每一步都能得到唯一的结果;③算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法;④任何问题都可以用算法来解决.3.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步取A=89,B=96,C=99;第二步____________________;第三步____________________;第四步输出计算的结果.4.已知算法:第一步,输入n.第二步,判断n是不是2,若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次检验从2到n-1的整数能不能整除n,若不能整除n,满足条件.该算法的功能是____________________.1.算法的特点:有限性、确定性、逻辑性、不唯一性、普遍性.2.算法设计的要求:(1)写出的算法必须能够解决一类问题(如判断一个整数是否为质数,求任意一个方程的近似解等),并且能够重复使用.(2)要使算法尽量简单,步骤尽量少.(3)要保证算法正确,且算法步骤能够一步一步执行,每步执行的操作必须确切,不能含混不清,而且在有限步后能得到结果.答案精析问题导学知识点一思考1先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换.思考2是.梳理算术运算机械统一计算机程序知识点二思考1若有无限步,必将陷入死循环,解决不了问题.故算法必须在有限步内解决问题.思考2解决一个问题的算法可以有多个,只是有优劣之分,结构简单,步骤少,速度快的算法就是好算法.思考3不可以,只有能按照一定规则解决的、明确的、有限的操作步骤的问题才可以设计算法,其他的问题一般是不可以的.题型探究例1解第一步两个小孩同船过河去.第二步一个小孩划船回来.第三步一个大人划船过河去.第四步对岸的小孩划船回来.第五步两个小孩同船渡过河去.跟踪训练1解第一步人带羊过河.第二步人自己返回.第三步人带青菜过河.第四步人带羊返回.第五步人带狼过河.第六步人自己返回.第七步人带羊过河.例2输入三个数a,b,c,并按从大到小的顺序输出解析第一步是给a、b、c赋值.第二步运行后a>b.第三步运行后a>c.第四步运行后b>c,所以a>b>c.第五步运行后,显示a、b、c的值,且从大到小排列.跟踪训练2 求函数f (x )=⎩⎪⎨⎪⎧2x -1, x ≣4,x 2-2x +3, x <4当x =a 时的函数值f (a )例3 解 第一步 用2除7,得到余数1,所以2不能整除7. 第二步 用3除7,得到余数1,所以3不能整除7. 第三步 用4除7,得到余数3,所以4不能整除7. 第四步 用5除7,得到余数2,所以5不能整除7. 第五步 用6除7,得到余数1,所以6不能整除7. 因此,7是质数.跟踪训练3 解 第一步 用2除35,得到余数1,所以2不能整除35. 第二步 用3除35,得到余数2,所以3不能整除35. 第三步 用4除35,得到余数3,所以4不能整除35. 第四步 用5除35,得到余数0,所以5能整除35. 因此,35不是质数. 当堂训练 1.③解析 ③不是算法,没有给出解这个方程的步骤. 2.①②③解析 由于算法要求必须在有限步骤内求解某类问题,所以并不是任何问题都可以用算法解决.例如求1+12+13+14+…+1n +…,故④不正确.3.计算x =A +B +C 计算y =x3解析 求三个数的平均数必须是先计算三个数的总和,再被3除. 4.判断所给的数是否为质数解析 因为2是质数,且大于2的任何数,只要它不能被2,3,…,n -1,整除,则n 一定为质数.故上述步骤是判断n 是否为质数的算法.1.2.1顺序结构学习目标 1.熟悉各种图框及流程线的功能和作用;2.能够读懂简单的流程图;3.能用流程图表示顺序结构的算法.知识点一流程图思考许多办事机构都有工作流程图,你觉得要向来办事的人员解释工作流程,是用自然语言好,还是用流程图好?梳理流程图的概念:(1)流程图是由一些________和__________组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的____________.(2)常见的图框、流程线及各自表示的功能知识点二顺序结构1.顺序结构的定义依次进行多个处理的结构称为______________.它是一种最简单、最基本的结构.2.结构形式类型一 把自然语言描述的算法翻译成流程图 例1 已知一个算法如下: S1 输入x . S2 y ←2x +3. S3 d ←x 2+y 2. S4 输出d .把上述算法用流程图表示.反思与感悟 画流程图的规则: (1)使用标准的图形符号.(2)流程图一般按从上到下,从左到右的方向画. (3)描述语言写在图框内,语言清楚、简练. 跟踪训练1 算法如下,画出流程图. S1 输入a ,b ,c 的值-1,-2,3. S2 max ←4ac -b 24a .S3 输出max.类型二 顺序结构例2 一个笼子里装有鸡和兔共m 只,且鸡和兔共n 只脚,设计一个计算鸡和兔各有多少只的算法,并画出流程图.反思与感悟 顺序结构的流程图的基本特征:(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框.(2)各图框从上到下用流程线依次连接.(3)处理框按计算机执行顺序沿流程线依次排列.跟踪训练2已知一个三角形三条边的边长分别为a,b,c,利用海伦-秦九韶公式(令p=a+b+c2,则三角形的面积S=p(p-a)(p-b)(p-c),设计一个计算三角形面积的算法,并画出流程图.类型三读懂流程图例3一个算法如图,它的功能是什么?反思与感悟流程图本就是为直观清晰地表达算法而生,故只需弄清各种图框、流程线的功能,再依次执行一下程序,不难读懂该图所要表达的算法.跟踪训练3写出下列算法的功能:(1)图①中算法的功能是(a>0,b>0)__________________________________;(2)图②中算法的功能是________________.1.下面的流程图是顺序结构的是________.2.如图是一个算法的流程图,已知输入a1=3,输出的结果为7,则a2的值是________.3.已知一个算法:S1m←a.S2如果b<m,则m←b,输出m;否则执行S3.S3如果c<m,则m←c,输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是________.4.如图的流程图,其运行结果为________.1.在设计计算机程序时要画出程序运行的流程图,有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此流程图是我们设计程序的基本和开端.2.规范流程图的表示:(1)使用标准的图形符号;(2)流程图一般按从上到下、从左到右的方向画,流程线要规范;(3)除判断框外,其他图形符号只有一个进入点和一个退出点;(4)在图框内描述的语言要非常简练、清楚.答案精析问题导学 知识点一思考 使用流程图好.因为使用流程图表达更直观准确.梳理 (1)图框 流程线 先后次序 (2)表示算法的开始或结束 表示输入、输出操作 表示赋值或计算 判断框 知识点二 1.顺序结构 题型探究例1 解 流程图如图:跟踪训练1 解 流程图如图:例2 解 算法分析: 设鸡和兔各有x ,y 只,则有⎩⎪⎨⎪⎧x +y =m ,2x +4y =n ,解得x =4m -n 2.算法: S1 输入m ,n .S2 计算鸡的只数x ←4m -n2.S3 计算兔的只数y ←m -x . S4 输出x ,y . 流程图如图所示:跟踪训练2 解 算法步骤如下: S1 输入三角形三条边的边长a ,b ,c . S2 p ←a +b +c2.S3 S ←p (p -a )(p -b )(p -c ). S4 输出S . 流程图如图:例3 解 其功能是求点(x 0,y 0)到直线Ax +By +C =0的距离. 跟踪训练3 (1)求以a ,b 为直角边的直角三角形斜边c 的长 (2)求两个实数a ,b 的和 当堂训练 1.①解析 由于表示的是依次执行的几个步骤,故①为顺序结构. 2.11解析从流程图中可知b=a1+a2=14,因为a1=3,所以a2=11.3.2解析当a=3,b=6,c=2时,依据算法设计,本算法是求a、b、c三个数的最小值,故输出m的值为2.4.6解析从流程图中可知,先是m←1,然后p←3,接着把p+3的值6赋给m,所以输出的值为6.1.2.2选择结构学习目标 1.掌握选择结构的流程图的画法;2.能用选择结构流程图描述分类讨论问题的算法;3.进一步熟悉流程图的画法.知识点一选择结构思考我们经常需要处理分类讨论的问题,顺序结构能否完成这一任务?为什么?梳理(1)选择结构:在一个算法中,经常会遇到一些条件的判断,算法的流程根据________是否成立有不同的流向.像这种先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构.(2)选择结构的结构形式:当条件p成立(或称为“真”)时执行________,否则执行______.(3)在选择结构的一般形式中,A或B中有一个为空的选择结构,该结构是按照某个条件是否成立来决定某个语句是否执行,当条件不成立(或成立)时,什么也不做.如图.知识点二条件结构的嵌套思考三段及三段以上的分段函数的求值问题能否应用上述结构形式解决?梳理嵌套的选择结构:一个选择结构的执行过程中还包含一个或多个选择结构的即为嵌套的选择结构,此时各个条件的执行有选择顺序.具有执行时,先判断外层的条件,当满足或不满足外层条件时,再执行内层条件,内层条件与外层条件执行完后要汇于同一点.类型一用流程图表示选择结构例1下面给出了一个问题的算法:S1 输入x .S2 若x >1,则y ←x 2+3,否则y ←2x -1. S3 输出y .试用流程图表示该算法.反思与感悟 凡是先根据条件作出判断然后再确定进行哪一个步骤的问题,需引入一个判断框应用选择结构.跟踪训练1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三条边边长的三角形是否存在,并画出这个算法的流程图.类型二 用选择结构流程图描述分类讨论问题的算法例2 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:f =⎩⎪⎨⎪⎧0.53ω, ω≢50,50×0.53+(ω-50)×0.85, ω>50. 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克). 试设计计算费用f 的算法并画出流程图.反思与感悟 在解决实际问题时,要善于识别需要选择结构的情境.跟踪训练2 设计算法判断一元二次方程ax 2+bx +c =0(a ≠0)是否有实数根,并画出相应的流程图.类型三 条件结构的嵌套例3 解关于x 的方程ax +b =0(a ≠0)的算法的流程图如何表示?反思与感悟 我们现在使用的选择结构只提供2个出口,故当要分三类以上讨论时,往往需要在选择结构中再嵌套一个选择结构.跟踪训练3 执行如图所示的流程图,若输入的x 的值为0,则输出的结果为________.1.下面三个问题中必须用选择结构才能实现的是______. ①已知梯形上、下底分别为a ,b ,高为h ,求梯形面积; ②求三个数a ,b ,c 中的最小数;③求函数f (x )=⎩⎪⎨⎪⎧x -1, x ≣0,x +2, x <0的函数值.2.选择结构不同于顺序结构的图形特征是__________.3.某算法的流程图如图所示,则输出量y 与输入量x 满足的关系式是____________.4.某次考试,为了统计成绩情况,设计了如图所示的流程图.当输入一个同学的成绩x =75时,输出结果为_______________________________________________________.1.选择结构的特点是:先判断后执行.2.在利用选择结构画流程图时要注意两点:一是需要判断条件是什么,二是条件判断后分别对应执行什么.3.设计流程图时,首先设计算法步骤,再转化为流程图,待熟练后可以省略算法步骤直接画出流程图.对于算法中分类讨论的步骤,通常设计成选择结构来解决.答案精析问题导学知识点一思考分类讨论是带有分支的逻辑结构,而顺序结构是一通到底的“直肠子”,所以不能表达分支结构,这就需要选择结构.梳理(1)条件(2)A B知识点二思考不能.题型探究例1解主体用顺序结构,其中根据条件x>1是否成立选择不同的流向用选择结构实现.跟踪训练1解算法步骤如下:S1输入3个正实数a,b,c.S2判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.流程图如图:例2解算法:S1 输入物品的重量ω.S2 如果ω≢50,那么f ←0.53ω,否则执行S3. S3 f ←50×0.53+(ω-50)×0.85. S4 输出托运费f . 流程图如图:跟踪训练2 解 算法步骤如下: S1 输入3个系数a ,b ,c . S2 计算Δ←b 2-4ac .S3 判断Δ≣0是否成立.若是,则输出“方程有实数根”;否则,输出“方程无实数根”.结束算法.相应的流程图如图:例3 解 先设计算法步骤: S1 输入实数a ,b .S2 判断a 是否为0,若是,执行S3,否则,x ←-ba,并输出x ,结束算法.S3 判断b 是否为0.若是,则输出“方程的解为任意实数”;否则,输出“方程无实数解”. 再用流程图表达上述算法如图:跟踪训练3 1解析 这是一个嵌套的选择结构,当输入x =0时,执行的是y ←1,即y =1.故输出的结果为1. 当堂训练 1.②③解析 在本题的三个问题求解中,只有①不需要分类讨论,故①不需用选择结构就能实现,②③必须用选择结构才能实现.2.判断框 3.y =⎩⎪⎨⎪⎧2x , x ≢1,x -2, x >14.及格解析 由于75<80,在流程图中的第一个判断框中,将按“N ”的指向进入第二个判断框,又因为75≣60,将按“Y ”的指向,所以输出的是“及格”.1.2.3 循环结构学习目标 1.掌握当型和直到型两种循环结构的流程图的画法;2.了解两种循环结构的区别,能进行两种循环结构流程图间的转化;3.能正确读流程图.知识点一 循环结构思考 用累加法计算1+2+3+…+100的值,其中有没有重复操作的步骤?梳理 循环结构的定义:在算法中,需要重复执行同一操作的结构称为循环结构. 知识点二 常见的两种循环结构类型一 如何实现和控制循环例1 设计一个计算1+2+…+100的值的算法,并画出流程图.反思与感悟 变量S 作为累加变量,来计算所求数据之和.当第一个数据送到变量i 中时,累加的动作为S=S+i,即把S的值与变量i的值相加,结果再送到累加变量S中,如此循环,则可实现数的累加求和.跟踪训练1设计一个计算1+3+5+…+(2n-1)(n∈N*)的值的算法,并画出流程图.类型二当型循环与直到型循环的转化例2例1中流程图用的是当型循环结构,如果用直到型循环结构表示,则流程图如何?反思与感悟当型循环是满足条件则循环,直到型循环是满足条件则终止循环,故两种结构相互转化时注意判断框中的条件变化.跟踪训练2试把跟踪训练1中的流程图改为直到型循环结构.类型三读图例3某班一共有40名学生,如图中s代表学生的数学成绩.若该班有5名90分以上的学生,20名80分以上的学生,则输出的m=________,n=________.反思与感悟读流程图的办法就是严格按图操作.有循环结构时不一定从头执行到尾,只要执行几圈找到规律,最后确认何时终止即可.跟踪训练3阅读如图所示的流程图,运行相应的程序,输出的值等于________.1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是________.2.执行如图所示的流程图,输出的S值为________.3.执行如图所示的流程图,输出的S值为________.来并输出,试画出该问题的流程图.1.当反复执行某一步骤或过程时,应用循环结构.当型循环是先判断条件,条件满足再执行循环体,不满足退出循环;直到型循环是先执行循环体,再判断条件,不满足条件时执行循环体,满足时退出循环.2.应用循环结构前:(1)确定循环变量和初始条件;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.答案精析问题导学知识点一思考用S表示每一步的计算结果,S加下一个数得到一个新的S,这个步骤被重复了100次.知识点二成立执行A仍成立题型探究例1解算法如下:S1令i←1,S←0.S2若i≢100成立,则执行S3;否则,输出S,结束算法.S3S←S+i.S4i←i+1,返回S2.流程图如图:跟踪训练1解算法如下:S1输入n的值.S2i←1,S←0.S3若i≢2n-1成立,则执行S4;否则,输出S,结束算法.S4S←S+i,i←i+2,返回S3.流程图如图:例2解流程图如图:跟踪训练2解流程图如图:例3515解析该流程图是用循环结构实现40个成绩的输入,每循环一次就输入一个成绩s,然后对s的值进行判断.如果s>90,则m的值增加1,如果80<s≢90,则n的值增加1,故m 是用来统计90分以上人数的,n是用来统计分数在区间(80,90]上的人数的.由已知得,m =5,n=20-5=15.跟踪训练3 4解析 当i =1时,a =2,S =2,i =1+1=2,由于2>11不成立,因此继续循环,当i =2时,a =2×22=8,S =10,i =3,由于10>11不成立,因此继续循环,当i =3时,a =3×23=24,S =34,i =4,此时,S =34>11,满足条件,跳出循环,最后输出i =4,故答案为4. 当堂训练 1.当型循环 2.1321解析 执行第一次循环后S =23,i =1;执行第二次循环后,S =1321,i =2≣2,退出循环体,输出S 的值为1321.3.8解析 执行第一次循环后S =1,k =1; 执行第二次循环后S =2,k =2; 执行第三次循环后S =8,k =3, 3<3不成立.即条件不成立,输出S , 即S =8.4.解 流程图如图所示:1.3.1赋值语句1.3.2输入、输出语句学习目标 1.了解学习程序语句的必要性和根本目的;2.理解输入语句、输出语句、赋值语句的格式和功能;3.能把本节涉及的算法流程图转化为相应的伪代码.知识点一伪代码思考现代算法很多都需要用计算机实现,你认为计算机与人能直接用自然语言交流吗?知识点二赋值语句思考计算机用变量来存取数据.怎样表示“把变量a,b中的数据相加存入c中”?梳理赋值语句:(1)格式:__________________.(2)功能:将表达式所代表的值赋给变量.一般先计算“←”右边______________,然后把这个值赋给“←”左边的________.知识点三输入语句思考一个计算圆的面积的程序,可以不需要使用者设计,但需要使用者输入什么信息?梳理输入语句:(1)格式:Read a,b.(2)功能:表示________的数据依次送给a,b.知识点四输出语句思考一个程序如果没有输出语句,影响程序运行吗?你知道运行结果吗?梳理输出语句:(1)格式:Print x.(2)功能:表示输出运算结果x.类型一赋值语句例1用伪代码写出交换两个变量A,B的值的算法.反思与感悟引入一个中间变量X,将A的值赋予X,又将B的值赋予A,再将X的值赋予B,从而达到交换A,B的值(比如交换装满水的两个水桶里的水需要再找一个空桶).跟踪训练1如果把例1中的伪代码改为则当输入A=1,B=2时,最后输出A,B为________.类型二输入、输出语句例2已知一匀速运动的物体的初速度、末速度和加速度分别为v1,v2,a,求物体运动的距离s,试编写求解这个问题的一个算法的流程图,并用伪代码表示这个算法.反思与感悟输入语句的作用是实现算法的输入信息功能.输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;输出语句的作用是实现算法的输出结果功能,输出语句可以输出常量、变量或表达式的值以及字符.跟踪训练2设计一个求任意三门功课成绩的平均数的算法流程图,并写出相应的伪代码.1.在Read语句中,如果同时输入多个变量,变量之间的分隔符是________.2.下列给出的赋值语句中正确的是________.①3←A;②m←-m;③B←A←2;④x+y←0.3.下列用伪代码描述的算法执行后的结果为________.4.已知一个正三棱柱的底面边长为2,高为3,用输入、输出语句和赋值语句表示计算这个正三棱柱的体积的算法.1.输入语句要求输入的值只能是具体的常数,不能是变量或表达式(输入语句无计算功能),若输入多个数,各数之间应用“,”隔开.2.输出语句可以输出常量、变量或表达式的值(输出语句有计算功能)或字符.3.赋值语句的作用是先算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值.4.赋值号两边的内容不能对调,如a←b与b←a表示的意义完全不同.。
第1章算法初步1.2013 年全运会在沈阳举行,运动员 A 报名参赛100米短跑并经过初赛、半决赛、决赛最后获取了银牌.问题 1:请简要写出该运动员参赛并获银牌的过程.提示:报名参赛→初赛→半决赛→决赛.问题 2:上述参胜过程有何特色?提示:参胜过程是明确的.问题 3:倘若你家住南京,想去沈阳观看 A 的决赛,你怎样设计你的旅途?提示:第一预定定票,而后选择适合的交通工具到沈阳,准时出席,检票入场,进入竞赛场所,观看竞赛.x +=2,①2.给出方程组yx- y=1,②问题 1:利用代入法求解此方程组.提示:由①得y=2-x,③把③代入②得x-(2-x)=1,3即 x=2.④把④代入③得1y=.23x=2,获取方程组的解1y=2.问题 2:利用消元法求解此方程组.3提示:①+②得x=2.③3 1x = 2,将③代入①得y = ,得方程组的解2y = 1.问题 3:从问题 1、 2 能够看出,解决一类问题的方法独一吗?提示:不独一.1.算法的观点对一类问题的机械的、一致的求解方法称为算法.2.算法的特色(1) 算法是指用一系列运算规则能在有限步骤内求解某类问题,此中的每条规则一定是明确立义的、可行的.(2) 算法从初始步骤开始,每一个步骤只好有一个确立的后继步骤,进而构成一个步骤序列,序列的停止表示问题获取解答或指出问题没有解答.1.算法的基本思想就是探究解决问题的一般性方法,并将解决问题的步骤用详细化、程序化的语言加以表述.2.算法是机械的,有时要进行大批重复计算,只需循规蹈矩地去做,总能算出结果,往常把算法过程称为“数学机械化”,其最大长处是能够让计算机来达成.3.求解某一个问题的算法不必定只有独一的一个,可能有不一样的算法.[ 例 1] 以下对于算法的说法:①求解某一类问题的算法是独一的②算法一定在有限步操作后停止③算法的每一步操作一定是明确的,不可以存在歧义④算法履行后必定能产生确立的结果此中,不正确的有 ________.[ 思路点拨 ] 利用算法特色对各个表述逐个判断,而后解答.高中数学苏教版必修三教学案:第1章1.2流程图含答案[ 精解析 ]由算法的不独一性,知①不正确;由算法的有性,知②正确;由算法确实定性,知③和④正确.[答案]①[一点通]1.个型的,正确理解算法的观点及其特色是解决此的关.2.注意算法的特色:有限性、确立性、可行性.1.以下句表达中是算法的有________.①从南到巴黎能够先乘火到北京,再坐机到达1②利用公式S=2ah 算底1,高2的三角形的面1③2x>2x+4④求 M(1,2)与 N(-3,-5)两点的方程,可先求MN的斜率,再利用点斜式方程求得分析:算法是解决的步与程,个其实不限于数学.①②④都表达了一种算法.答案:①②④2.算以下各式中的S ,能算法求解的是________.①S=1+2+3+⋯+100②S=1+2+3+⋯+100+⋯③S=1+2+3+⋯+ n( n≥1且 n∈N)分析:算法的要求步是可行的,而且在有限步以内能达成任.故①、③可算法求解.答案:①③[ 例 2]已知直l 1:3x-y+12=0和 l 2:3x+2y-6=0,求 l 1,l 2, y 成的三角形的面.写出解决本的一个算法.[ 思路点 ]先求出l1,l2的交点坐,再求l 1, l 2与 y 的交点的坐,即获取三角形的底;最后求三角形的高,依据面公式求面.3x-y+ 12= 0,[ 精解析 ]第一步解方程得l1,l2的交点P(-3x+ 2y- 6= 02,6) ;第二步在方程 3x-y+ 12= 0 中令x=0 得y= 12,进而获取A (0,12) ;第三步在方程 3 x +2 -6=0 中令x =0 得 y = 3,获取 (0,3) ;yB第四步 求出△ ABP 底边 AB 的长 | AB | =12- 3= 9;第五步求出△ ABP 的底边 AB 上的高 h =2;1第六步 代入三角形的面积公式计算S =2| AB | · h ;第七步 输出结果.[一点通]设计一个详细问题的算法,往常按以下步骤:(1) 仔细剖析问题,找出解决本题的一般数学方法; (2) 借助相关变量或参数对算法加以表述; (3) 将解决问题的过程区分为若干步骤;(4) 用精练的语言将这个步骤表示出来.3.写出求两底半径分别为1 和 4,高也为 4 的圆台的侧面积、表面积 及体积的算法.解:算法步骤以下:第一步 取 r1=1, 2=4, =4;rh第二步第三步第四步第五步计算 l =r 2- r 12+ h 2;22=π(r + r ) l ;计算 S =π r,S =π r ; S1122侧1 2计算 S 表=S +S +S;12侧1计算 V = 3( S 1+ S 1S 2+ S 2 ) h .4.已知球的表面积为 16π,求球的体积.写出解决该问题的两个算法.解:算法 1:第一步 S =16π;第二步计算 =S ( 因为 =4π 2) ;R4πS R第三步 计算 V =34πR 3 ;第四步 输出运算结果 V .算法 2:第一步=16π;S计算 V =4S3第二步3π(4π );第三步输出运算结果V.[例3](12分 ) 某居民区的物业部门每个月向居民收取卫生费,计算方法是:3人或 3人以下的住宅,每个月收取 5 元;超出 3 人的住户,每高出 1 人加收 1.2元.设计一个算法,依据输入的人数,计算应收取的卫生费.[ 精解详析 ]设某户有 x 人,依据题意,应收取的卫生费y 是 x 的分段函数,即 y=5,≤3,x(4 分)1.2 x+ 1.4 ,x>3.算法以下:第一步输入人数 x;(6 分)第二步假如 x≤3,则 y=5,假如 x>3,则 y=1.2 x+1.4;(10 分)第三步输出应收卫生费 y.(12分)[一点通]对于此类算法设计应用问题,应该第一成立过程模型,依据模型,达成算法.注意每步设计时要用简炼的语言表述.5.以下算法:第一步输入 x 的值;第二步若 x≥0成立,则 y=2x,不然履行第三步;第三步y=log2(- x);第四步输出 y 的值.若输出结果 y 的值为4,则输入的x的值为 ________.分析:算法履行的功能是给定x,2x,x≥0,求分段函数 y=- x 对应的函数值.log 2, x<0由 y=4知2x=4或log2(- x)=4.∴x=2或-16.答案: 2 或- 166.已知直角三角形的两条直角边分别为a, b,设计一个求该三角形周长的算法.解:算法以下:第一步计算斜边 c=a2+ b2;第二步计算周长 l =a+ b+ c;第三步输出 l .1.算法的特色:有限性、确立性、逻辑性、不独一性、广泛性.2.在详细设计算法时,要明确以下要求:(1)算法设计是一类问题的一般解法的抽象与归纳,它要借助一般问题的解决方法,又要包括这种问题的全部可能情况.设计算法时常常要把问题的解法区分为若干个可履行的步骤,有些步骤是重复履行的,但最后却一定在有限个步骤以内达成.(2)借助相关的变量或参数对算法加以表述.(3)要使算法尽量简单,步骤尽量少.课下能力提高( 一 )一、填空题1.写出解方程2x+ 3= 0 的一个算法过程.第一步 __________________________________________________________________ ;第二步 __________________________________________________________________ .答案:第一步将常数项 3 移到方程右侧得2x=- 3;3第二步在方程两边同时除以2,得x=-2.2.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99. 求他的总分和均匀分的一个算法为:第一步令 A=89, B=96, C=99;第二步计算总分 S=________;第三步计算均匀分M=________;第四步输出 S和 M.分析:总分S 为三个成绩数之和,A+B+C S均匀数 M=3=3.答案: A+ B+ C S 33.给出以下算法:第一步输入 x 的值;第二步当x >4 时,计算y=+ 2;不然履行下一步;x第三步计算 y=4-x;第四步输出 y.当输入 x=0时,输出 y=__________.分析:因为x=0>4不可立,故y=4-x= 2.答案: 24.已知点P0( x0, y0)和直线 l : Ax+By+ C=0,求点到直线距离的一个算法有以下几步:①输入点的坐标x0, y0;②计算 z1= Ax0+By0+ C;③计算 z2= A2+ B2;④输入直线方程的系数A, B和常数 C;⑤计算= | z1|;z2⑥输出 d 的值.其正确的次序为 ________.分析:利用点到直线的距离公式:| 0+0+|Ax By Cd=A2+ B2.答案:①④②③⑤⑥5.已知数字序列: 2,5,7,8,15,32,18,12,52,8.写出从该序列搜寻18 的一个算法.第一步输入实数 a.第二步__________________________________________________________________.第三步输出 a=18.分析:从序列数字中搜寻18,一定挨次输入各数字才能够找到.答案:若 a=18,则履行第三步,不然返回第一步二、解答题6.写出求a, b, c 中最小值的算法.解:算法以下:第一步比较a ,b的大小,当>时,令“最小值”为b;不然,令“最小值”为a;a b第二步比较第一步中的“最小值”与 c 的大小,当“最小值”大于 c 时,令“最小值”为c;不然,“最小值”不变;第三步“最小值”就是a, b, c 中的最小值,输出“最小值”.7.某铁路部门规定甲、乙两地之间游客托运转李的花费为c=0.53 ω,ω≤50,50×0.53 +ω- 50×0.85 ,ω >50.此中ω(单位:kg)为行李的重量,怎样设计计算花费c(单位:元)的算法.解:算法步骤以下:第一步输入行李的重量ω;第二步假如ω≤50,那么c=0.53ω ;假如ω>50,那么c=50×0.53+(ω-50)×0.85;第三步输出运费 c.8.下边给出一个问题的算法:第一步输入 a;第二步若 a≥4,则履行第三步,不然履行第四步;第三步输出 2a- 1;第四步输出 a2-2a+3.问题: (1) 这个算法解决的是什么问题?(2)当输入a 等于多少时,输出的值最小?解: (1) 这个算法解决的问题是求分段函数2x- 1,x≥4,f ( x)=x2-2x+3,x<4的函数值问题.(2)当 x≥4时, f ( x)=2x-1≥7,当 x<4时, f ( x)= x2-2x+3=( x-1)2+2≥2.∴当 x=1时, f ( x)min=2.即当输入 a 的值为1时,输出的值最小.。
2017-2018学年数学苏教版必修3全册导学案目录1.1算法的含义导学案练习1.2.1顺序结构导学案练习1.2.2选择结构导学案练习1.2.3循环结构导学案练习1.3基本算法语句导学案练习1.4 算法案例(2)导学案练习1.4算法案例(1)导学案练习1.4算法案例(3)导学案练习2.1抽样方法(一)导学案练习2.1抽样方法(三)导学案练习2.1抽样方法(二)导学案练习2.2总体分布的估计(一)导学案练习2.2总体分布的估计(二)导学案练习2.3总体特征数的估计(一)导学案练习2.3总体特征数的估计(二)导学案练习2.4线性回归方程(一)导学案练习 2.4线性回归方程(二)导学案练习 3.1.1 随机现象导学案练习3.1.2 随机事件的概率导学案练习 3.2 古典概型(一)导学案练习 3.2 古典概型(二)导学案练习3.3 几何概型(一)导学案练习3.3 几何概型(二)导学案练习3.4 互斥事件及其发生的概率(一)导学案练习3.4 互斥事件及其发生的概率(二)导学案练习第一章算法初步1.1算法的含义【新知导读】1.什么是算法?试从日常生活中找3个例子,描述它们的算法.2.我们从小学到初中再到高中所学过的许多数学公式是算法吗?【范例点睛】例1.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤.从下列选项中选出较好的一种算法A.第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播.B.第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播C第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播.D.第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶.思路点拨:从四个答案所给出的步骤是否合理、最少需要花费多少时间入手,进行判断.易错辨析:选择A很大程度上是受人们的通常的习惯所影响,即起床后首先应该洗脸刷牙再做其他的事情.方法点评:作为完成过程的算法来说,要讲究一个优劣之分,也即完成这个过程用时最少的是一个好算法,所以.应选C.例2.一位商人有9枚银元,其中有1枚略轻的是假银元.你能用天平(不用砝码)将假银元找出来吗?思路点拨:最容易想到的解决这个问题的一种方法是:把9枚银元按顺序排成一列,先称前2枚,若不平衡,则可找出假银元;若平衡,则2枚银元是真的,再依次与剩下的银元比较,就能找出假银元.这种算法最少要称1次,最多要称7次,是不是还有更好的办法,使得称量次数少一些?我们可以采用下面的方法:1.把银元分成3组,每组3枚.2.先将两组分别放在天平的两边.如果天平不平衡,那么假银元就在轻的那一组;如果天平平衡,则假银元就在未称的第3组里.3.取出含假银元的那一组,从中任取两枚银元放在天平的两边,如果左右不平衡,则轻的那一边就是假银元;如果天平两边平衡,则未称的那一枚就是假银元.方法点评:经分析发现,这种算法只需称量2次,这种做法要明显好于前一种做法.从以上两个问题中可以看出,同一个问题可能存在着多种算法,其中一些可能要比另一些好.在实际问题和算法理论中,找出好的算法是一项重要的工作. 【课外链接】1.设计一个算法,求840与1764的最大公因数.思路点拨:该算法是在对自然数进行素因数分解的基础上设计的.解答这个问题需要按以下思路进行.首先,对两个数分别进行素因数分解:75328403⨯⨯⨯=, 2227321764⨯⨯=.其次,确定两数的公共素因数:7,3,2.接着,确定公共素因数的指数:对于公共素因数22,2是1764的因数,32是840的因数,因此22是这两个数的公因数,这样就确定了公共素因数2的指数为2.同样,可以确定出公因数3和7的指数均为1.这样,就确定了840与1764的最大公因数为847322=⨯⨯【随堂演练】1.算法是指 ( ) A .为解决问题而编写的计算机程序 B.为解决问题而采取的方法和步骤 C .为解决问题而需要采用的计算机程序 C.为解决问题而采用的计算方法 2.看下面的四段话,其中不是解决问题的算法的是( ) (A )从济南到北京旅游,先坐火车,再坐飞机抵达(B )解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1 (C )方程x 2-1=0有两个实根(D )求1+2+3+4+5的值,先计算1+2=3,再求3+3=6,6+4=10,10+5=15,最终结果为153.方程⎩⎨⎧=+=+1043732y x y x 的解集是_______________4.买一个茶杯1.5元,现要写出计算买n 个茶杯所需要的钱数的一个算法,则这个算法中必须要用到的一个表达式为_______________ 5.设计算法,判断97是否为素数.6.设计算法,求1356和2400的最小公倍数.7.有两个瓶子A 和B ,分别盛放醋和酱油,要求将它们互换(即A 瓶原来盛醋,现改盛酱油;B 瓶则相反)8.设计算法,将三个数按从大到小的顺序排列.9.有13个球看上去一模一样,但其中一个质量不同(它比其他12个略重),现在有一个天平(没有砝码),要求给出一种操作方法,把这个球找出来.参考答案 1.1算法的含义【新知导读】1.对一类问题的机械的、统一的求解方法称为算法 2.是 【随堂演练】1.B 2.C 3.⎩⎨⎧==12y x 4.1.5n5.S1 对两个数分别进行素因数分解:1356=22×3×113 2400=25×3×52S2 确定两数的所有素因数:2,3,5,113S3 确定素因数的指数:2的指数为5,3的指数为1,5的指数为2, 113的指数为1 S4 输出结果[1356,2400]=25×3×52×113. 6. S1 引入第三个空瓶即C 瓶; S2 将A 瓶中的醋装入C 瓶中; S3 将B 瓶中的酱油装入A 瓶中; S4 将C 瓶中的醋装入B 瓶中; S5 交换结束。
1.2.1 顺序结构[新知初探]1.流程图的概念流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.常见的图框、流程线及各自表示的功能[点睛]关于流程图,要注意以下几点(1)起止框是任何流程图必不可少的,它表明算法的开始和结束.(2)输入、输出框可用在算法中任何需要输入、输出的位置,需要输入、输出的字母、符号、数据都填在框内.(3)处理框用于数据处理需要的算式、公式等,另外,对变量进行赋值,也用到了处理框.(4)流程线是有方向箭头的,不要忘记画箭头,因为它是反映流程图的先后执行顺序的,如不画箭头,就难以判定各框内程序的执行顺序了.3.顺序结构及形式[小试身手]1.下列几个选项中不是流程图符号的是________.答案:(1)2.下面三个流程图,不是顺序结构的是________.答案:(2)[典例] 下列关于流程图的符号的理解中,正确的有________.流程图的基本概念①任何一个流程图都必须有起止框;②输入框只能在开始框之后,输出框只能在结束框之前;③判断框是唯一具有超过一个退出点的图形符号;④判断框内的条件是唯一的.[解析]任何一个程序都有开始和结束,因而必须有起止框;输入框和输出框可以放在算法中任何需要输入、输出的位置;判断框内的条件不是唯一的,如条件a>b,也可写成a ≤b,故只有①③正确.[答案]①③[活学活用]下列关于流程线的说法:①流程线表示算法步骤执行的顺序,用来连接图框;②流程线只要是上下方向就表示自上向下执行可以不要箭头;③流程线无论什么方向,总要按箭头的指向执行;④流程线是带有箭头的线,它可以画成折线.其中正确的有________.答案:①③④[典例]已知点P(x,y0)和直线l:Ax+By+C=0(A2+B2≠0),求点P(x0,y0)到直线l 的距离d.设计算法,并画出流程图.[解]算法如下:S1输入点的坐标x0,y0,输入直线方程的系数A,B,C;S2E1←Ax0+By0+C;S3E2←A2+B2;S4d←|E1|E2;S5输出d.流程图如图所示:画顺序结构的流程图利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积.设计出该问题的算法及流程图.解:算法如下:S1 a ←2,b ←4,h ←5;S2 S ←12(a +b )h ;S3 输出S .该算法的流程图如图所示.[典例] 如图是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x ←2的含义是什么? (2)图框②中y 1←ax +b 的含义是什么? (3)图框④中y 2←ax +b 的含义是什么?顺序结构流程图的识读(4)该流程图解决的是怎样的一个问题?(5)若最终输出的结果y 1=3,y 2=-2,当x 取5时,输出的结果5a +b 的值应该是多少?(6)在(5)的前提下输入的x 值越大,输出的ax +b 的值是不是也越大?为什么? (7)在(5)的前提下,当输入的x 为多大时,输出的结果为0? [解] (1)图框①中x ←2表示把2赋给变量x (即使x =2). (2)图框②中y 1←ax +b 的含义:当x =2时, 计算ax +b 的值,并把这个值赋给y 1.(3)图框④中y 2←ax +b 的含义:当x =-3时, 计算ax +b 的值,并把这个值赋给y 2.(4)该流程图解决的是求函数f (x )=ax +b 的函数值的问题,其中输入的是自变量x 的值,输出的是x 对应的函数值.(5)y 1=3,即2a +b =3;y 2=-2,即-3a +b =-2;从而可得a =1,b =1,故f (x )=x +1,当x 取5时,5a +b =f (5)=6.(6)输入的x 值越大,输出的函数值ax +b 越大, 因为f (x )=x +1是(-∞,+∞)上的增函数. (7)令f (x )=x +1=0,得x =-1,因而当输入值为-1时,输出的函数值为0.图1是计算图2中阴影部分面积的一个流程图,其中,①中应填________________.解析:∵一个花瓣形面积为2·ð··⎛⎫ ⎪⎝⎭1a21a a 44222=2⎝⎛⎭⎫a 216π-18a 2=14a 2·π-22,∴图中阴影部分面积应为π-22a 2,故①处应填S ←π-22a 2. 答案:S ←π-22a 2[层级一 学业水平达标]1.下列几个选项中,不是流程图的符号的是________.(填序号)答案:(2)(3)(4)2.如图表示的算法结构是________. 答案:顺序结构3.要解决下面的四个问题,只用顺序结构画不 出其流程图的是________.①当n =10时,利用公式1+2+3+…+n =n (n +1)2,计算1+2+3+…+10; ②当圆的面积已知时,求圆的半径;③给定一个数x ,求函数f (x )=⎩⎪⎨⎪⎧1,x >0,-1,x ≤0的值;④当x =5时,求函数f (x )=x 2-3x -5的函数值. 答案:③4.阅读下列流程图:若输出结果为15,则①处的执行框内应填的是________.解析:先确定①处的执行框是给x 赋值,然后倒着推,b =15时,2a -3=15,a =9,当a =9时,2x +1=9,x =3.答案:x ←35.某学生五门功课成绩为80,95,78,87,65.写出平均成绩的算法,画出流程图. 解:算法如下:S1S←80;S2S←S+95;S3S←S+78;S4S←S+87;S5S←S+65;S6A←S/5;S7输出A.流程图:[层级二应试能力达标] 1.如图所示的流程图解决的数学问题是________.答案:计算半径为2的圆的面积2.阅读如图所示流程图,其输出的结果是________.答案:43.下面四个流程图中不是顺序结构的是________.答案:(3)4.如图所示的流程图最终输出的结果是________.解析:由题意y=(22-1)2-1=8.答案:85.下列流程图表示的算法最后运行的结果为________.解析:无论a ,b 输入什么数值,程序执行到第二、三步重新对a ,b 进行赋值,a =4,b =2,所以T =8.答案:86.如图所示的流程图的输出结果是________.解析:执行过程为x =1,y =2,z =3, x =y =2,y =x =2,z =y =2. 答案:27.如图是解方程组⎩⎪⎨⎪⎧2x -y =1 ①4x +3y =7 ②的一个流程图,则对应的算法为:S1 _________________________________________________________; S2 _________________________________________________________; S3 _________________________________________________________. 答案:将方程②中x 的系数除以方程①中x 的系数得商数m =4÷2=2方程②减去m 乘以方程①的积消去方程②中的x 得到⎩⎪⎨⎪⎧2x -y =1,5y =5将上面的方程组自下而上回代求解得到y =1,x =18.要求底面边长为4,侧棱长为5的正四棱锥的侧面积及体积.甲、乙二同学分别设计了一个算法并画出了相应的流程图如下,其中正确的是________.答案:甲、乙9.如图所示是一个流程图,根据该图和下列各小题的条件回答问题.(1)该流程图解决的是一个什么问题?(2)若输入的a 值为0和4时,输出的值相等,则当输入的a 的值为3时,输出的值为多少?(3)在(2)的条件下,要想使输出的值最大,输入的a 值应为多大?解:(1)该流程图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题.(2)若输入的a 值为0和4时,输出的值相等,即f (0)=f (4).∵f (0)=0,f (4)=-16+4m ,∴-16+4m =0.∴m =4,∴f (x )=-x 2+4x .∵f (3)=-32+4×3=3,∴当输入的a 的值为3时,输出的值为3.(3)∵f (x )=-x 2+4x =-(x -2)2+4,当x =2时,f (x )max =4,∴要想使输出的值最大,输入的a 的值应为2.10.阅读下列两个求三角形面积的流程图,回答问题.(1)图①的流程图输出结果S 是多少?图②中若输入a =4,h =3,输出的结果是多少?(2)对比一下两个流程图,你有什么发现?解:(1)图①运行后,S =12×4×3=6,故图①输出结果为6.图②当a =4,h =3时输出的结果也为6.(2)通过对比,图①只能求底边长为4、高为3的三角形的面积.图②由于底边长和高要求输入,故可求任意三角形的面积.可见一个好的算法,不仅可以解决某个问题,更可以解决某一类问题,也就是说,设计算法时,我们应尽量“优化”.。
课时训练2 顺序结构基础夯实1.下列图框能表示赋值、计算功能的是()解析:由基本图框及其功能可知,A表示算法起始与结束,B表示判断条件是否成立,D表示输入、输出信息,只有C能表示赋值、计算功能.答案:C2.图(2)是计算图(1)的阴影部分面积M的一个流程图,则①中应该填()A.M←x2B.x2→MC.M←x2D.x2→M解析:M=x2-π·=x2-πx2=x2.答案:A3.如图所示的流程图是已知直角三角形两直角边a,b求斜边c的算法,其中正确的是()解析:根据顺序结构的要求,先输入,后计算,再结合直角三角形的三边关系可知C正确.答案:C4.阅读如图所示的流程图.若输入x为3,则输出的y的值为.解析:a←32-1=8,b←8-3=5,y←8×5=40.答案:405.如图是求长方体的体积和表面积的一个流程图,为将其补充完整,“?”处应填.解析:根据题意,长方体的长、宽、高应直接输入,故“?”处应填写输入框.答案:6.导学号51810079球的体积公式为V=πR3(R为球的半径),用算法描述求R=4.8时的球的体积,并画出算法的流程图.解算法:S1R←4.8;S2V←πR3;S3输出V.流程图如图所示.7.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值.设计一个算法,并画出算法的流程图.解算法如下:S1求f(3)的值;S2求f(-5)的值;S3将前两步的结果相加,把结果赋给y;S4输出y的值.流程图如图所示.能力提升8.导学号51810080根据如图所示的流程图和下列各小题的条件回答下面的几个问题:(1)该流程图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?(4)在(2)的条件下按照这个流程图输出的f(x)值,当x的值大于2时,x值大的输出的f(x)值反而小,为什么?解(1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题;(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0.所以m=4.所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)值为3;(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)max=4,所以要想使输出的值最大,输入的x的值应为2;(4)因为f(x)=-(x-2)2+4,所以函数f(x)在[2,+∞)上是减函数.所以在[2,+∞)上,x值大的对应的函数值反而小,从而当输入的x的值大于2时,x值大的输出的f(x)值反而小.。
第3章 概 率(B) (时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是________.(填序号) ①恰好有1件次品和恰好有两件次品; ②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品; ④至少1件次品和全是正品.2.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意抛掷在这个平面上,则硬币不与任何一条平行线相碰的概率是________.3.某班有50名学生,其中男、女各25名,若这个班的一个学生甲在街上碰到一位同班同学,假定每两名学生碰面的概率相等,那么甲碰到异性同学的概率________碰到同性同学的概率.(填“大于”“小于”“等于”或“无法比较”)4.在区间⎣⎡⎦⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为________. 5.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.6.已知半径为a 的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.7.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为________. 8.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为______________.9.已知集合A ={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A 中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A ={点落在x 轴上}的概率P (A )与事件B ={点落在y 轴上}的概率P (B )大小关系为________.10.如图所示,△ABC 为圆O 的内接三角形,AC =BC ,AB 为圆O 的直径,向该圆内随机投一点,则该点落在△ABC 内的概率是________.11.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的坐标(m ,n ),则点P 在圆x 2+y 2=25外的概率是________.12.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是__________.13.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.14.在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是__________.二、解答题(本大题共6小题,共90分)15.(14分)已知函数f(x)=-x2+ax-b.若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.16.(14分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.17.(14分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.18.(16分)现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.19.(16分)已知实数a ,b ∈{-2,-1,1,2}. (1)求直线y =ax +b 不经过第四象限的概率;(2)求直线y =ax +b 与圆x 2+y 2=1有公共点的概率.20.(16分)如图所示,OA =1,在以O 为圆心,OA 为半径的半圆孤上任取一点B ,求使△AOB的面积大于等于14的概率.第3章 概 率(B)1.①④ 2.133.大于解析 记“甲碰到同性同学”为事件A ,“甲碰到异性同学”为事件B ,则P(A)=2449,P(B)=2549,故P(A)<P(B),即学生甲碰到异性同学的概率大. 4.13解析 在区间[-π2,π2],0<cos x<12⇔x ∈⎝⎛⎭⎫-π2,-π3∪⎝⎛⎭⎫π3,π2,其区间长度为π3,又已知区间⎣⎡⎦⎤-π2,π2的长度为π,由几何概型知P =π3π=13 5.0.25解析 由题意知在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393,共5组随机数,故所求概率为520=14=0.25.6.233π解析 因为球半径为a ,则正方体的对角线长为2a ,设正方体的边长为x ,则2a =3x ,∴x =2a3,由几何概型知,所求的概率P =V 正方体V 球=x 343πa 3=233π.7. π16解析 如图所示,区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.8.25解析 可能构成的两位数的总数为5×4=20(种),因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种,所以P =820=25.9.P(A)=P(B)解析 横坐标与纵坐标为0的可能性是一样的. 10.1π解析 连接OC ,设圆O 的半径为R ,记“所投点落在△ABC 内”为事件A ,则P(A)=12·AB·OC πR 2=1π. 11.712解析 本题中涉及两个变量的平方和,类似于两个变量的和或积的情况,可以用列表法,使x 2+y 2>25的次数与总试验次数的比就近似为本题结果.即2136=712.12.49解析 可求得同时落在奇数所在区域的情况有4×4=16(种),而总的情况有6×6=36(种),于是由古典概型概率公式,得P =1636=49.13.12 解析记“弦长超过圆内接等边三角形的边长”为事件A ,如图所示,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点F 作垂直于直径的弦,当弦为CD 时,就是等边三角形的边长,弦长大于CD 的充要条件是圆心O 到弦的距离小于OF ,由几何概型的概率公式得P(A)=12×22=12.14.23解析 由题意可知V S -APC V S -ABC >13,如图所示,三棱锥S -ABC 与三棱锥S -APC 的高相同,因此V S -APCV S -ABC=S △APC S △ABC =PM BN >13(PM ,BN 为其高线),又PM BN =AP AB ,故AP AB >13,故所求概率为23(长度之比).15.解 a ,b 都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N =5×5=25个.函数有零点的条件为Δ=a 2-4b ≥0,即a 2≥4b.因为事件“a 2≥4b ”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a 2≥4b ”的概率为P =1225. 16.解 设A 、B 、C 分别表示炸中第一、第二、第三军火库这三个事件. 则P(A)=0.025,P(B)=P(C)=0.1, 设D 表示军火库爆炸这个事件,则有D =A +B +C ,其中A 、B 、C 是互斥事件,∴P(D)=P(A +B +C)=P(A)+P(B)+P(C)=0.025+0.1+0.1=0.225. 17.解 (1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.(2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为23.(3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率P 1=512,同理乙胜的概率P 2=512.因为P 1=P 2,所以此游戏公平.18.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件为(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2),共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)},事件M 由6个基本事件组成,因而P(M)=618=13.(2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成,所以P(N )=318=16,由对立事件的概率公式得:P(N)=1-P(N )=1-16=56.19.解 由于实数对(a ,b)的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种.设“直线y =ax +b 不经过第四象限”为事件A ,“直线y =ax +b 与圆x 2+y 2=1有公共点”为事件B.(1)若直线y =ax +b 不经过第四象限,则必须满足⎩⎪⎨⎪⎧a ≥0,b ≥0,即满足条件的实数对(a ,b)有(1,1),(1,2),(2,1),(2,2),共4种.∴P(A)=416=14.故直线y =ax +b 不经过第四象限的概率为14.(2)若直线y =ax +b 与圆x 2+y 2=1有公共点,则必须满足|b|a 2+1≤1,即b 2≤a 2+1.若a =-2,则b =-2,-1,1,2符合要求,此时实数对(a ,b)有4种不同取值; 若a =-1,则b =-1,1符合要求,此时实数对(a ,b)有2种不同取值; 若a =1,则b =-1,1符合要求,此时实数对(a ,b)有2种不同取值,若a =2,则b =-2,-1,1,2符合要求,此时实数对(a ,b)有4种不同取值. ∴满足条件的实数对(a ,b)共有12种不同取值.∴P(B)=1216=34.故直线y =ax +b 与圆x 2+y 2=1有公共点的概率为34.20.解 如图所示,作OC ⊥OA ,C 在半圆弧上,过OC 中点D 作OA 的平行线交半圆弧于E 、F ,所以在EF 上取一点B,判断S △AOB ≥14.连结OE 、OF ,因为OD =12OC =12OF ,OC ⊥EF ,所以∠DOF =60°,所以∠EOF =120°,所以l EF=120180π·1=23π. 所以P =l EF π·1=23ππ=23.。
第2章 统 计2.1.1 简单随机抽样课时目标 1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.1.简单随机抽样的定义一般地,从个体数为N 的总体中________________取出n 个个体作为样本(n <N ),如果每个个体____________被取到,那么这样的抽样方法称为__________________.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体____________的情况下是行之有效的.一、填空题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是________.①200个表示发芽天数的数值;②200个球根;③无数个球根发芽天数的数值集合;④无法确定.2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是____________.3.抽签法中确保样本代表性的关键是________.4.下列抽样实验中,用抽签法方便的有________.①从某厂生产的3 000件产品中抽取600件进行质量检验;②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验;③从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验;④从某厂生产的3 000件产品中抽取10件进行质量检验.5.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是________.①1 000名运动员是总体;②每个运动员是个体;③抽取的100名运动员是样本;④样本容量是100.6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是________.7.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)二、解答题10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?能力提升12.在简单随机抽样中,某一个个体被抽到的可能性________.①与第几次抽样有关,第一次抽到的可能性大一些;②与第几次抽样无关,每次抽到的可能性相等;③与第几次抽样有关,最后一次抽到的可能性大些;④与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同.13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.1.判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:简单随机抽样⎩⎪⎨⎪⎧ 个体有限逐个抽取不放回等可能性如果四个特征有一个不满足就不是简单随机抽样.2.利用抽签法抽取样本时应注意以下问题:(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.(2)号签要求大小、形状完全相同.(3)号签要搅拌均匀.(4)要逐一不放回抽取.3.在利用随机数表法抽样的过程中注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.2.1抽样方法2.1.1简单随机抽样知识梳理1.逐个不放回地都有相同的机会简单随机抽样2.抽签法随机数表法 3.个体数不多作业设计1.①2.120解析由于样本容量即样本的个数,抽取的样本的个数为40×3=120.3.搅拌均匀解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以要求搅拌均匀.4.②解析①总体容量较大,样本容量也较大不适宜用抽签法;②总体容量较小,样本容量也较小可用抽签法;③中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;④总体容量较大,不适宜用抽签法.5.④解析此问题研究的是运动员的年龄情况,不是运动员,故①、②、③错.6.1 10,1107.简单随机抽样解析由简单随机抽样的特点可知,该抽样方法是简单随机抽样.8.抽签法9.①③②10.解利用抽签法,步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签;(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次抽取3个号签,并记录上面的编号;(5)所得号码对应的3辆汽车就是要抽取的对象.11.解(1)将元件的编号调整为010,011,012,…,099,100,…600;(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.12.②解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.13.解方法一抽签法.(1)将50个轴进行编号01,02, (50)(2)把编号写在大小、形状相同的纸片上作为号签;(3)把纸片揉成团,放在箱子里,并搅拌均匀;(4)依次不放回抽取5个号签,并记下编号;(5)把号签对应的轴组成样本.方法二随机数表法(1)将50个轴进行编号为00,01, (49)(2)在随机数表中任意选定一个数并按向右方向读取;(3)每次读两位,并记下在00~49之间的5个数,不能重复;(4)把与读数相对应的编号相同的5个轴取出组成样本.。
江苏省响水中学高中数学第1章《算法初步》1.2.3循环结构(1)导学案苏教版必修3一、基础知识导学:问题1:需要操作的结构称为循环结构.问题2:(1)当型循环:先判断所给条件p是否成立;若p成立,则,再判断条件p是否成立,若p仍成立,则,如此反复,直到某一次条件时为止(如图甲).(2)直到型循环:先,再判断所给条件p是否成立,若p ,则再执行A,如此反复,直到,该循环过程结束(如图乙).二、基础学习交流:1.下面流程图1是当型循环还是直到型循环?它表示了一个什么样的算法?2.如图2所示,结果为S=132,那么判断框中应填入的关于k的判断条件是________.图1 图2三、重点难点探究:⨯⨯⨯⨯值的一个算法,并画出流程图.探究一:写出求12345++++值的一个算法,变式:写出求135 (99)并画出流程图.探究二设计一个计算10个数平均数的算法,并画出流程图.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。
4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。
【学案导学设计】2015-2016学年高中数学 1.2习题课课时作业苏
教版必修3
课时目标 1.理解并掌握画流程图的规则.2.在具体问题的解决过程中,理解流程图的三种基本逻辑结构.3.能正确选择并运用三种逻辑结构框图表示具体问题的算法.
1.下列关于流程图的描述
①对于一个算法来说流程图是唯一的;
②任何一个流程图都必须有起止框;
③流程图只有一个入口,也只有一个出口;
④输出框一定要在终止框前.
其中正确的有________个.
2.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤.从下列选项中选出最好的一种流程________.
①1.洗脸刷牙、2.刷水壶、3.烧水、4.泡面、5.吃饭、6.听广播
②1.刷水壶、2.烧水同时洗脸刷牙、3.泡面、4.吃饭、5.听广播
③1.刷水壶、2.烧水同时洗脸刷牙、3.泡面、4.吃饭同时听广播
④1.吃饭同时听广播、2.泡面、3.烧水同时洗脸刷牙、4.刷水壶
3.如图是一个算法的流程图,该算法所输出的结果是________.
4.阅读下边的流程图,若输出s的值为-7,则判断框内可填写________.
5.求边长为3,4,5的直角三角形的内切圆半径的算法为:
S1 __________________;
S2 r ←a +b -c 2
; S3 输出r .
6.根据下面的流程图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则框1中填________,框2中填________.
一、填空题
1.一个完整的流程图至少包含________框.
2.下列流程图表示的算法是________.
3.完成求1×2×3×…×10的算法.
S1 I ←1;
S2 k ←2;
S3 I ←I ×k ;
S4 k ←________;
S5 ______________
S6 输出I .
4.阅读下边的流程图,运行相应的程序,则输出的i 值为________.
5.如图给出的是计算12+14+16+…+1100
的值的一个流程图,其中判断框内应填入的条件是________.
6.读下面流程图
则循环体执行的次数为________次.
7.直到型循环结构框图为________.
8.已知下列框图,若a=5,则输出b=________.
9.执行如图所示的流程图,若输入x=4,则输出y的值为________.
二、解答题
10.已知点P0(x0,y0)和直线l:Ax+By+C=0,写出求点P0到直线l的距离d的算法并画出流程图.
11.画出求满足12+22+32+…+i2>106的最小正整数n的流程图.
能力提升
12.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸,并将这个算法用流程图表示.
13.某工厂2010年生产轿车200万辆,技术革新后预计每年的产量比上一年增加5%,问最早哪一年生产的轿车超过300万辆?试设计算法并画出相应的流程图.
1.流程图是用规定的图形、流程线及文字说明表示算法的图形,因此首要任务应是会画基本的流程图并熟知它们的功能.
2.画流程图必须遵守一些共同的规则:
(1)使用框图的符号要标准.
(2)框图一般按从上到下、从左到右的顺序画.
(3)除了判断框外,大多数框图符号只有一个进入点和一个退出点,判断框是唯一具有超过一个退出点的框图符号.
(4)判断框有两种:一种是“Y”与“N”两个分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果,这种判断框中学阶段很少用到.
(5)在图形符号内描述的语言要简练清楚.
答案
双基演练
1.2
解析 ②、③正确,对于一个算法来说,流程图不唯一,与设计有关,故①错.输入输出的位置,不一定在开始和结束处,故④错.
2.③
解析 ①中洗脸刷牙可以在烧水的过程中进行,听广播可以和吃饭同时进行;④中吃饭要在刷水壶、烧水、泡面之后.
3.34
解析 运行第一次的结果为n =0+11×2=12;
第二次n =12+12×3=23;
第三次n =23+13×4=34.
此时i =4程序终止,
即输出n =34.
4.i<6(或i<7,i≤5,i≤6)
解析 i =1,s =2;s =2-1=1,i =1+2=3;
s =1-3=-2,i =3+2=5;
s =-2-5=-7,i =5+2=7.
因输出s 的值为-7,循环终止,故判断框内应填“i<6”,
或“i<7”或“i≤5”或“i≤6”.
5.a←3,b←4,c←5
6.Y N
解析 由x≥60与及格对应知1处填Y ,则2处填N .
作业设计
1.起止框和输入、输出
解析 一个完整的流程图至少需包括起止框和输入、输出框.
2.求三数中的最大值
解析 根据流程图可知,此图应表示求三个数中的最大数.
3.k +1 若k>10,那么转S 6,否则转S 3
4.4
解析 S =0→i=1→a=2
→S=2→i=2→a=8
→S=10→i=3→a=24
→S=34→i=4→输出i =4.
5.i≥51(或i>50)
解析 i =1时,S =0+12=1
2,
i =2时,S =12+1
4,…,
i =50时,S =12+14+16+…+1
100,
当i =51时结束程序.
6.49
解析 ∵i=i +2,
∴当2+2n≥100时循环结束此时n =49.
7.②
8.26
解析 因a =5,所以5>5不成立,判断框执行“N ”,即b =52+1=26.
9.-54
解析 当输入x =4时,
计算y =12x -1,得y =1.
不满足|y -x|<1.于是得x =1,
此时y =12-1=-12,
不满足|-12-1|<1,此时x =-12,
得y =-54.
这样|y -x|=|-54+12|=34<1,执行“Y ”,
所以输出的是-54.
10.解 (1)用数学语言来描述算法:
S 1 输入点的坐标x 0,y 0,输入直线方程的系数即常数A ,B ,C ; S 2 z 1←Ax 0+By 0+C ;
S 3 z 2←A 2
+B 2;
S 4 d←|z 1|
z 2
;
S 5 输出d.
(2)用流程图来描述算法,如图:
11.解 流程图如下:
12.解第1步,两个儿童将船划到右岸;
第2步,他们中一个上岸,另一个划回来;
第3步,儿童上岸,一个士兵划过去;
第4步,士兵上岸,让儿童划回来;
第5步,如果左岸没有士兵,那么结束,否则转第1步.流程图如图所示.
13.解算法如下:
S1 n←2 010;
S2 a←200;
S3 T←0.05a;
S4 a←a+T;
S5 n←n+1;
S6 若a>300,输出n.
否则转S3.
流程图:。