13 不等式的应用
- 格式:doc
- 大小:223.00 KB
- 文档页数:4
课题: 列不等式解实际应用问题课时:1课时教学目标:1.学会列简单的不等式解决一些实际应用中的问题2.培养学生理论联系实际的能力3.培养学生解决实际问题的能力教学重点:列不等式解实际的应用问题教学难点:如何根据题目给的已知条件,列出符合题意的不等式教学过程:一.引入在初中已经学习了列一元一次方程、一元二次方程、分式方程和二元一次方程组等解应用题。
这些实际问题,反映了不同量之间的相等关系。
根据题设条件可列出含有未知数的等式,即方程。
但是,还有大量的实际问题不能用等式表示,必须用不等式赖解决二.举例例1 某校团委举行讲演比赛,要发纪念品,派一人带120元钱去商店买一打10元一支的钢笔,但商店里没有10元一支的钢笔,有13元一支和8元一支的钢笔,因此总共买了一打这两种钢笔,要使这打钢笔中含有尽可能多的13元一支的钢笔,那么这两种钢笔各应买多少支呢?分析:设买13元一支的钢笔x 支,那么买8元一支的钢笔为(12-x )支,买13元一支的钢笔共用去13x 元,买8元一支的钢笔共用去8(12-x )元,这两种钢笔用的钱数应小于或等于120元,根据题意就可以列出不等式求解解:设买13元一支的钢笔x 支,那么买8元一支的钢笔是(12-x )支,根据题意,得13x+8(12-x)≤120,解得 x ≤4.8,所以,买13元一支的钢笔为4支,把x=4带入12-x 中,得 12-4=8答:买13元一支的钢笔4支,买8元一支的钢笔8支例2 李明在工厂生产一种机器零件,第一天生产72个,第二天生产86个,第三天再生产多少个才能使三天平均生产的机器零件在80个以上?分析:设李明第三天生产的机器零件为x 个,那么他三天生产的机器零件的平均数应该是38672x ++个;题中要求李明三天生产的机器零件平均在80个以上,所以他三天生产的机器零件的平均数,必须大于或等于80个解:设李明第三天生产的机器零件为x 个,根据题意,得38672x ++≥80 解得 x ≥82答:李明第三天应生产机器零件82个以上例3 学校会议室里有一个长3米,宽2米的长方形桌子,要做一块桌布,使它的面积是桌面面积的两倍以上,并要求从桌面四边垂下的长度相等,应怎样做?分析:设桌布垂下的长度为x 米,则桌布的长为(2x+3)米,宽为(2x+2)米,桌布面积是(2x+3) (2x+2)平方米,它的面积应大于或等于桌面面积3×2平方米的2倍解:设桌布垂下的长度为x 米,那么桌布的长是(2x+3)米,宽是(2x+2)米根据题意,得(2x+3)(2x+2)≥2×3×2整理,得 03522≥-+x x ,解03522=-+x x ,得3,2121-==x x 所以 x ≥21 或 x ≤-3,x ≤-3不合题意,应舍去 答:桌布四边垂下得长度是0.5米以上列不等式解应用题,关键在于分析题中的数量关系及它们之间存在的不等关系,找出解题思路课堂练习:课本58页,练习,第1题作业:课本59页,习题三,A 组的第5题课题:第二章复习课时:1课时教学目标:1.使学生全面地回顾第二章的全部知识2.让学生比较系统地掌握第二章的重点知识3.培养学生实际解决问题的能力教学重点:不等式的性质、一元二次不等式及其解法、分式不等式及其解法、含绝对值的一元一次不等式及其解法和列不等式解实际应用问题教学难点:列不等式解实际应用问题教学过程:一.数集非负整数集(自然数集)――N ;正整数集――+N ;整数集――Z有理数集――Q ;实数集――R它们之间的关系是:+N ⊆N ⊆Z ⊆Q ⊆R 且+N ⊂N ⊂Z ⊂Q ⊂R二.不等式的性质1.性质1如果a>b ,那么b<a ;反过来,如果b<a ,那么a>b ,也就是a>b ⇔b<a2.性质2如果a>b ,b>c ,那么a>c ,也就是a>b ,b>c ⇒a>c注:性质2称为不等式的传递性3.性质3如果a>b ,那么a+c>b+c ,也就是a>b ⇒a+c>b+c推论:a>b ,c>d ⇒a+c>b+d4.性质4如果a>b ,c>0,那么ac>bc ;如果a>b ,c<0,那么ac<bc ,也就是a>b ,c>0⇒ac>bc ; 推论1:如果a>b>0,c>d>0,那么ac>bd推论2:如果a>b>0,那么n n b a > ()1,>∈+n N n5.性质5a>b>0⇒n n b a >(1,>∈+n N n )三.一元二次不等式及其解法1.一元二次不等式有两种解法:①是求等价不等式法,②是用图象法例 解不等式:09682≥--x x解:方法1 原不等式等价于0)32)(34(≥-+x x 则有 ⎩⎨⎧≥-≥+032034x x 或 ⎩⎨⎧≤-≤+032034x x 分别解这两个不等式组,得 ⎪⎪⎩⎪⎪⎨⎧≥-≥2343x x 或 ⎪⎪⎩⎪⎪⎨⎧≤-≤2343x x 画数轴,选解集. 得. 原不等式解集为:{x| x ≥23或x ≤43-} 方法2 先把原不等式当方程来解,09682=--x x ,解得431-=x ,232=x 那么一元二次函数9682--=x x y 的图象与x从图象上可以看出不等式 09682≥--x x 的解集为:{x| x ≥23或x ≤43-} 2.解一元不等式组解一元不等式组,就是求不等式组中各个不等式解集的交集,这个交集就是不等式组的解集 例 求不等式组 ⎩⎨⎧≤<<≤-3011x x 的解集解:画出数轴,找出这两个不等式的解集的公共部分,就是所求的不等式组的解集,为 (0,1)四.分式不等式及其解法分式不等式的基本形式:0,0<++>++dcx b ax d cx b ax 解分式不等式的基本方法:找它的等价不等式组例 求分式不等式1223≥+x x 的解集 解:原不等式等价于01223≥-+x x ⇔0222≥+-x x ⇔⎩⎨⎧>+≥-02202x x 或⎩⎨⎧<+≤-02202x x ⇔ ⎩⎨⎧->≥12x x 或⎩⎨⎧-<≤12x x ⇔2≥x 或1-<x所以,原不等式的解集为 {x | 2≥x 或1-<x }五.含绝对值的一元一次不等式及其解法a x a x a x a x a x a a x a x -<>⇔>⇔><<-⇔<⇔<或2222||,||如果a 是一个负数,那么 |x|<a 的解集是空集;|x|>a 的解集是实数集R例 求不等式| 1-2x | >5的解集解:令t=1-2x ,原不等式可化为 | t | >5 ,解得 t >5 或 t <-5,把t=1-2x 代入,得 1-2x >5 或 1-2x <-5,解得 x <-2 或 x >3所以,原不等式的解集为{ x | x <-2 或 x >3}六.列不等式解实际应用问题列不等式解应用题,关键在于分析题中的数量关系及它们之间存在的不等关系,找出解题思路。
微专题13 利用基本不等式求代数式的最值问题基本不等式是高中数学的一个重要知识点,在全国各地的高考考纲中都属于C 级(熟例题:(2017·苏锡常镇二模)已知a ,b 均为正数,且ab -a -2b =0,求a24-2a +b2-1b 的最小值.变式1若x>0,y>0,且x2+y2=1,则x 1-x2+y1-y2的最小值是________________.变式2(2018·苏州调研三)设正实数x ,y 满足xy =x +9yy -x,则y 的最小值是________________.串讲1已知正实数x ,y 满足x +2x +3y +4y =10,则xy 的取值范围为________________.串讲2已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM 的值为________________.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________________.若正数a ,b 满足1a +1b =1,求4a -1+16b -1的最小值.答案:16.解析:因为a>0,b>0,1a +1b =1,所以a +b =ab ,2分则4a -1+16b -1=4(b -1)+16(a -1)(a -1) (b -1)=4b +16a -20ab -(a +b )+1又4b +16a =4(b +4a)⎝ ⎛⎭⎪⎫1a +1b =20+4×b a +4a b ≥20+4×2× b a ·4ab=36,6分 微专题13例题答案:7.解法1a 24-2a +b 2-1b =a 2+4b 24-1,下面只要求a 2+4b 2的最小值即可.因为a +2b =ab≥2ab ,所以ab≥8,当且仅当a =2b =4时取等号;又a 2+4b 2≥2(a·2b)≥32,当且仅当a =2b =4时取等号,则a 2+4b24-1≥7.解法2a 24-2a +b 2-1b =a 2+4b 24-1=(a +2b )2-4ab 4-1=a 2b 2-4ab 4-1=(ab -2)2-44-1;因为a +2b =ab≥2ab ,得ab≥8,当且仅当a =2b =4时取等号,所以(ab -2)2-44-1≥7.解法3因为ab -a -2b =0,所以a =2b b -1.那么a 2+4b 2=4b 2+4b 2(b -1)24⎣⎢⎡⎦⎥⎤(c +1)2+(c +1)2c 2= 4⎣⎢⎡⎦⎥⎤c 2+1c 2+2⎝ ⎛⎭⎪⎫c +1c +2=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫c +1c 2+2⎝ ⎛⎭⎪⎫c +1c≥4(22a 2+4b24-1≥7.解法4因为ab -a -2b =0,有2a +1b =1,则a 2+4b 2=(a 2+4b 2)⎝ ⎛⎭⎪⎫2a +1b 2≥4ab·⎝ ⎛⎭⎪⎫22ab 2=32.,则a 2+4b24-1≥7.解法5因为ab -a -2b =0,则2a +1b =1,则a 2+4b 2=(a 2+4b 2)⎝ ⎛⎭⎪⎫2a +1b 2=a 2b 2+16b 2a 2+4a b +16b a a 2+4b24-1≥7.解法6因为ab -a -2b =0,令a =m +n ,2b =m -n ,有m 2-n 2=4m ,n 2=m 22+4b 2=2(m 2+n 2)=2(2m 2-4m)=4(m -1)2-4≥4(4-1)2a 2+4b 24-1≥7.解法7因为ab -a -2b =0,则2a +1b =1,设a =2cos 2θ,b =1sin 2θ;那么a 2+4b 2=4cos 4θ+4sin 4θ=4·sin 4θ+cos 4θsin 4θcos 4θ= 4·1-2sin 2θcos 2θsin 4θcos 4θ=4⎝ ⎛⎭⎪⎫1t 2-2t ,其中t = sin 2θcos 2θ=sin 22θ4≤14,则4⎝ ⎛⎭⎪⎫1t 2-2t a 2+4b 24-1≥7. 解法8因为ab -a -2b =0,则2a +1b =1,设a =2cos 2θ,b =1sin 2θ,那么a 2+4b 2=4cos 4θ+4sin 4θ=4⎣⎢⎡(sin 2θ+cos 2θ)2sin 4θ+ ⎦⎥⎤(sin 2θ+cos 2θ)2cos 4θ=4 ⎣⎢⎡sin 4θ+cos 4θ+2sin 2θcos 2θsin 4θ+⎦⎥⎤sin 4θ+cos 4θ+2sin 2θcos 2θcos 4θ=4⎣⎢⎡⎦⎥⎤1+t 4+2t 2+2t 2+1t 4+1a 2+4b 24-1≥7. 说明:也可利用幂平均不等式得到如下结果:4cos 4θ+4sin 4θ= 4⎣⎢⎡⎦⎥⎤13(sin 2θ)2+13(cos 2θ)2≥4(1+1)3(sin 2θ+cos 2θ)2=32. 变式联想变式1答案:2 2.解析:x 1-x 2+y 1-y 2=x y 2+yx 2≥21xy =2xy≥2x 2+y 22= 2 2. 变式2答案:3+10.解析:由题意可知y -x =1y +9x ,即y -1y =x +9x ≥6,当且仅当x =3时,取等号;由y>0,y -1y ≥6可知y 2-6y -1≥0,解得y≥3+10. 串讲激活串讲1答案:⎣⎢⎡⎦⎥⎤1,83.解析:设xy =k ,代入整理得10=⎝ ⎛⎭⎪⎫1+4k x +3k +2x ≥2⎝ ⎛⎭⎪⎫1+4k (3k +2),解得1≤k≤83.串讲2 答案:22. 解法1令a =1-x ,b =x +3,则a 2+b 2=4.又由-1≤x≤3可知a ,b ∈[0,2].由(a +b )24=a 2+2ab +b 2a 2+b 2=1+2ab a 2+b 2,当ab =0时,a +b =2;当ab≠0,(a +b )24=1+2aba 2+b 2=1+2b a +a b,由b a +a b ≥2得1<(a +b )24≤2,即2<a +b≤2 2.综上可知,a +b∈[2,22],m M =22.解法2y 2=4+24-(x +1)2∈[4,8],∵y ≥0,∴y ∈[2,22]∴m=α,M =22,∴m M =22. 解法3设1-x =2cos α,3+x =2sin α,α∈[0,π2],∴y =22sin ⎝⎛⎭⎪⎫α+π4α+π4∈⎣⎢⎡⎦⎥⎤π4,3π4,∴y ∈[2,22],下面同解法2. 新题在线答案:14.解析:由a -3b +6=0可知a -3b =-6,且2a +18b =2a +2-3b ,因为对于任意x ,2x>0恒成立,结合均值不等式的结论可得2a+2-3b≥2×2a ×2-3b=2×2-6=14,当且仅当⎩⎪⎨⎪⎧2a =2-3b,a -3b =6,即⎩⎪⎨⎪⎧a =3,b =-1,时等号成立.综上可得2a +18b 的最小值为14.。
专题13 一元一次不等式(组)及其应用一、单选题1.(2022·珠海市九洲中学九年级三模)若x y >,则( ) A .22x y +<+B .22x y -<-C .22x y <D .22x y -<-2.(2022·浙江杭州·翠苑中学九年级二模)下列说法正确的是( ) A .若a b =,则ac bc = B .若a b =,则a b c c= C .若a b >,则11a b ->+D .若1xy>,则x y >3.(2022·深圳市南山区荔香学校九年级开学考试)关于x 的不等式()122m x m +>+的解集为2x <,则m 的取值范围是( ) A .1m ≠-B .1m =-C .1m >-D .1m <-4.(2022·重庆市天星桥中学九年级开学考试)已知关于x 的不等式组5720x a x -<⎧⎨--<⎩有且只有3个非负整数解,且关于x 的分式方程61a x --+a =2有整数解,则所有满足条件的整数a 的值的个数为( ) A .4B .3C .2D .15.(2022·老河口市教学研究室九年级月考)不等式组2030x x -≤⎧⎨->⎩的整数解有( )A .1个B .2个C .3个D .4个6.(2022·山东日照·)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m >B .3m ≥C .3m ≤D .3m <7.(2022·珠海市紫荆中学九年级一模)不等式组20321x x -≥⎧⎨+>-⎩的解集是( )A .﹣1<x ≤2B .﹣2≤x <1C .x <﹣1或x ≥2D .2≤x <﹣18.(2022·四川省宜宾市第二中学校九年级三模)若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( ) A .6≤m ≤9B .6<m <9C .6<m ≤9D .6≤m <99.(2020·重庆梁平·)若数a 使关于x 的不等式组347x a x ≤⎧⎪+⎨>-⎪⎩有且仅有四个整数解,且使关于y的分式方程2233ay y+=--有非负数解,则所有满足条件的整数a的值之和是()A.﹣2 B.﹣3 C.2 D.1 10.(2022·北京市第十二中学九年级月考)某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入到最后角逐.他们还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为a,b,c(a>b>c且a,b,c均为正整数);选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是()A.每场比赛的第一名得分a为4B.甲至少有一场比赛获得第二名C.乙在四场比赛中没有获得过第二名D.丙至少有一场比赛获得第三名二、填空题11.(2022·湖北黄石八中九年级模拟预测)不等式组3712261xx⎧->⎪⎨⎪-≥-⎩的整数解为______________.12.(2022·全国九年级课时练习)高速公路某收费站出城方向有编号为A,B,C,D,E的五个小客车收费出口,假定各收费出口每30分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口30分钟内一共通过的小客车数量记录如下:在A,B,C号是________.13.(2022·辽宁沈阳·中考真题)不等式组51350xx-<⎧⎨-≥⎩的解集是__________.14.(2022·四川省宜宾市第二中学校九年级一模)不等式组:515264253(5)x xx x-+⎧+>⎪⎨⎪+≤-⎩的解集为______.15.(2022·临沂第九中学九年级月考)不等式222xx->-的解集为_____.三、解答题16.(2022·福建厦门双十中学思明分校九年级二模)解不等式组:31320x xx+>+⎧⎨->⎩17.(2022·山东济南·中考真题)解不等式组:3(1)25,32,2x xxx-≥-⎧⎪⎨+<⎪⎩①②并写出它的所有整数解.18.(2022·福建省福州第十九中学九年级月考)解不等式组()311922x xxx⎧+>-⎪⎨+<⎪⎩19.(2022·全国九年级课时练习)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如表:(单位:分)(1(2)若公司将阅读能力、思维能力和表达能力三项测试得分按3:5:2的比确定每人的总成绩.①计算甲的总成绩;②若乙的总成绩超过甲的总成绩,则乙的表达能力成绩x超过多少分?20.(2022·福建省福州延安中学九年级月考)解不等式组3534(1)2x xx x-<-⎧⎨+≥-⎩,并把解集在数轴上表示.21.(2022·四川绵阳·中考真题)某工艺厂为商城制作甲、乙两种木制工艺品,甲种工艺品不少于400 件,乙种工艺品不少于680件.该厂家现准备购买A、B两类原木共150根用于工艺品制作,其中,1根A类原木可制作甲种工艺品4件和乙种工艺品2件,1根B类原木可制作甲种工艺品2件和乙种工艺品6件.(1)该工艺厂购买A类原木根数可以有哪些?(2)若每件甲种工艺品可获得利润50元,每件乙种工艺品可获得利润80元,那么该工艺厂购买A、B两类原木各多少根时获得利润最大,最大利润是多少?22.(2022·哈尔滨市第十七中学校九年级二模)毕业考试结束后,班主任罗老师预购进甲乙两种奖品奖励学生,若购进甲种奖品3件和乙种奖品2件共需要40元;若购进甲种奖品2件和乙种奖品3件共需要55元.(1)求购进甲、乙两种奖品每件分别需要多少元?(2)班主任罗老师决定购进甲、乙两种奖品共20件,且用于购买这20件奖品的资金不超过160元,则最多能购进乙种奖品多少件?23.(2022·日照港中学九年级一模)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场.某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:。
基本不等式及其应用主讲教师:庄肃钦【知识概述】基本不等式的应用涉及到诸多内容,本课从近几年的高频考点出发,系统地介绍了基本不等式在考题中的体现形式以及具体解法.通过这节课的学习,要求同学们掌握基本不等式在其他综合问题中的解决方法.新课程标准中要求同学们会利用基本不等式比较大小关系,利用基本不等式求函数的最值基本不等式中的几个基本概念:(1) 对于任意实数a ,b ,ab b a 222≥+,当且仅当 a=b 时等号成立;(2) 基本不等式:),2a b ab a b R ++≥∈, 当且仅当b a =时等号成立 ①如果a+b 是定值,则当且仅当b a =时ab 有最大值(和定积最大)②如果ab 是定值,则当且仅当b a =时a+b 有最小值(积定和最小)【学前诊断】1. [难度] 易函数y =4x +x1(x >0)的最小值为 ( ). A.2 B.22 C.4 D.82. [难度] 易下列函数中,最小值为2的是( ). A.xx y sin 1sin += B.x x y 12+= C.21222+++=x x y D.1222++=x x y3. [难度] 中 已知25≥x ,则f (x )= 42542-+-x x x 有( ). A.最大值45 B.最小值45 C.最大1 D.最小值1【经典例题】例1.求函数11y x x =+-的值域为__________.例2.设02x <<,求函数()f x =x 值. 例3.设,x y 为正数,则14()()x y xy ++的最小值为( ) A.8 B.9 C.12 D.15例4.已知232(0,0),x y x y+=>>则xy 的最小值是___________. 例5. 若0,0,x y >>且22log log 2x y +=,则11x y+的最小值为___________. 例6. 已知0,0,x y >>且3412x y +=,求lg lg x y +的最大值以及相应的,x y 值.例7. 设0,0,a b >>是3a 与3b 的等比中项,则11a b +的最小值为( ) A.8 B.4 C.1 D.14例8. 若M (,)x y 在直线210x y ++=上移动,则24x y +的最小值是( ).A.2C. D.例9. 关于x 的不等式422231(1)x x t x -+-≤+对于任意实数x 都成立,求实数t 的取值范围.【本课总结】1.均值定理的使用有一定的灵活性,且使用范围较广,在使用均值定理时一定要记住“三字经”:即一正、二定、三相等,缺一不可.实际解题过程中,难点是如何创造使用均值定理的条件,在一元函数和多元函数中均有应用.2.在基本不等式的应用中最容易出错的地方则是忽视“三字经”中的某一条.特别是取等的条件.3.在两次(或者多次)使用均值不等式时,要确保两个(或者多个)不等式取等的条件是一致的,否则就不能利用两次(或者多次)使用均值不等式求最值.【活学活用】1. [难度] 易函数y =xx x +++142(x >0)的最小值是 ( ). A .23 B .3 C .2 D .12. [难度] 中 已知不等式9)1)((≥++ya x y x 对任意正实数y x ,恒成立,则正实数a 的最小值为( ). A.8 B.6 C.4 D.23. [难度] 中若a >b >1,P =b a lg lg ,Q =)lg (lg 21b a +,R =)2lg(b a +,则( ). A. R <P <Q B. P <Q <R C.Q <P <R D. P <R <Q。
整数解问题【例1】 在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s ,引爆员点着导火索后,至少以每秒_____米的速度才能跑到600m 或600m 以外的安全区域?【答案】3m/s【例2】 一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或 90分以上)则小明至少答对了 道题.【答案】24【例3】 现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆【答案】C【例4】 初中九年级一班几名同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张照片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张照片上的同学最少有( )A .2个B .3个C .4个D .5个【答案】C【例5】 工程队原计划6天内完成300土方工程,第一天完成60土方,现决定比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方?【解析】设后几天每天平均完成x 土方,根据题意,得:60(612)300x +--≥,解得80x ≥, 每天平均至少挖土80土方.【答案】每天平均至少挖土80土方【例6】 小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?不等式的应用知识讲解【解析】设他行走剩下的一半路程的速度为x ,则122.4 1.260x -≥所以6x ≥. ∴他行走剩下的一半路程的速度至少为6千米/小时.【答案】6千米/小时.【例7】 若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像?【解析】设有x 位同学参加照像,根据题意得:20 1.5(2)4x x +-≤,解得 6.8x ≥,所以至少应有7名同学参加照像.【答案】7【例8】 某工人9月份计划生产零件180个,前10天每天平均生产6个,后经改进生产技术,提前2天并且超额完成任务,这个工人改进技术后平均每天至少生产零件多少个?【解析】这个工人改进技术后平均每天至少生产零件x 个,根据题意得:610(30102)180x ⨯+-->,263x >,这个工人改进技术后平均每天至少生产零件7个.【答案】7个【例9】 八戒去水果店买水果,八戒有45元,买了5斤香蕉,若香蕉每斤3元,西瓜每个8元,请问八戒至多能买几个西瓜?【解析】设八戒买了x 个西瓜,则35845x ⨯+≤,解得154x ≤,故八戒至多买3个西瓜. 【答案】3个【例10】 在保护地球爱护家园活动中,校团委把一批树苗分给初三⑴班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵). ⑴ 设初三⑴班有x 名同学,则这批树苗有多少棵?(用含x 的代数式表示). ⑵ 初三⑴班至少有多少名同学?最多有多少名【解析】⑴ 242x +;⑵ ()1242315x x +--<≤,则4044x <≤,至少有41名同学;最多有44名同学.【答案】⑴ 242x +;⑵ 至少有41名同学;最多有44名同学.【例11】 某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B 型车多少辆?【例12】【解析】设至少还需要B 型车x 辆,依题意得20515300x ⨯+≥解得1133x ≥,∴14x =.【答案】14【例13】 商业大厦购进某种商品l000件,售价定为进价的125%.现计划节日期间按原售价让利l0%,至多售出l00件商品;而在销售淡季按原定价的60%大甩卖.为使全部商品售完后赢利,在节日和淡季之外要按原定价销售出至少多少件商品?【解析】设进价为a 元,按原定价售出x 件,节日让利售出y 件(0100y <≤).依题意有125%125%(1a x a y ⋅⋅+⋅⋅⋅-10%)(1000)125%60%1000x y a a +--⋅⋅⋅>,整理得432000x y +>,由于0100y <≤,所以425x >,因此按原定价至少销售426件.【答案】426件求范围以及具体数目问题【例14】 一堆有红、白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么,白球与红球各有多少个?【解析】设白球有x 个,红球有y 个,依题意有22360x y xx y <<⎧⎨+=⎩,解得7.512x <<又由26033(20)x y y =-=-,知x 是3的倍数.故白球共有9个,红球共有l4个.【答案】白球共有9个,红球共有l4个.【例15】 “六一"儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的小朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?【解析】设该小学有x 个班,则奥运福娃共有()105x +套.由题意,得()()1051314105131x x x x ⎧+<-+⎪⎨+>-⎪⎩解之,得1463x <<. ∵x 只能取整数,所以5x =,此时10555x +=.【答案】5个班级,55套福娃【例16】 某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人?【解析】共有22人.设x 人得3分,y 人得4分,则得5分的共有26x y --人,则可知:()34526 4.82613x y x y x y ++--⨯⎧⎪⎨⎪⎩≥≥≥解得13x y ==,,所以2622x y --= 即得5分的共有22人.【答案】得5分的共有22人.【例17】 暑假期间小张一家为体验生活品质,自驾汽车外出旅游,计划每天行驶相同的路程.如果汽车每天行驶的路程比原计划多19公里,那么8天内它的行程就超过2200公里;如果汽车每天的行程比原计划少12公里,那么它行驶同样的路程需要9天多的时间.求这辆汽车原来每天计划的行程范围(单位:公里).【解析】设原计划每天的行程为x 公里,由题意,应有:8(19)22008(19)9(12)x x x +>⎧⎨+>-⎩,解得256260x x >⎧⎨<⎩答:所以这辆汽车原来每天计划的行程范围为超过256公里且不到260公里.【答案】这辆汽车原来每天计划的行程范围为超过256公里且不到260公里.【例18】 有人问一位老师他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩不足六位同学在操场踢足球".试问:这个班共有多少学生?【答案】设该班共有x 名学生,由题意可得()6247x x x x -++<,∴3628x<,即56x <又∵x 、2x、4x 、7x 都是整数,∴28x = 答:这个班有28名学生方案决策问题【例19】 2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?【解析】(1)设预定男篮门票x 张,则乒乓球门票()15x -张.得:()10005001512000x x +-=,解得:9x = ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为()152y -张,得8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩解得:2545714y ≤≤. 由y 为正整数可得5y =,1525y -=【答案】 (1)男篮门票9张,则乒乓球门票6张; (2)乒乓球、足球门票、男篮门票各5张.【例20】 某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件.⑴请写出此车间每天所获利润y (元)与x (人)之间的关系式;⑵若要使每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?【解析】(1)依题意,得()()150626052040026000020y x x x x =⨯+⨯-=+≤≤.(2)依题意得,4002600024000x -+≥.解得5x ≤,2020515x -=-=.答:至少要派15名工人去制作乙种零件才合适. 【答案】(1)()()150626052040026000020y x x x x =⨯+⨯-=+≤≤(2)至少要派15名工人去制作乙种零件才合适.【例21】 某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按照完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)?(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【解析】(1)设企业每套奖励x 元,由题意得:20060%150450x +⨯≥.解得: 2.78x ≥.因此,该企业每套至少应奖励2.78元;(2)设小张在六月份加工y 套,由题意得:20051200y +≥, 解得200y ≥.【答案】(1)2.78元;(2)200【例22】 2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A B ,两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?【解析】(1)由题意:()()6001201550001152x x x x +-⎧⎪⎨-⎪⎩≤≥ 解得:2053x ≤≤∵x 为整数,∴56x =,∴共两种购票方案:方案一:A种船票5张,B种船票10张方案二:A种船票6张,B种船票9张(2)因为B种船票价格便宜,因此B种船票越多,总购票费用少.∴第一种方案省钱,为5600120104200⨯+⨯= (元)【答案】(1)共两种购票方案:方案一:A种船票5张,B种船票10张方案二:A种船票6张,B种船票9张(2)第一种方案省钱【例23】某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80元的总利润(利润=售价—进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案.【解析】(1)商品进了x件,则乙种商品进了80x-件,依题意得()+-⨯=1080301600x x解得:40x=即甲种商品进了40件,乙种商品进了804040-=件.(2)设购买甲种商品为x件,则购买乙种商品为()80x-件,依题意可得:()()()-+--≤≤6001510403080610x x解得:38≤x≤40即有三种方案,分别为:第一种方案:甲38件,乙42件;第二种方案:甲39件,乙41件;第三种方案:甲40件,乙40件.【答案】(1)甲种商品进了40件,乙种商品进了40件.(2)有三种方案,分别为:第一种方案:甲38件,乙42件;第二种方案:甲39件,乙41件;第三种方案:甲40件,乙40件.【例24】 某饮料厂开发了A B ,两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A B ,两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:⑴ 有几种符合题意的生产方案?写出解答过程;⑵ 如是A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?原料名称 饮料名称甲乙A 20克40克B30克 20克【解析】⑴ 设生产A 种饮料x 瓶,生产B 种饮料100x -瓶.则()()2030100280040201002800x x x x ⎧+-⎪⎨+-⎪⎩≤≤,解得2040x ≤≤,由x 为整数,共有21组解, 所有符合题意的生产方案共有21种.⑵ ()2.6 2.8100y x x =+-,整理得0.2280y x =-+,∵x 的系数为0.2-, ∴y 随x 的增大而减小.当40x =时,成本总额最低.【答案】(1)21;(2)0.2280y x =-+,当40x =时,成本总额最低.【例25】 开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小 亮用31元买了同样的钢笔2支和笔记本5本. ⑴ 求每支钢笔和每本笔记本的价格;⑵ 校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.【解析】⑴ 设每支钢笔x 元,每支笔记本y 本.3182531x y x y +=⎧⎨+=⎩,∴35x y =⎧⎨=⎩. ⑵ 设购买钢笔a 支,笔记本b 个.4835200a b a b b a+=⎧⎪+⎨⎪⎩≤≥,∴2028a b ⎧⎨⎩≥≤,则共有五种购买方案20,21,22,23,2428,27,26,25,24a b =⎧⎨=⎩.【答案】(1)每支钢笔3元,每支笔记本5本.(5)五种方案:20,21,22,23,2428,27,26,25,24 ab=⎧⎨=⎩【例26】2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.⑴某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.⑵若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?【解析】⑴设搭配A种造型x个,则B种造型为(50)x-个,依题意,得:8050(50)34904090(50)2950x xx x+-≤⎧⎨+-≤⎩,解得:3331xx≤⎧⎨≥⎩,∴3133x≤≤∵x是整数,∴x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.⑵(法1):由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元)(法2):方案①需成本:318001996043040⨯+⨯=(元)方案②需成本:328001896042880⨯+⨯=(元)方案③需成本:338001796042720⨯+⨯=(元)【答案】(1)可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)方案③成本最低,最低成本为:42720(元)【例27】在车站开始检票时,有a名旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队同步练习检票进站,设旅客按固定的速度增加,检票中检票的速度也是固定的,若开放一个检票口,则需要30分钟才可将等候检票的旅客全部检票完毕;若开放两个检票口,则需要10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?【解析】设检票开始后每分钟增加旅客为x 人,检票速度为每个检票口每分钟检票y 人,5分钟内检票完毕要同时开放n 个检票口依题意得30301021055a x ya x y a x n y +=⎧⎪+=⨯⎨⎪+≤⋅⎩①②③②3⨯-①,得15a y =,代入①便得30a x =,再把所求的x 、y 代入③便有63a aa n +≤⋅ 因为0a >,所以11163n +≤⋅,即 3.5n ≥,n 取最小的整数,所以4n =答:至少需要同时开放4个检票口.【答案】至少需要同时开放4个检票口【例28】 某高速公路收费站有m (0m >)辆汽车排队等候通过,假设通过收费站得车流量保持不变,每个收费窗口的收费检票的速度也是不变的,若开放一个收费窗口,则需20min 才能将原来排队等候的汽车以及后来到的汽车全部收费通过。
鸡西市第四中学2012—2013下学期初二数学导学案第十五章第三节 一元一次不等式组2编制人:满忠斌 复核人: 使用时间:2013年3月29日 编号:13 学习目标:熟练掌握求一元一次不等式组的解集方法,会列一元一次不等式组应用题. 探索一元一次不等式组在解决实际问题中的应用.思维导航:同大取大;同小取小;大小、小大取中间;大大、小小题无解. 解一元一次不等式应用题的步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等关系;(4)解不等式;(5)根据实际情况,写出全部答案一、课前热身,准备尝试下列不等式组的解集①⎩⎨⎧->>42x x ; ②⎩⎨⎧-<-<25x x ;③⎩⎨⎧<->31x x ; ④⎩⎨⎧><53x x ; 二、自主学习,尝试归纳我们已经学了解一元一次不等式组,那么就可用解不等式的知识解决一些问题。
【探究1】小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端;体重只有妈妈一般的小宝和妈妈一同坐在跷跷板的一端。
这时,爸爸的一端仍然着地。
后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。
猜猜看,小宝的体重约多少千克(精确到1千克)?概括用一元一次不等式组解应用题的一般步骤为:(1)审:审题,分析题目中已知什么,求什么,明确各数量之间的关系(2)设:设适当的未知数(3)找:找出题目中的所有不等关系(4)列:列不等式组(5)解:求出不等式组的解集(6)答:写出符合题意的答案三、夯实基础,尝试巩固解下列不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎨⎧+<++>+,6354,37x 2x 4x x (2)⎩⎨⎧-<-<x x 3636,53x 52x --四、合作交流,尝试提升(1)把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果少于3个,问有几个孩子?有多少只苹果?(2)课外阅读课上,老师将43本书分给各个小组,每组8本,还有剩余;每组9本,却又不够。
第13课时:不等式(组)的应用【课前预习】 一、知识梳理1.列不等式解应用题的特征:列不等式解应用题,一般所求问题有“至少”“最多”“不低于”“不大于”“不小于”等词,要正确理解这些词的含义.2.列不等式解应用题的一般步骤:列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:① ;② ;③ ;④ ;⑤ 。
(其中检验是正确求解的必要环节) 二、课前预习1、一饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为______克.2、采石块工人进行爆破时,为了确保安全,点燃炸药导火线后要在炸药爆破前转移,到400m 以外的安全区域,导火线燃烧逮度是1/cm s ,人离开的速度是5/m s ,导火线的长度至少需要_______ ___.3、发电厂派汽车去拉煤,已知大货车每辆装10吨,小货车每辆装5吨,煤场共有煤152吨,现派20辆汽车去拉,其中大货车x 辆,要一次将煤拉回电厂,至少需派多少辆大货车?列式为_______ ___.4、某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了_______支.5、某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的短形彩条如右图,在Rt△ABC 中,∠C=90°,AC=30cm ,AB=50cm ,依次裁下宽为1cm 的矩形彩条a 1,a 2,a 3……若使裁得的矩形彩条的长都不小于5cm ,则将每张直角三角形彩纸裁成的矩形纸条的总数是( )A .24;B .25;C .26;D .27 【解题指导】例1.某市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房.如果每间住5人,那么有12人安排不下; 如果每间住8人,那么还有一间房余部分床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?例2.某公司计划生产甲、乙两种产品共20件,其总产值w (万元) 满足:1150<w <1200,相关数据如表.为此,公司应怎样设计这两种产品的生产方案.例3.2011年我市某县筹备30周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A造型需甲种花卉80盆,乙种花卉40盆;搭配一个B造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来。
第13讲 基本不等式【知识点总结】1. 几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥ (当且仅当“a b =”时取“”). 特例:10,2;2(,a ba a ab a b a>+≥+≥同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:()222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件). 2. 均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则22x y xy P +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”.【典型例题】例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b >>+ D .0,0)2a b a b +>>【答案】D 【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·全国·高三专题练习(文))若实数,x y 满足221x y xy ++=,则x y +的取值范围是( )A .⎡⎢⎣⎦B .⎛ ⎝⎭C .⎡⎢⎣⎦D .⎛ ⎝⎭【答案】A 【详解】解:2221()1x y xy xy x y ++=⇔=+-, 又2()2x y xy +, 22()1()2x y x y +∴+-,令x y t +=, 则2244t t -,233t ,即233x y +,当且仅当x y =时,取等号,x y ∴+的取值范围是[. 故选:A .例3.(2022·全国·高三专题练习)已知a ,b ,c 均为正数,且abc =4(a +b ),则a +b +c 的最小值为( )A .5B .6C .7D .8【答案】D 【详解】由a ,b ,c 均为正数,abc =4(a +b ),得c =44a b+,代入得a +b +c =a +b +44a b +=4()a a ++4()b b +8,当且仅当a =b =2时,等号成立, 所以a +b +c 的最小值为8. 故选:D例4.(2022·全国·高三专题练习)若x ,R y ∈,221x y +=,则x y +的取值范围是( ) A .(-∞,2]- B .(0,1) C .(-∞,0] D .(1,)+∞【答案】A 【详解】因为122222x y x y =+⋅ 所以124x y+, 即2x y +-,当且仅当1222x y==,即1x y ==-时取“=”, 所以x y +的取值范围是(-∞,2]-. 故选:A.例5.(2021·山西大同·高三阶段练习(理))已知点(),P a b 在直线23x y +=上,则24a b+的最小值为( )A .2B .C .D .4【答案】C 【详解】∵点(),P a b 在直线23x y +=上, ∴23a b +=,所以24a b +≥当且仅当2a b =时,等号成立 故选:C.例6.(2021·四川·乐山市教育科学研究所一模(文))已知0x >,0y >,且420x y xy +-=,则2x y +的最小值为( )A.16 B .8+C .12D .6+【答案】A 【详解】由题可知241x y +=,乘“1”得24822(2)8816x y x y x y x y y x ⎛⎫+=++=++≥= ⎪⎝⎭,当且仅当82x y y x=时,取等号,则2x y +的最小值为16. 故选:A例7.(2021·贵州遵义·高三阶段练习(文))已知a ,b 为正实数,且满足326a b +=,则23a b+的最小值为( )A.2 B .C .4D .【答案】C 【详解】由326a b +=,可得123a b+=,2323232242332a b b a a b a b a b ⎛⎫⎛⎫+=++=++≥+ ⎪⎪⎝⎭⎝⎭, 当且仅当2332b aa b =且326a b +=,即31,2a b ==时等号成立. 故选:C .例8.(2021·重庆·西南大学附中高三阶段练习)已知097x y x y xy >++=,,,则3xy 的最大值为( )A .1B .2C .3D .4【答案】C 【详解】解:因为097x y x y xy >++=,,,所以79xy x y -=+≥即70xy +≤,则1)0≤,所以71-≤,又,0x y >,所以01xy <≤,所以3xy 最大为3. 故选:C.例9.(2021·江西·高三阶段练习(理))已知a 、()0,b ∈+∞,若14a b a bλ+≥+恒成立,则实数λ的取值范围为( )A .[)5,+∞B .[)9,+∞C .(],5-∞D .(],9-∞【答案】D 【详解】因为a 、()0,b ∈+∞,由已知可得()14a b a b λ⎛⎫≤++ ⎪⎝⎭,因为()144559b a a b a b a b ⎛⎫++=++≥= ⎪⎝⎭,当且仅当2b a =时等号成立,故实数λ的取值范围为(],9-∞, 故选:D .【技能提升训练】一、单选题1.(2022·全国·高三专题练习(理))已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a 等于( )A .6B .8C .16D .36【答案】D 【分析】利用基本不等式“一正,二定,三相等”求解即可 【详解】因为()4(0,0)a f x x x a x =+>>,故4a x x +≥=当且仅当4a x x =,即x =3,36a == 故选:D 【点睛】均值不等式a b +≥一正:0,0a b >>,二定:ab 为定值,三相等:当且仅当a b =时等号成立2.(2021·黑龙江·大庆实验中学高三阶段练习(文))三国时期赵爽所制的弦图由四个全等的直角三角形构成,该图可用来解释下列哪个不等式( )A .如果,a b b c >>,那么a c >;B .如果0a b >>,那么22a b >;C .对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立;D .如果a b >,0c >,那么ac bc >. 【答案】C 【分析】设图中直角三角形的直角边长分别为,a b 积以及外围正方形的面积,由图可得结果.【详解】设图中全等的直角三角形的直角边长分别为,a b 图中四个直角三角形的面积和为1422a b ab ⨯⨯⨯=,外围正方形的面积为222a b =+.由图可知,四个直角三角形的面积之和不超过外围正方形的面积,所以222ab a b ≤+,当且仅当a b =时,等号成立.故选:C.3.(2020·广东·普宁市第二中学高三阶段练习)下列不等式一定成立的是( ) A .21lg lg 4x x ⎛⎫+> ⎪⎝⎭ (0)x >B .1sin 2sin x x+≥ (,)x k k Z π≠∈ C .212x x +≥ ()x R ∈D .2111x ≥+ ()x R ∈ 【答案】C 【分析】应用特殊值法,即可判断A 、B 、D 的正误,作差法有2212(||1)0x x x +-=-≥,即可确定C 的正误.【详解】 A :当12x =时,有21lg lg 4x x ⎛⎫+= ⎪⎝⎭,故不等式不一定成立;B :当sin 1x =-,即()322x k k Z ππ=+∈时,有1sin 22sin x x +=-<,故不等式不一定成立;C :2212(||1)0x x x +-=-≥恒成立;D :当1x =时,有211112x =<+,故不等式不一定成立; 故选:C4.(2022·全国·高三专题练习)函数233(1)1x x y x x ++=<-+的最大值为( ) A .3 B .2 C .1 D .-1【答案】D 【分析】将函数的解析式进行变形,再利用基本不等式,即可得答案;【详解】2233(1)(1)111x x x x y x x ++++++==++ 1[(1)]1(1)x x =--+++-+11≤-=-, 当且仅当1111x x +==-+,即2x =-等号成立. 故选:D. 【点睛】本题考查基本不等式求最值,考查运算求解能力,求解时注意等号成立的条件. 5.(2022·全国·高三专题练习)若72x ,则2610()3x x f x x -+=-有( )A .最大值52B .最小值52C .最大值2D .最小值2【答案】D 【分析】构造基本不等式()1()33f x x x =-+-即可得结果. 【详解】 ∵72x ≥,∴30x ->,∴()()22316101()=32333x x x f x x x x x -+-+==-+≥=---, 当且仅当133x x -=-,即4x =时,等号成立,即()f x 有最小值2. 故选:D. 【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.6.(2022·浙江·高三专题练习)已知x >0,y >0,且x +2y =1,若不等式21x y+≥m 2+7m恒成立,则实数m 的取值范围是( )A .﹣8≤m ≤1B .m ≤﹣8或m ≥1C .﹣1≤m ≤8D .m ≤﹣1或m ≥8【答案】A 【分析】由题意可得21x y +=(x +2y )(21x y +)4y x x y =++=8,不等式21x y +≥m 2+7m 成立⇔m 2+7m <(21x y+)min ,即可求得实数m 的取值范围.【详解】解:∵x >0,y >0,x +2y =1,∴21x y +=(x +2y )(21x y+)4y x x y =++=8.(当4y x x y =,即x =2y 12=时取等号),∵不等式21x y+≥m 2+7m 成立,∴m 2+7m ≤8, 求得﹣8≤m ≤1. 故选:A .7.(2022·全国·高三专题练习)已知非负数,x y 满足1x y +=,则1912x y +++的最小值是( )A .3B .4C .10D .16【答案】B 【分析】根据基本不等式,结合“1”的妙用即可得解. 【详解】由1x y +=,可得124x y +++=,19119()(12)12412129(1)1(19)(1044124x y x y x y y x x y +=++++++++++=+++≥+=++当且仅当(21)3y x +=+取等号, 故选:B8.(2022·全国·高三专题练习)设,x y 均为正实数,且33122x y+=++,则x y +的最小值为( )A .8B .16C .9D .6【答案】A 【分析】根据题中条件,将所求式子化为()()3322422x y x y x y ⎛⎫⎡⎤+=+++⋅+- ⎪⎣⎦++⎝⎭,展开后,再利用基本不等式,即可得出结果.【详解】因为,x y 均为正实数33122x y+=++, 所以()()3322422422x y x y x y x y ⎛⎫⎡⎤+=+++-=+++⋅+- ⎪⎣⎦++⎝⎭22324324124822y x x y ⎛⎛⎫++=++-≥+-=-= ⎪ ++⎝⎭⎝,当且仅当2222y x x y ++=++,即4x y ==时取等号.因此x y +的最小值为8. 故选:A. 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.9.(2022·全国·高三专题练习)若正数,x y 满足220x y xy +-=,则2x y +的最小值为( ) A .9 B .8C .5D .4【答案】D 【分析】将已知条件化简得到1112y x+=,然后将2x y +变换成()112)2y x y x +⋅+(,然后化简整理结合均值不等式求解即可.【详解】由220x y xy +-=,有22x y xy +=,所以1112y x+=,则()()112212)22422x y x y x y y x y x +⋅=+⋅+=++≥+(,当且仅当22220x yy x x y xy ⎧=⎪⎨⎪+-=⎩,即12y x =⎧⎨=⎩时,等号成立.故选:D.10.(2022·全国·高三专题练习)若对满足8a b ab +=的任意正数a b ,及任意x ∈R ,不等式22218a b x x m +≥-++-恒成立,则实数m 的取值范围是( )A .[)6,-+∞B .(],6-∞-C .(],1-∞D .[)1,+∞【答案】A 【分析】利用基本不等式“1”的妙用求得2+a b 的最小值,即可转化为二次不等式恒成立问题,利用判别式求得实数m 的取值范围即可.【详解】∵正数a b ,满足8a b ab +=,∴811b a +=,()812822171725b a a b a b b a a b ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当28b aa b=,即2b a =,510a b ==,时,等号成立, ∴225218x x m ≥-++-,即2270x x m -++≥对任意实数x 恒成立, ∴()4470m ∆=-+≤,解得6m ≥-. 故选:A . 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.11.(2022·全国·高三专题练习)设m ,n 为正数,且2m n +=,则1112m n +++的最小值为( )A .32B .53C .74D .45【答案】D 【分析】由2m n +=得125m n +++=,再利用基本等式“1”的代换进行求解. 【详解】由2m n +=得125m n +++=,11111121()(12)(2)12512512n m m n m n m n m n +++=⋅+⋅+++=⋅++++++++14[255≥+=, 当且仅当2112n m m n ++=++,即31,22m n ==时取等号, 故选:D.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.二、多选题 12.(2022·江苏·高三专题练习)已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( )A .1ab ≤B .112a b+≤C .lg lg 1a b +≤D .2a b +≤【答案】ACD 【分析】利用基本不等式逐一判断四个选项的正误即可得正确答案. 【详解】对于选项A :2222a b ab +=≥,所以1ab ≤,当且仅当1a b ==时等号成立,故选项A 正确;对于选项B :11a ba b ab ++=≥1ab ≤1≥,所以112a b +≥≥,当且仅当1a b ==时等号成立,故选项B 不正确; 对于选项C :lg lg lg lg10a b ab +=≤=,故选项C 正确;对于选项D :因为12a b +≤,所以2a b +≤,,当且仅当1a b ==时等号成立,故选项D 正确;故选:ACD三、填空题 13.(2022·浙江·高三专题练习)若a >0,b >0,且a +b =4,则下列不等式恒成立的是________(填序号).①114ab ≤;②111a b+≤;④a 2+b 2≥8. 【答案】④ 【分析】结合基本不等式进行逐个判定,①③直接利用基本不等式可判定正误,②④通过变形可得正误.【详解】因为4=+≥a b a =b 时,等号成立),,ab ≤4,114ab ≥,故①③不成立; 1141a b a b ab ab ++==≥,故②不成立; 222()21628,a b a b ab ab +=+-=-≥故④成立.故答案为:④.14.(2022·全国·高三专题练习)若102a <<,则()12a a -的最大值是 _______ 【答案】1 8【分析】()()()()22121112212222a a a a a a ⎛⎫+--=-≤⋅ ⎪⎝⎭即可求得最值.【详解】102a <<,故120a ->,则()()()()2212111122122228a a a a a a ⎛⎫+--=-≤⋅= ⎪⎝⎭, 当且仅当2=12a a -即14a =时取“=”, 故答案为:1 8.15.(2022·全国·高三专题练习)若正数,x y 满足2249330x y xy ++=,则xy 的最大值是________.【答案】2 【分析】利用基本不等式进行转化即可得解. 【详解】由0,0x y >>,得()()224932233x y xy x y xy ++⋅⋅+≥ ,当且仅当23x y =时等号成立,∴ 12330xy xy +≤,即2xy ≤, ∴ xy 的最大值为2. 故答案为:216.(2022·全国·高三专题练习)函数31x y a -=+(0a >且1a ≠)的图象恒过定点A ,若点A 在直线10mx ny +-=上,其中0m >,0n >,则mn 的最大值为___________.【答案】124【分析】根据指数函数的图像性质求出A 点坐标,代入直线方程,利用均值不等式即可求解. 【详解】解:函数31x y a -=+(0a >且1a ≠)的图象恒过定点A , ()3,2A ∴,点A 在直线10mx ny +-=上,321m n ∴+=, 又0m >,0n >,132m n ∴=+≥,124mn ∴≤,当且仅当32321m n m n =⎧⎨+=⎩,即11,64m n ==时等号成立,所以mn 的最大值为124, 故答案为:124. 17.(2022·全国·高三专题练习)当1x >时,41x x +-的最小值为______. 【答案】5 【分析】将所求代数式变形为441111x x x x +=-++--,利用基本不等式即可求解. 【详解】因为1x >,所以10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-即3x =时等号成立,所以41x x +-的最小值为5,故答案为:5.18.(2022·全国·高三专题练习)已知x ,0y >,且满足2x y +=,则14x y x y+++的最小值为_________【答案】132【分析】将()1414114222x y x y x y x y x y ⎛⎫+++=++=+++ ⎪⎝⎭展开利用基本不等式即可求解. 【详解】 因为2x y +=,所以()1414114222x y x y x y x y x y ⎛⎫+++=++=+++ ⎪⎝⎭()141113252525222222x x y y ⎛⎛⎫=+++≥++=+⨯+⨯= ⎪ ⎝⎭⎝, 当且仅当24x y y x x y +=⎧⎪⎨=⎪⎩即2343x y ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,所以14x y x y +++的最小值为132.故答案为:132. 19.(2022·全国·高三专题练习)已知0x >,0y >,且280x y xy +-=,则x y +的最小值为______.【答案】18 【分析】等式280x y xy +-=变形为281y x +=,则28()()x y x y y x +=++根据基本不等式即可得到答案.【详解】解:已知0x >,0y >,且280x y xy +-=.28x y xy +=,即:281y x+=.则282828()()101018x y x yx y x y yxy xy x+=++=++⋅=,当且仅当28x y y x=,212x y ==时取等号, 所以x y +的最小值为18. 故答案为:18.20.(2022·全国·高三专题练习)已知,a b ∈R ,且210a b -+=,则124ab+的最小值为___________.【分析】首先根据题意得到21a b -=-,再利用基本不等式求解即可. 【详解】由210a b -+=得21a b -=-,所以212224aa b b -+=+≥ 当且仅当222a b -=,即12a =-,14b =时取等号.21.(2022·上海·高三专题练习)若0 , 0a b >>,则21a b ab ++的最小值为____________.【答案】【分析】两次利用基本不等式即可求出. 【详解】0 , 0a b >>,212a b b a b b b ∴++≥=+≥当且仅当21a a b =且2b b=,即a b ==所以21ab ab ++的最小值为故答案为:22.(2022·全国·高三专题练习)已知()()23601x x f x x x ++=>+,则()f x 的最小值是________.【答案】5 【分析】将函数()y f x =的解析式变形为()()4111f x x x =++++,然后利用基本不等式可求得该函数的最小值.【详解】当0x >时,11x +>,()()()232444211111x x f x x x x x x +++==++=++++++15≥=, 当且仅当411x x +=+,即当1x =时,等号成立, 因此,函数()()0y f x x =>的最小值为5. 故答案为:5. 【点睛】本题考查利用基本不等式求解函数的最小值,解答的关键就是对函数解析式进行化简变形,考查计算能力,属于基础题.23.(2022·全国·高三专题练习)设x ,y ,z 为正实数,满足20x y z -+=,则2yxz的最小值是__________.【答案】8 【详解】解:由题意可得:2y x z =+ ,则:()2224448x z y x z xz xz z x +==++≥= , 当且仅当2x z = 时等号成立,即:2y xz的最小值是8.点睛:应用基本不等式要有两个防范意识:一是在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.对于公式a +b 22a b ab +⎛⎫≤ ⎪⎝⎭,要弄清它们的作用、使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.二是在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.24.(2022·全国·高三专题练习)函数2221x x y x ++=+的值域是_______.【答案】(][),22,-∞-+∞ 【分析】将函数2221x x y x ++=+进行化简,得到()()2111111x y x x x ++==++++,分别对10x +>和10x +<,利用基本不等式,得到答案.【详解】 函数2221x x y x ++=+ ()()2111111x x x x ++==++++,当10x +>,由基本不等式得()1112y x x =+++≥, 当且仅当111x x +=+,即0x =时,等号成立, 当10x +<时,由基本不等式得()1112y x x ≤-=+++, 当且仅当111x x +=+,即2x =-时,等号成立, 所以函数的值域为(][),22,-∞-+∞, 故答案为(][),22,-∞-+∞. 【点睛】本题考查求具体函数的值域,属于简单题.25.(2021·四川·成都七中一模(文))已知实数,x y 满足2241x y xy ++=,则2x y +的最大值为___________.【分析】利用基本不等式,即可求解. 【详解】 解:()()()()22222233251422222228x y x y xy x y xy x y x y +⎛⎫=++=+-≥+-=+ ⎪⎝⎭,即2x y +(当且仅当2x y =,即x y ==)26.(2020·辽宁·开原市第二高级中学三模)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.【答案】4 48【分析】设BM x =,则123AN x =+,则()124843324AMPN S x x x x ⎛⎫=++=++ ⎪⎝⎭,结合基本不等式即可得解.【详解】解:设BM x =,则34x x AN =+,则123AN x=+, 则()12484843324232448AMPN S x x x x x x ⎛⎫=++=++⋅= ⎪⎝⎭, 当且仅当483x x=,即4x =时等号成立,故矩形花坛的AMPN 面积最小值为48. 即当4BM =时,矩形花坛的AMPN 面积最小,最小面积为48. 故答案为:4;48.。
初中数学方程与不等式的应用题(附答案)知识点睛1.理解题意:分层次,找结构借助表格等梳理信息2.建立数学模型:方程模型、不等式(组)模型、函数模型等①共需、同时、刚好、恰好、相同等,考虑方程;②显性、隐性不等关系等,考虑不等式(组) ;③最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数3.求解验证,回归实际①数据是否异常;②结果是否符合题目要求及取值范围;③结果是否符合实际意义例题精选应用题1.小明周末守护爷爷输液,输液袋上标有药液共250毫升,15滴/毫升.输液开始时,细心的小明发现药液流速为每分钟75滴.爷爷感觉身体不适,输液10分钟时调整了药液流速直至结束.输液20分钟时,输液袋中的药液余量为160毫升.(1)求输液10分钟时输液袋中的药液余量是多少毫升?(2)求10到20分钟期间药液流速是每分钟多少滴?(3)求从开始输液到结束输液共用了多少分钟?2.列方程解应用题:某运输公司有A、B两种货车,每辆A货车比每辆B货车一次可以多运货5吨,5辆A货车与4辆B货车一次可以运货160吨.求每辆A货车和每辆B货车一次可以分别运货多少吨.3.列方程解应用题:已知A地与B地相距150千米,小华自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费是驾驶新购买的纯电动车所需电费的4倍,如果每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.4.2021年是中欧班列开通十周年.某地自开通中欧班列以来,逐渐成为我国主要的集贸区域之一.2019年该地中欧班列的开行量为500列,2021年达到1280列.求该地这两年中欧班列开行量的年平均增长率.5.卫生部疾病控制专家经过调研提出,如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为“超级传播者”.如果某镇有1人不幸成为新冠肺炎病毒的携带者,假设每轮传染的人数相同,经过两轮传染后共有144人成为新冠肺炎病毒的携带者.(1)经过计算,判断最初的这名病毒携带者是“超级传播者”吗?请先写出结论,再说明理由;(1)若不加以控制传染渠道,经过3轮传染,共有多少人成为新冠肺炎病毒的携带者?6.为鼓励居民节约用电,某地实行居民生活用电按阶梯标准收费:①若每户每月不超过60度的用电量,则按m元/度收费;②若每户每月超过60度,但不超过100度,则超过60度的部分每度加价0.2元,未超过的部分按①的标准收费;③若每户每月超过100度,则超过100度的部分按每度在m元的基础上加价0.3元收费,未超过100度的部分按②的标准收费.(1)用含m的式子表示用电90度时所需缴纳的电费.(2)小辉家今年9月份用电150度,缴纳电费203元,求m的值.7.现甲、乙两地分别需要蔬菜120吨和180吨,已知丙地、丁地分别有蔬菜160吨和140吨,现要把这些蔬菜全部运往甲、乙两地.若丙地每吨蔬菜运到甲地的费用为30元,运往乙地的费用为35元;丁地每吨蔬菜运到甲地的费用为20元,运往乙地的费用为28元,设丙地运往甲地的蔬菜为x吨.(1)请根据题意将下表补充完整:(2)用含x的式子表示总运输费.(3)总运输费能是9010元吗?若能,请求出x的值;若不能,请说明理由.8.对于一线的医护工作者来说,与新冠肺炎战斗,最大的风险就是被感染.为此,放舱每名医护人员在进入放舱前,从清洁区到达病人所在的病区,中间要穿过三个区,过四道门,工作人员利用体育馆门口一段20米的墙,搭建一个消毒区域,三个区的总面积为96平方米,共用去建筑材料36米.四扇门,每扇门宽1米,且不需要建筑材料,求AB、BC的长各为多少米?9.列方程组解应用题:某车间10月份计划加工甲、乙两种零件共200个,由于采用新技术,实际产量为216个,其中甲零件超产10%,乙零件超产5%求,该车间10月份计划加工甲、乙零件各多少个?10.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,你知道增加了多少行或多少列吗?11.某商场计划购进A,B两种商品共80件,A商品每件的进价比B商品少40元,用1600元购进A商品和用2400元购进B商品的数量相同.(1)求A,B两种商品的进价分别是多少元?(2)已知A商品的销售单价m(元/件)与A商品的进货量n(件)之间的函数关系如图所示.①求m关于n的函数关系式.②因原材料价格上涨,A,B两种商品的进价均提高了10%,为保证总利润不变,商场决定将这两种商品的销售单价均提高a元,且a不超过A商品原销售单价的9%,求a的最大值.12.2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,当地加强了防控措施,对外出进行限制,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?13.为了节能减排,我市某校准备购买某种品牌的节能灯,已知1只B型节能灯比1只A 型节能灯贵2元,且购买2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯、1只B型节能灯的单价各是多少元?(2)若学校准备购买3只A型节能灯和5只B型节能灯,则共需多少元?14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?15.在一次数学知识竞赛中,共有20道题,规定:答错或不答一道题扣分相同,当答题结束时,A同学答对14道题,得分为58分;B同学答对11道题,得分为37分.请问答对一道题得几分,答错或不答一道题扣几分.【参考答案】应用题1.(1)200毫升(2)60滴(3)60分钟【解析】【分析】(1)先求出药液流速为5毫升/分钟,再求出输液10分钟的毫升数,用250减去输液10分钟的毫升数即为所求;(2)用20分钟时剩余药液量减去10分钟时剩余药液量,再乘以每毫升滴数求出总的滴数,最后除以时间即可得出答案;(3)可设从输液开始到结束所需的时间为t 分钟,根据输液20分钟时,瓶中的药液余量为160毫升,列出方程计算即可求解.(1)解:25075151025050200-÷⨯=-=(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)解:10到20分钟期间药液流速是每分钟()200160156010-⨯=(滴);(3)解:设从输液开始到结束所需的时间为t 分钟,依题意有()200160201602010t --=-, 解得60t =.故从输液开始到结束所需的时间为60分钟.【点睛】本题考查了一元一次方程的应用,本题关键是求出输液前10分钟药液流速和输液10分钟后药液流速.2.1辆A 货车一次可以运货20吨,1辆B 货车一次可以运货15吨.【解析】【分析】设1辆B 货车一次可以运货x 吨,1辆A 货车一次可以运货(x +5)吨,根据5辆A 货车与4辆B 货车一次可以运货160吨列出方程解答即可.【详解】解:设1辆B 货车一次可以运货x 吨,1辆A 货车一次可以运货(x +5)吨,根据题意得:5(x +5)+4x =160,解得:x =15,x +5=20,答:1辆A 货车一次可以运货20吨,1辆B 货车一次可以运货15吨.【点睛】本题主要考查一元一次方程的应用,理解题意找出题目蕴含的等量关系是解题的关键. 3.新购买的纯电动汽车每行驶1千米需要电费0.18元.【解析】【分析】设每行驶1千米,新购买的纯电动车需要电费x 元,根据如果每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元列方程即可.【详解】解:设每行驶1千米,新购买的纯电动车需要电费x 元, 根据题意列方程,得 ()41501500.54x x ⨯=+.解得:0.18x =答:新购买的纯电动汽车每行驶1千米需要电费0.18元.【点睛】本题考查了一元一次方程的应用,解题关键是准确理解题意,找准等量关系列出方程. 4.该地这两年中欧班列开行量的年平均增长率为60%.【解析】【分析】根据题意,2019年该地中欧班列的开行量为500列,2021年达到1280列,设该地这两年中欧班列开行量的年平均增长率为x ,列出一元二次方程求解即可得.【详解】解:设该地这两年中欧班列开行量的年平均增长率为x ,根据题意可得:()250011280x +=, 解得:0.6x =或 2.6x =-(舍去),∴该地这两年中欧班列开行量的年平均增长率为60%.【点睛】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.5.(1)最初的这名病毒携带者是“超级传播者”,见解析;(2)若不加以控制传染渠道,经过3轮传染,共有1728人成为新冠肺炎病毒的携带者【解析】【分析】1()最初的这名病毒携带者是“超级传播者”,设每人每轮传染的人数为x 人,则第一轮传染了x 人,第二轮传染了1x x +()人,根据经过两轮传染后共有144人成为新冠肺炎病毒的携带者,即可得出关于x 的一元二次方程,解之将其正值与10比较后即可得出结论;2()利用经过3轮传染后成为新冠肺炎病毒的携带者的人数=经过两轮传染后成为新冠肺炎病毒的携带者的人数+经过两轮传染后成为新冠肺炎病毒的携带者的人数⨯每人每轮传染的人数,即可求出结论.【详解】解:1()最初的这名病毒携带者是“超级传播者”,理由如下:设每人每轮传染的人数为x 人,则第一轮传染了x 人,第二轮传染了1x x +()人, 依题意得:11144x x x +++=(),解得:121113x x ==-,(不合题意,舍去).1110>,∴最初的这名病毒携带者是“超级传播者”.2144144111728+⨯=()(人). 答:若不加以控制传染渠道,经过3轮传染,共有1728人成为新冠肺炎病毒的携带者.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 6.(1)906m +,(2) 1.2m =【解析】【分析】(1)按照②的标准计算即可;(2)按照③的标准列出方程,解方程即可.【详解】解:(1)用电90度,超过60度,但不超过100度,按照②的标准计算,所需缴纳的电费为:60(9060)(0.2)906m m m +-+=+,(2)小辉家今年9月份用电150度,缴纳电费203元,按照③的标准计算可列方程为,60(10060)(0.2)(150100)(0.3)203m m m +-++-+=, 解得, 1.2m =,答:m 的值为1.2.【点睛】此题考查了列代数式和一元一次方程应用,明确不同度数电费的算法,准确列出方程是解决本题的关键.7.(1)见解析,(2)3x +8560;(3)不能,理由见解析【解析】【分析】(1)根据丙地有蔬菜160吨,可得丙地运往乙地的数量,根据甲地的需求量,可得丁地运往甲地的数量,根据乙地的需求量,可得丁地运往乙地的数量;(2)根据运费和吨数求得各地的运费,再相加即可;(3)根据题意列出方程求解即可.【详解】解:(1)设丙地运往甲地的蔬菜为x 吨,根据题意填表得,化简得,3x +8560;(3)根据总运输费是9010元,列方程得,3x +8560=9010,解得,x =150,∵甲地需要蔬菜120吨,小于150吨,总运输费不能是9010元.【点睛】本题考查了一元一次方程的应用,解题关键是熟练把握题目中数量关系,列出代数式和方程.8.AB 为6米,BC 为16米【解析】【分析】设AB 的长为x 米,BC 为(3644)-+x 米,根据三个区的总面积为96平方米列出方程求解即可.【详解】解:设AB 的长为x 米,BC 为(3644)-+x 米,由题意得(3644)96-+=x x ,解得14x =,26x =经检验14x =,26x =都是方程的解,当14x =时,3644364442420x >-+=-⨯+=,不符合题意,应舍去,所以6AB =,3646416BC =-⨯+=.【点睛】此题考查了一元二次方程的应用题,解题的关键是根据题意设出未知数列出方程求解. 9.该车间10月份计划加工甲、乙零件各120个,80个.【解析】【分析】根据等量关系,甲加工的数量加上乙加工的数量等于总量列出方程组即可;【详解】解:设该车间10月份计划加工甲、乙零件各x 个,y 个,由题意得:()()2001101%%5216x y x y +=⎧⎪⎨+++=⎪⎩解得12080x y =⎧⎨=⎩答: 该车间10月份计划加工甲、乙零件各120个,80个【点睛】本题考查了二元一次方程组的应用,根据等量关系列出方程组是解题的关键.10.增加了3行3列【解析】【分析】设队伍增加的行数为x ,则增加的列数也为x ,根据游行队伍人数的等量关系列出方程即可.【详解】解:设增加了x 行x 列,根据题意得:()()81212869x x ++=⨯+,整理得:220690x x +-=,解得:123,23x x ==-(不合题意,舍去).答:增加了3行3列.【点睛】本题考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.11.(1)A 种商品的进价是80元/件、B 种商品的进价为120元/件(2)①0.5130m n =-+;②9【解析】【分析】(1)设A 种商品的进价是x 元/件、则B 种商品的进价为(40)x +元/件,根据1600元购进A 商品和用2400元购进B 商品的数量相同,即可列出相应的分式方程,求解即可,注意求出结果后要检验;(2)①根据函数图象中的数据,利用待定系数法求m 关于n 的函数关系式;②根据题意可以得到n 与a 的关系,然后根据a 不超过A 商品原销售单价的9%,即可求得a 的最大值.(1)解:设A 种商品的进价是x 元/件、则B 种商品的进价为(40)x +元/件, 由题意可得,1600240040x x =+, 解得80x =,经检验:80x =是原分式方程的解,40120x ∴+=,答:A 种商品的进价是80元/件、B 种商品的进价为120元/件;(2)(2)①设m 与n 的函数关系式为m kn b =+,401108090k b k b +=⎧⎨+=⎩, 解得0.5130k b =-⎧⎨=⎩, 即m 与n 的函数关系式为0.5130m n =-+;②设B 种商品的销售单价为t 元,则A 种商品的进价为80(110%)88⨯+=(元/件),B 种商品的进价为:120(110%)132⨯+=(元/件),根据提价前后总利润不变得,(0.513080)(120)(80)(0.513088)(132)(80)n n t n n a n t a n -+-+--=-++-++--,化简,得:20240n a =-+,又a 不超过A 商品原销售单价的9%,9%9%(0.5130)a m n ∴=-+,9%[0.5(20240)130]a a ∴--++,解得9a ,a ∴的最大值是9.【点睛】本题考查了分式方程的应用、一次函数的应用、一元一次不等式的应用等,解题关键是明确题意,找出等量关系,列出相应方程或写出相应的函数关系式、不等式.12.小伟原计划每天做2页数学寒假作业.【解析】【分析】设小伟原计划每天做x 页数学寒假作业,则效率提高做作业后每天做2x 页,根据“做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业”,列出方程,即可求解.【详解】解:设小伟原计划每天做x 页数学寒假作业,则效率提高做作业后每天做2x 页,根据题意得:34345562x x x -⎛⎫-+= ⎪⎝⎭, 解得:2x =,经检验:2x =是原方程的解,且符合题意,答:小伟原计划每天做2页数学寒假作业.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键. 13.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)购买3只A 型节能灯和5只B 型节能灯共需要50元.【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据(1)中所求结果,列式计算即可解答本题.(1)解:设1只A 型节能灯的售价是x 元,则1只B 型节能灯的售价是(x +2)元, 根据题意得,2x +3(x +2)=31,解得:x =5,答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)解:购买3只A 型节能灯和5只B 型节能灯需要:3×5+5×7=50(元),答:购买3只A 型节能灯和5只B 型节能灯需要50元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系. 14.共有7人.【解析】【分析】设共有x 人,根据该物品的价格不变,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设共有x 人,根据题意得:8374x x -=+,解得:7x =.答:共有7人.【点睛】本题主要考查一元一次方程的应用,理解题意,找准等量关系,列出方程是解决本题的关键.15.答对一道题得5分,答错或不答一道题扣2分.【解析】【分析】设答对一道题得x 分,答错或不答一道题扣y 分.根据A 同学答对14道题,得分为58分;B 同学答对11道题,得分为37分.列出方程组即可求解.【详解】解:设答对一道题得x 分,答错或不答一道题扣y 分.据题意得:14(2014)=5811(2011)37x y x y --⎧⎨--=⎩ 解这个方程组得52x y =⎧⎨=⎩答:答对一道题得5分,答错或不答一道题扣2分.【点睛】本题考查了二元一次方程组的应用,解题关键是准确把握题目中的等量关系,列出二元一次方程组.。
第十四讲 不等式的应用
★★★高考在考什么
【考题回放】
1.(北京) 若不等式组220x y x y y x y a
-0⎧⎪+⎪⎨⎪⎪+⎩≥,
≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( D ) A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或43
a ≥ 2.(福建) 已知()f x 为R 上的减函数,则满足1(||)(1)f f x
<的实数x 的取值范围是(C ) A .(-1,1) B .(0,1)
C .(-1,0) (0,1)
D .(-∞,-1) (1,+∞)
3.(陕西)已知不等式1()()9a x y x y ++
≥对任意正实数,x y 恒成立,则正实数a 的最小值为 (B ) (A)8 (B)6 (C )4 (D )2
4.(重庆)若动点(y x ,)在曲线)0(1422
2>=+b b
y x 上变化,则y x 22+的最大值为( A ) A .⎪⎩⎪⎨⎧≥<<+)
4(2),40(442
b b b b B .⎪⎩⎪⎨⎧≥<<+)2(2),20(442b b b b C .442+b
D .2b 5.(重庆)一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是
( C )
A .0a <
B .0a >
C .1a <-
D .1a >
6、(浙江卷)已知⎩⎨⎧≥〈-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是 ]23,(-∞ . ★★★高考要考什么
不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题.
★ ★★ 突 破 重 难 点
【范例1】已知函数b kx x f +=)(的图象与y x ,轴分别相交于点A 、B ,j i AB 22+=(j i ,分别是与y x ,轴正半轴同方向的单位向量),函数6)(2
--=x x x g 。
(1)求b k ,的值;
(2)当x 满足)()(x g x f >时,求函数)
(1)(x f x g +的最小值。
解:(1)由已知得},{),,0(),0,(b k
b b B k b A =-则 于是 .21,22⎩
⎨⎧==∴⎪⎩⎪⎨⎧==b k b k b (2)由,62),()(2-->+>x x x x g x f 得
即 ,42,0)4)(2(<<-<-+x x x 得
,52
1225)(1)(2-+++=+--=+x x x x x x f x g 由于3)
(1)(,02-≥+>+x f x g x 则,其中等号当且仅当x +2=1,即x =-1时成立, ∴)
(1)(x f x g +时的最小值是-3. 【范例2】已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1.
(1)证明:|c |≤1;
(2)证明:当-1 ≤x ≤1时,|g (x )|≤2;
(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x ).
命题意图:本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力.属较难题目.
知识依托:二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂.
错解分析:本题综合性较强,其解答的关键是对函数f (x )的单调性的深刻理解,以及对条件“-1≤x ≤1时|f (x )|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局.
技巧与方法:本题(2)问有三种证法,证法一利用g (x )的单调性;证法二利用绝对值不等式:||a |-|b ||≤|a ±b |≤|a |+|b |;而证法三则是整体处理g (x )与f (x )的关系.
(1)证明:由条件当=1≤x ≤1时,|f (x )|≤1,取x =0得:|c |=|f (0)|≤1,即|c |≤1.
(2)证法一:依题设|f (0)|≤1而f (0)=c ,所以|c |≤1.当a >0时,g (x )=ax +b 在[-1,1]上是增函数,于是
g (-1)≤g (x )≤g (1),(-1≤x ≤1).
∵|f (x )|≤1,(-1≤x ≤1),|c |≤1,
∴g (1)=a +b =f (1)-c ≤|f (1)|+|c |=2,
g (-1)=-a +b =-f (-1)+c ≥-(|f (-2)|+|c |)≥-2,
因此得|g (x )|≤2 (-1≤x ≤1);
当a <0时,g (x )=ax +b 在[-1,1]上是减函数,于是g (-1)≥g (x )≥g (1),(-1≤x ≤1), ∵|f (x )|≤1 (-1≤x ≤1),|c |≤1
∴|g (x )|=|f (1)-c |≤|f (1)|+|c |≤2.
综合以上结果,当-1≤x ≤1时,都有|g (x )|≤2.
证法二:∵|f (x )|≤1(-1≤x ≤1)
∴|f (-1)|≤1,|f (1)|≤1,|f (0)|≤1,
∵f (x )=ax 2+bx +c ,∴|a -b +c |≤1,|a +b +c |≤1,|c |≤1,
因此,根据绝对值不等式性质得:
|a -b |=|(a -b +c )-c |≤|a -b +c |+|c |≤2,
|a +b |=|(a +b +c )-c |≤|a +b +c |+|c |≤2,
∵g (x )=ax +b ,∴|g (±1)|=|±a +b |=|a ±b |≤2,
函数g (x )=ax +b 的图象是一条直线,因此|g (x )|在[-1,1]上的最大值只能在区间的端点x =-1或x =1处取得,于是由|g (±1)|≤2得|g (x )|≤2,(-1<x <1).
)2
1()21(])2
1()21([])21()21([)2121(])21()21[()(,)2
1()21(4)1()1(:22222222--+=+-+--++++=--++--+=+=∴--+=--+=x f x f c x b x a c x b x a x x b x x a b ax x g x x x x x 证法三 当-1≤x ≤1时,有0≤
21+x ≤1,-1≤2
1-x ≤0, ∵|f (x )|≤1,(-1≤x ≤1),∴|f )21(+x |≤1,|f (2
1-x )|≤1; 因此当-1≤x ≤1时,|g (x )|≤|f )21(+x |+|f (2
1-x )|≤2. (3)解:因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即
g (1)=a +b =f (1)-f (0)=2. ①
∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1.
因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),
根据二次函数的性质,直线x =0为f (x )的图象的对称轴, 由此得-a
b 2<0 ,即b =0. 由①得a =2,所以f (x )=2x 2-1.
【范例3】已知二次函数()x f y =的图像经过坐标原点,其导函数为()26-='x x f .数列{}n a 的前n 项和为n S ,点()()*,N n S n n ∈均在函数()x f y =的图像上.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设13+=
n n n a a b ,n T 是数列{}n b 的前n 项和,求使得20
m T n <对所有*N n ∈都成立的最小正整数m .
点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。
解:(Ⅰ)设这二次函数f(x)=ax 2
+bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2-2x.
又因为点(,)()n n S n N *∈均在函数()y f x =的图像上,所以n S =3n 2-2n.
当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n (=6n -5.
当n =1时,a 1=S 1=3×12
-2=6×1-5,所以,a n =6n -5 (n N *∈) (Ⅱ)由(Ⅰ)得知13+=n n n a a b =[]5)1(6)56(3---n n =)1
61561(21+--n n , 故T n =∑=n i i b 1=
21⎥⎦
⎤⎢⎣⎡+--++-+-)161561(...)13171()711(n n =21(1-161+n ). 因此,要使21(1-161+n )<20m (n N *∈)成立的m,必须且仅须满足21≤20
m ,即m ≥10,所以满足要求的最小正整数m 为10.。