植物生理复习资料
- 格式:docx
- 大小:30.20 KB
- 文档页数:11
植物生理学复习资料植物生理学复习资料第一章植物的水分生理一、名词解释1、水势:指在同温度同压强下每偏摩尔体积水的化学势与纯水的化学势的差值。
单位Pa。
2、渗透势Ψs:由于细胞液中溶质的存在引起细胞水势降低的数值,为负值。
3、压力势Ψp:由于细胞壁的压力的存在引起细胞水势变化的数值。
4、衬质势Ψm:有图细胞胶体物质的亲水性和毛细管作用对自由水的束缚而引起水势降低的值,为负值。
5、蒸腾作用:植物体内的水分以气态方式通过植物体表面散失到外界坏境的过程称为蒸腾作用。
6、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度而使水分沿导管上升的力量称蒸腾拉力。
作用力>>根压。
7、永久萎蔫系数:当植物刚好发生永久萎蔫时土壤尚存留的含水量。
(占土壤干重的百分数)。
二、简答、填空、判断等(一)2、水在植物生命中的作用(1)水是原生质的主要组分(2)一切代谢物质的吸收运输都必须在水中才能进行(3)水可以保持植物的固有姿态(4)水作为原料参与代谢:水是光合作用、呼吸作用、有机物合成与分解的底物(5)水可以调节植物的体温、调节植物的生存环境3、水势:指在同温度同压强下每偏摩尔体积水的化学势与纯水的化学势的差值。
单位Pa。
(1)在任何情况下。
水分流动的方向总是由水势高的地方流向水势低的地方。
(2)典型细胞水势(Ψw)包含三部分:Ψw = Ψs(渗透势)+ Ψp(压力势)+ Ψm(衬质势)成熟细胞则Ψw = Ψs(渗透势)+ Ψp(压力势)(3)当细胞处于质壁分离时:水势= 渗透势;细胞吸水饱和时:水势 = 0.4、植物细胞吸水的方式(1)渗透式吸水(具液泡细胞)(2)吸胀式吸水(无液泡的细胞及干种子、依赖衬质势(3)代谢性吸水(直接耗能)发生频率(1)>(2)>(3)(二)植物根系对水分的吸收1、根系是植物吸水的主要器官,,其中根毛区为主要的吸水区域。
2、根系吸水方式及其动力:根系吸水有主动吸水(根压)和被动吸水(蒸腾拉力)两种形式。
植物生理学复习题一、名词解释:1.水势:偏摩尔体积的水在一个系统中的化学势与纯水在相同温度压力下的化学势之间的差。
2.渗透势:由于溶质的存在而使水势降低的值。
3.蒸腾比率:植物每消耗1KG水所生产干物质(G)的量。
4.蒸腾速率:植物在单位时间内,单位叶面积通过蒸腾作用所散失的水量。
5.单盐毒害:将植物培养在单一盐溶液中,不久植物将会呈现不正常状态,最终死亡的现象。
6.主动吸收:植物细胞利用代谢能量逆电化学式吸收矿物质的过程。
7.胞饮作用:细胞通过质膜吸附物质并进一步通过膜的内陷而将物质转移到胞内,或进一步运送到液泡内的物质运送方式。
8.平衡溶液:植物只有在含有适当比例的,按一定浓度配成的多盐溶液中才能正常发育成长,这种溶液即为。
9.原初反应:指光合色素分子对光能的吸收、传递与转换过程。
10.希尔反应:离体的叶绿体加到具有氢受体的水溶液中,照光后即发生水的分解而放出氧气的反应。
11.光合作用单位:结合于类囊体膜上能完成光化学反应的最小结构的功能单位。
12.光合作用中心:进行原初反应的最基本的色素蛋白复合体,它至少包括一个原初电子供体合原初电子受体及一个次级电子供体3部分以及维持这些电子传递体的微环境所必需的蛋白质。
13.红降:波长大于685nm的远红光照射光合植物时,虽然光子仍然被大量吸收,但量子产额急剧下降的现象。
14.双光增益效用:远红光条件下,如补充红光,则量子产额大增,并且比这两种波长的光单独照射时的总和还大的现象。
15.光补偿点:随着光强度的增高,光合速率相应提高,当达到某一光强度时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强度即为。
16.二氧化碳补偿点:随着二氧化碳浓度提高,光合速率增加,当光合速率与呼吸速率相等时,外界环境中二氧化碳浓度即为。
17.有氧呼吸:生活细胞利用分子氧,将淀粉葡萄糖等有机物质彻底氧化分解为二氧化碳,并生成水,同时释放能量的过程。
18.光呼吸:植物的绿色细胞在光下吸收氧气,放出二氧化碳的过程。
植物生理学名词解释:水势:每偏摩尔体积水的化学势差。
渗透势:由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。
根压:靠根部水势梯度使水沿导管上升的动力。
水分临界期:植物对水分不足特别敏感的时期。
渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
矿质营养:植物对矿物质的吸收、转运、和同化。
胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。
生物固氮:某些微生物把空气中的游离氮固定转化为含氮化合物的过程。
诱导酶:指植物本来不含某种酶,但在特定外来物质的诱导下,可以生成这种酶。
营养元素临界含量:作物获得最高产量的最低养分含量。
光合作用:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物质并释放氧气的过程。
吸收光谱:反映某种物质吸收光波的光谱。
增益效应:两种波长的光协同作用而增加光和效率的现象。
希尔反应:离体叶绿体在光下进行水解并放出氧的反应。
反应中心:是光能转变化学能的膜蛋白复合体,包含参与能量转换的特殊叶绿素a.聚光色素:聚光复合物中的色素(没有光化学活性,只有吸收和传递光能的作用)。
Co2补偿点:当光合吸收的co2量等于呼吸放出的co2量,这个时候外界的co2含量就叫做co2补偿点。
呼吸作用:指活细胞内的有机物,再酶的参与下逐步氧化分解并释放能量的过程。
糖酵解:细胞质基质中的己糖经过一系列酶促反应步骤分解成丙酮酸的过程。
呼吸商:植物在一定的时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率。
巴斯的效应:氧可以降低糖类的分解代谢和减少糖酵解产物的积累的现象。
能荷:A TP-ADP-AMP系统中可利用的高能磷酸键的度量。
代谢源:能够制造并输出同化物的组织,器官或部位。
代谢库:指消耗或贮藏同化物的组织,器官或部位。
库强度:等于库容量和库活力的乘积。
植物生长物质:一些调节植物生长发育的物质。
生长素的极性运输:指生长素只能从植物体的形态学上端向下端运输。
三重反应:乙烯抑制伸长生长,促进横向生长,地上部分失去负向重力性生长。
CO2 补偿点:当光合吸收的CO2量与呼吸释放的CO2量相等时,外界的CO2浓度。
爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。
胞饮作用:物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程。
比集运量:指有机物质在单位时间内通过单位韧皮部横切面积的量。
衬质势:细胞胶体物质亲水性和毛细管对自由水束缚而引起的水势降低值,以负值表示。
春化作用:低温促进植物开花的作用。
代谢库:指植物接纳有机物质用于生长、消耗或贮藏的组织、器官或部位。
如发育中的种子、果实等。
代谢性吸水:利用细胞呼吸释放出的能量,使水分经过质膜进入细胞的过程。
单盐毒害和离子拮抗:单盐毒害是指溶液中因只有一种金属离子而对植物之毒害作用的现象;在发生单盐毒害的溶液中加入少量其他金属离子,即能减弱或消除这种单盐毒害,离子间的这种作用称为离子拮抗。
杜南平衡:细胞内的可扩散负离子和正离子浓度的乘积等于细胞外可扩散正、负离子浓度乘积时的平衡,叫杜南(道南)平衡。
它不消耗代谢能,属于离子的被动吸收方式。
根压:植物根部的生理活动使液流从根部上升的压力。
共质体:是通过胞间连丝把无数原生质体联系起来形成一个连续的整体。
光饱和点:增加光照强度,光合速率不再增加时的光照强度。
光补偿点:同一叶子在同一时间内,光合过程中吸收的CO2和呼吸过程中放出的CO2等量时的光照强度。
光合磷酸化:叶绿体(或载色体)在光下把无机磷和ADP转化为ATP,并形成高能磷酸键的过程。
光呼吸:植物的绿色细胞在光照下吸收氧气,放出CO2的过程。
光呼吸的主要代谢途径就是乙醇酸的氧化,乙醇酸来源于RuBP的氧化。
光呼吸之所以需要光就是因为RuBP的再生需要光。
光能利用率:单位面积上的植物光合作用所累积的有机物所含的能量,占照射在相同面积地面上的日光能量的百分比光周期现象:植物通过感受昼夜长短变化而控制开花的现象。
植物生理学复习大全一:名词解释自由水:与细胞组分之间吸附力较弱,可以自由移动的水。
压力:植物细胞中由于静水质的存在而引起的水势增加的值。
束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。
蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。
.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。
蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g·kg-l表示。
蒸腾系数:植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量。
抗蒸腾剂:能降低蒸腾作用的物质,它们具有保持植物体中水分平衡,维持植株正常代谢的作用。
抗蒸腾剂的种类很多,如有的可促进气孔关闭。
水分代谢:植物对水分的吸收、运输、利用和散失的过程。
水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。
把纯水的水势定义为零,溶液的水势值则是负值。
渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。
根压:由于植物根系生理活动而促使液流从根部上升的压力。
伤流和吐水现象是根压存在的证据。
渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。
对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。
.衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。
.吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。
伤流:从受伤或折断的植物组织伤口处溢出液体的现象。
水分临界期:植物在生命周期中,对缺水最敏感、最易受害的时期。
一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。
作物的水分临界期可作为合理灌溉的一种依据。
吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。
胶体物质吸引水分子的力量称为吸胀。
永久萎蔫系数:将叶片刚刚显示萎蔫的植物,转移至阴湿处仍不能恢复原状,此时土壤中水分重量与土壤干重的百分比叫做永久萎蔫系数。
植物生理学一.名词解释:1、流动镶嵌模型:认为液态脂质双分子层中镶嵌着可移动的蛋白质,使膜具有不对称性和流动性的用于解释生物膜结构的模型。
要点:(1)不对称性:即脂类和蛋白质在膜中的分布不对称(2)流动性,即组成膜的脂类双分子层或蛋白质都是可以流动或运动的,膜的不对称性和流动性保证了生物膜能经受一定程度的形变而不致破裂,这也可使膜中各种成分按需要重新组合,使之合理分布,有利于表现膜的各种功能,更重要的是它允许膜互相融合而不失去对通透性的控制,确保膜分子在细胞分裂、膜动运输、原生质融合等生命活动中起重要的作用。
2、细胞全能性:每个生活的细胞中都包含有产生一个完整机体的全套基因,在适宜条件下,细胞具有形成一个新的个体的潜在能力。
3、水势:每偏摩尔水的化学势差。
即体系中水的化学势与处于等温、等压条件下纯水的化学势之差,再除以水的偏摩尔体积4、溶质势:由于溶质颗粒的存在而引起体系水势降低的数值。
在渗透系统中,溶质势表示了溶液中水分潜在的渗透能力的大小。
5、压力势:由于压力的存在而使体系水势改变的数值。
6、伤流:从受伤或折断的植物组织伤口处溢出液体的现象。
7、吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。
8、水分临界期:植物在生命周期中对水分缺乏最敏感最易受害的时期。
9、离子主动吸收:细胞利用呼吸释放的能量逆电化学势梯度吸收矿质的过程。
10、离子的被动吸收:细胞不需要由代谢提供能量的顺电化学势梯度吸收矿质的过程。
11、诱导酶:植物体内本来不含有,但在特定外来物质的诱导下可生成的酶。
12、红降现象:光合作用的量子产额在波长大于680nm时急剧下降的现象。
13、双光增益效应:在长波红光之外再加上较短波长的光促进光合效率的现象。
14、光合链:定位在光合膜上的,由多个电子传递体组成的电子传递的总轨道。
15、光和磷酸化:光下在叶绿体中发生的由ADP与Pi合成ATP的反应。
16、光呼吸:植物绿色细胞在光照下吸收氧气释放CO2的过程。
1. 种子萌发过程中有哪些生理生化变化?答:(1) 种子的吸水:三个阶段:急剧吸水、吸水停止、重新迅速吸水,表现出快、慢、快的特点。
(2)呼吸作用的变化和酶的形成1)呼吸的变化在胚根突出种皮之前,种子的呼吸主要是无氧呼吸,在胚根长出之后,便以有氧呼吸为主了。
2)酶的形成:萌发种子中酶的来源有两种:A. 从已经存在的束缚态的酶释放或活化而来;支链淀粉葡萄糖苷酶。
B. 通过蛋白质合成而形成的新酶。
a-淀粉酶。
(3) 有机物的转变(分解淀粉、蛋白质、脂肪等储藏物质)种子中贮存着大量的有机物,主要有淀粉、脂肪和蛋白质,萌发时,他们被分解,分解产物参与种子的代谢活动。
(淀粉转化为糖;脂肪分解为甘油和脂肪酸,进一步转化为糖或氨基酸;蛋白质分解为氨基酸)2. 种子的萌发必需的外界条件有哪些?种子萌发时吸水可分为哪三个阶段?第一、三阶段细胞靠什么方式吸水?答:种子萌发必须有足够的水分、充足的氧气和适宜的温度。
此外,有些种子萌发还受光的影响。
种子吸水分为三个阶段:1)急剧吸水阶段。
2)吸水停止阶段。
3)胚根长出后重新迅速吸水阶段。
第一阶段细胞主要靠吸胀作用。
第二、三阶段是靠渗透性吸水。
3.试述生长、分化与发育三者之间的区别与关系?①在生命周期中,生物细胞、组织和器官的数目、体积或干重等不可逆增加的过程称为生长;②从一种同质的细胞类型转变成形态结构和功能与原来不相同的异质细胞类型的过程成为分化;③发育则指在生命周期中,生物组织、器官或整体在形态结构和功能上的有序变化。
④三者紧密联系,生长是基础,是量变;分化是质变。
一般认为,发育包含了生长和发育。
4.简述引起种子休眠的原因有哪些?生产上如何打破种子休眠?1) 引起种子休眠的原因:种皮障碍、胚休眠、抑制物质2) 生产上打破种子休眠方法:机械破损、层积处理、药剂处理5.植物地上部分与地下部分的相关性(常言道:“根深叶茂”是何道理?)答:根和地上部分的关系是既互相促进、互相依存又互相矛盾、互相制约的。
一、名词解释1、水分代谢:指植物对水分的吸收、运输、丢失的过程。
2、细胞的全能性:是指植物体的每个细胞都携带着一套完整的基因组,并具有发育成完整植株的潜在能力。
3、代谢源:是指能够制造并输出同化物的组织、器官或部位。
如绿色植物的功能叶,种子萌发期间的胚乳或子叶,春季萌发时二年生或多年生植物的块根、块茎、种子等。
代谢库:参与代谢的物质在组织及体液中的总和。
如氨基酸代谢库。
4、日中性植物:植物开花对日照长度没有特殊的要求,在任何日照长度下均能开花。
5、平衡溶液:几种盐类按一定比例和浓度配制的不使植物发生单盐毒害的溶液。
6、光合磷酸化:是指在光合作用中由光驱动并贮存在跨类囊体膜的质子梯度的能量把ADP 和磷酸合成为ATP的过程。
7、碳同化:生物体利用二氧化碳固定到细胞内形成各种含碳化合物的同化过程。
8、光抑制:光能超过光合系统所能利用的数量时光合功能下降的现象。
9、光敏色素:存在于植物中并与光周期相了解的一种发色团-蛋白质复合物。
是一种可吸收红光-远红光可逆转换的光受体。
10、细胞信号转导:是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。
11、单盐毒害:如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,如钾离子,而且在培养液中的浓度很低,植物也不能正常生活,不久即受害而死。
12、离子拮抗:若在单盐溶液中加入少量其它盐类,单盐毒害现象就会消除,这种离子间能够互相消除毒害的现象,称离子拮抗。
13、幼年期:是指植物早期生长的阶段。
14、春化作用:低温诱导植物开花的过程。
15、光周期现象:在一天之中,白天和黑夜的相对长度称为光周期。
植物对白天和黑夜的相对长度的反应称为光周期现象。
16、单性结实:是指子房不经过受精作用而形成不含种子果实的现象。
17、植物激素:是指在植物体内合成并从产生之处运送到别处,对生长发育产生显著作用的微量有机物。
植物生理复习资料第一章1、同一一种植物生长在不同环境中,含水量也有差异,在同一植物中,不同器官和不同组织的含水量也差别很大。
凡是生命活动较旺盛的部位,水分含量较多。
2、水分在植物细胞在中呈束缚水和自由水。
3、束缚水:靠近胶粒而被胶粒吸附束缚不易流动的水分自由水:距离胶粒较远而可以自由流动的水分。
4、自由水与植物代谢有关,其比例越大,代谢越旺盛。
束缚水与植物的抗性有关。
5、水在植物生命活动中的作用:(1)水分是细胞的主要成分(2)水分是代谢作用过程的反应物质(3)水分是植物对物质吸收和运输的溶剂(4)水分能保持植物固有姿态。
6、水跨膜运输的两种途径:(1)跨膜脂双分子层的扩散(2)跨膜水孔蛋白的扩散。
水通道由水孔蛋白组成,水孔蛋白是膜整合蛋白,以同型四聚体存在。
7、化学势:1mol 物质的自由能水势:每偏摩尔体积的化学势差8、纯水的自由能最大,水势最高,纯水的水势为零9、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象,是跨膜运输的动力。
10、质壁分离和质壁复原可证明植物细胞是一个渗透系统11、典型的细胞水势:渗透势+压力势+重力势+忖质势12、压力势:是指细胞的原生质体溪水膨胀,又对细胞壁产生一种作用力,与此同时引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力13、水势高的细胞中的水分向水势低的细胞流动14、可用水势为指标,确定作物灌溉的时期。
15、水在植物细胞中运输有两个步骤:径向运输和轴向运输径向运输:水分从土壤溶液中运输到木质部导管的过程,即根吸水。
轴向运输:水分在木质部导管向上运输至植物顶部的过程,即水分向上运输16、土壤中的水分3 种:重力水、束缚水、毛细管水(植物主要吸收)17、土壤中大部分水是在压力梯度驱动下,以集流的方式移动的18、根吸水主要在根尖进行,根尖的根毛区吸水能力最大19、跟吸水的3 种途经:质体外途径、跨膜途径(细胞途径)、共质体途径20、跟吸水的动力:根压和蒸腾拉力(主要动力)根压:靠根部水势梯度使水沿着导管上升的动力21、影响跟吸水的条件(1)土壤的可用水分(2)土壤通气状况(3)土壤温度(4)土壤溶液浓度22、内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水粒不断解释水分上升原因的学说23、水的散失:(1)以液体的状态散失到体外(吐水、伤流)(2)以气体状态散失到体外(蒸腾)24、蒸腾作用:水分以气体状态,通过植物体变得表面,从体内散失到体外的现象。
蒸腾作用还受植物气孔结构和开度调节25、蒸腾做通的意义:(1)是植物对水分吸收和运输的主要动力(2)对矿质元素和有机物的吸收有重要作用(3)降低叶片湿度26、蒸腾部位:角质膜蒸腾、气孔蒸腾(主要方式)27、蒸腾作用的指标:蒸腾速率、蒸腾比率、水分利用效率28、调节保卫细胞水势的渗透调节物:K+ 、苹果酸、蔗糖29、影响气孔运动的因素:光照、水、温度、Co2 (低浓度促进张开,高浓度使气孔迅速关闭)、脱落酸使气孔关闭。
第二章1.植物必须矿质元素的条件:①完成植物整个生长周期不可缺少的;②在植物体内的功能是不能被其他元素代替的,植物缺乏该元素时会表现专一的症状,并且只有补充这种元素症状才会消失;③这种元素对植物体内所起的作用是直接的,而不是通过改变土壤理化性质、微生物生长条件等原因所产生的间接作用。
2.溶液培养法(水培法)确定矿质元素3.必须矿质元素的作用:①细胞结构物质的组成成分②植物生命活动的调节者参与酶的活动③起电化学作用④作为细胞信号转导的第二信使。
4.必需矿质元素缺乏病征①N过多营养体徒长,细胞质丰富而壁薄,易受病虫侵害,易倒伏,抗逆性差,成熟期延迟。
N 过少植株矮小、叶小色淡或发红、分枝少、花少、籽实不饱满、产量低② P缺少:生长缓慢、叶小,植株矮小。
③K能够促进光合作用,增加细胞渗透压有利于对水的吸收,增强植物对环境耐受力。
缺少K 也使得植物生长受到遏制,植物会弯枝,出现倒伏。
5.根据离子跨膜运输过程是否需能量,可分为被动运输和主动运输被动运输是指离子或溶质跨过生物膜不需要代谢供给能量,是顺电化学势梯度向下进行运输的方式。
包括简单扩散和协助扩散主动运输:是离子或溶质跨过生物膜需要代谢供给能量,逆电化学式梯度向上进行运输的方式。
6.胞饮作用;细胞通过膜的内陷从外界直接摄取物质进入细胞的过程,称饱饮作用。
离子或分子跨膜运输的5 种方式:简单扩散、通道运输、载体运输、离子泵运输、和胞饮作用。
7.影响根部吸收矿质元素的条件;①温度、②通气状况③溶液浓度④氢离子浓度8.矿质元素的运输途径:①木质部运输——由下而上运输②韧皮部运输——双向运输。
第三章1、光合作用:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机质并释放氧气的过程,称为光合作用。
2、光合作用的重要性:1,把无机物变成有机物2,蓄积太阳能量3,环境保护3、类囊体膜的叶绿素吸收光能,合成ATP和NATP以及传递电子:光合作用的光反应就在其上发生,基质有固定二氧化碳的能力,光合产物——淀粉是在基质中形成和贮藏起来的4、叶绿素的吸收光谱的最强吸收区有二个:一个是波长为640nm—660nm 的红光区域,另一部分在蓝紫光部分。
5、光是叶绿素形成的主要因素6、黄化:缺乏任何一个条件而阻止叶绿素形成,使叶子发黄的现象,7、光合作用可分为光反应和碳反应,光反应必须在有光的条件下才能进行的有光引发的光化学反应;碳反应是在暗处或有光处都能进行的,有若干酶所催化的化学反应8、光合作用可分为的三个部分:1 原初反应包括光能的吸收,传递和转换2 电子传递和光合磷酸化;形成活跃的化学能(ATP,NADP)3碳同化,活跃的化学能变成稳定的化学能9、原初反应:指光合作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程10、光能吸收的功能单位是光系统。
每个光系统有二个主要成分:聚光复合物和反应中心复合物11、光化学反应:叶绿素吸收光能后十分迅速的产生氧化还原的化学变化,其是光和作用的核心部分,实质是由光引起的氧化还原反应。
12、原初电子受体是:质体醌最终电子受体是NADP+原初电子质体是D 最终电子质体是水13、增益效应:二种波长的光合协同作用而增加光合效率的现象称为增益效应14、光系统2 分布在类囊体膜的垛叠部分15、希尔反应:在光照下,离体叶绿素类囊体能将含有高铁的化合物还原成低铁化合物,并释放出02,其来自水16、在PS H和细胞色素b6f复合物之间的电子载体是PQ,在细胞色素b6f和PS U之间的电子载体是质体蓝素(PC)17、P S I分布在类囊体膜的非垛叠部分,原初电子受体A(叶绿素a)最终电子受体Fd18、光合链:在类囊体膜上的PS H和PS I之间几种排列紧密的电子传递的总轨道19、光合电子传递的3 中途径:①非环式电子传递:H20 —— >PS II —— >PQ—— >Cytb6f —— >PC—— >PSI ——>Fd——>FNR——>NADP+②环式电子途径:PS I——>Fd——> PQ——>Cytb6f——>PC——>PS I③假环式电子途径:H20——>PS I——>PQ——>Cytb6f——>PC——>PS I——>Fd——>0220、光合磷酸化:指叶绿素利用光能驱动电子传递建立跨类囊体膜的质子动力势是将ADP 和Pi 合成ATP21、A TP合酶又成偶联因子。
ATP产出机制有英国人P.D.Mitchdl (1961)提出化学渗透假说解释22、P MR如何驱动ATP合成,可用P.D.Boyer的结合变化机制解释、23、A TP和NATP用于碳反应中二氧化碳的同化,因此把这二种物质合称为同化力24、碳的固定3种途径:C3途径(最基本),C4途径,CAM (景天酸代谢途径)25、C3 途径:又称卡尔文循环或光合环或还原磷酸戊糖循环,可分为三个阶段:羧化阶段,还原阶段,更新阶段26 羧阶段:1,5-二磷酸核酮糖是CO2 的受体,在RuBP 加氧羧化酶作用下,形成的中间产物和水反应,分解为2分子3-磷酸甘油酸(PGA)27还原阶段:一:3-磷酸甘油酸被ATP磷酸化。
在3-磷酸甘油酸激酶催化下,形成1,3-二磷酸甘油酸(DPGA)二: DPGA在3-磷酸甘油脱氢酶作用下被NADPH+ 氢离子还原形成一磷酸甘油醛(3-磷酸甘油醛转化到3-磷酸甘油醛过程中),由光合作用生成的ATP和NADPH均被利用掉。
3-磷酸甘油醛(PGAld)和磷酸二羟丙酮(DHAP)统称为磷酸糖(TP)28更新阶段:PGAld形成RUBP,要产生一个3碳糖(PGAld),要3个二氧化碳,9个ATP和6个NADPH29、C3循环的调节:一自身催化,二光的调节,三光合产物的的转运30、C4 途径——四碳二羧酸途径反应步骤:一羧化与还原,二转移与脱羧,三更新一羧化与还原:C4途径的二氧化碳受体是叶肉细胞质中PEP,在磷酸烯醇或丙酮酸羧化酶催化下,生成草酰乙酸(oAA),OAA经过NADP-苹果酸脱氢酶作用,被还原为苹果酸,或者变为天冬氨酸和酮戊二酸。
二转移与脱羧:苹果酸和天冬氨酸形成后,就转移到维管束鞘细胞中,进行脱羧反应,形成丙酮酸或丙氨酸,并放出二氧化碳。
三更新:丙酮酸或丙氨酸返回叶肉细胞,在磷酸丙酮酸双游酶催化和ATP作用,使PEP更新。
31、C4途径的类型:一NADP-苹果酸酶类型;二NAD-苹果酸酶类型;三PEP 羧化酶类型32、C4途径酶活性受光,效应价,二价金属离子等调节。
33 、CAM 途径-景天酸代谢途径CAM 调节有:短期调节和长期调节34、一淀粉在叶绿体中合成;二蔗糖在细胞质基质中合成35、C3,C4与CAM植物的光合特性比较:见P106页36 、光呼吸:植物的绿色细胞依赖光照吸收氧气和放出二氧化碳的过程,被称为光呼吸光呼吸被氧化的底物是乙醇酸,又称乙醇酸氧化途径。
在叶绿体中,光照下,RUbisco把RUBP氧化成磷酸乙醇酸,之后产生乙醇酸。
37、乙醇酸形成后转移到过氧化酶酶体。
乙醇酸在乙醇酸氧化酶被氧化为乙醛酸和过氧化氢。
38、光呼吸的调节:氧气和二氧化碳浓度。
二氧化碳抑制光呼吸而促进光合作用,氧气抑制光合作用而促进光呼吸,其实质是二氧化碳和氧气对RUBP 的竞争。
39、真正光合作用=表观光合作用+呼吸作用+光呼吸表观光合作用=真正光合作用-(呼吸作用+光呼吸)40、影响光合作用的因素:外界条件(一,光照;二,二氧化碳;三,温度;四,矿质元素;五,水分)内部因素(一,不同部位;二,不同生育期)41、提高光能利用率的途径:一,延长光合时间{1 ,提高复种指数二,增加光和面积{1 合理密植{2 补充人工光照{2 改变株型三,提高光合效率{1 增加二氧化碳浓度{2 喷施亚磷酸氢钠溶液第五章1、通过(环割实验),证明有机物运输是由韧皮部担任的。