2004年南邮通原考研真题
- 格式:pdf
- 大小:136.33 KB
- 文档页数:2
2004年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0sin lim(cos )5x x xx b e a→-=-,则a =,b =.(2) 设1ln arctan 22+-=x xxe e e y ,则1x dy dx ==.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 设⎪⎪⎪⎭⎫⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则200422B A -=.(5) 设()33⨯=ij a A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P .二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界( ) (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).(8) 设f (x )在(,)-∞+∞内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则( )(A)0x =必是()g x 的第一类间断点. (B) 0x =必是()g x 的第二类间断点. (C) 0x =必是()g x 的连续点.(D) ()g x 在点0x =处的连续性与a 的取值有关.(9) 设()(1)f x x x =-, 则 ( )(A) 0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B) 0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C) 0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D) 0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则 ( )(A) ()F x 在0x =点不连续.(B) ()F x 在(,)-∞+∞内连续,但在0x =点不可导. (C) ()F x 在(,)-∞+∞内可导,且满足)()(x f x F ='.(D) ()F x 在(,)-∞+∞内可导,但不一定满足)()(x f x F ='.(11) 设)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是( )(A) 至少存在一点0(,)x a b ∈,使得)(0x f >()f a . (B) 至少存在一点),(0b a x ∈,使得)(0x f > ()f b . (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.(12) 设n 阶矩阵A 与B 等价, 则必有( )(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B .(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于( ) (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.(14) 设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则( )(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分)设(,)f u v f (u , v )具有连续偏导数,且满足(,)(,)u v f u v f u v uv ''+=. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解. (18) (本题满分9分) 设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何0t >,)(1t S 表示矩形t x t -≤≤,0()y F x ≤≤的面积. 求(I) ()S t = S -)(1t S 的表达式; (II) ()S t 的最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T)1,1,1,1(--是该方程组的一个解,试求(I) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II) 该方程组满足32x x =的全部解. (21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若Tα)0,1,1(1=,T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(I) 求A 的另一特征值和对应的特征向量; (II) 求矩阵A .(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求:(I) 二维随机变量),(Y X 的概率分布;(II) X 与Y 的相关系数 XY ρ; (III) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 在区间)1,0(内服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(I) 随机变量X 和Y 的联合概率密度;(II) Y 的概率密度; (III) 概率}1{>+Y X P .2004年全国硕士研究生入学统一考试数学四试题解析一、填空题(1)【答案】1,4a b ==-【详解】本题属于已知极限求参数的反问题. 方法1:根据结论:)()(limx g x f =A ,(1) 若()0g x →,则()0f x →;(2) 若()0f x →,且0A ≠,则()0g x →因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x (否则根据上述结论(2)给极限是0,而不是5),由 0lim()lim lim 10xxx x x e a e a a →→→-=-=-=得a = 1.极限化00sin lim(cos )lim (cos )151x x x x xx b x b b e x→→- -=-=-等价无穷小,得b = -4.因此,a = 1,b = -4.方法2:由极限与无穷小的关系,有sin (cos )5x xx b e aα-=+-,其中0lim 0x α→=,解出 (5)(cos )sin ,5x e x b xa αα+--=+上式两端求极限,000(5)(cos )sin (cos )sin limlim lim 10155x x x x x e x b x x b xa e ααα→→→+---==-=-=++ 把a = 1代入,再求b ,(5)(1)cos sin x e b x xα+-=-,两端同时对0x →取极限,得0(5)(1)lim(cos )sin x x e b x xα→+-=-000(5)(1)(5)limcos lim 1lim 15sin x x x x e x x x xαα→→→+-+=-=-=-4=- 因此,a = 1,b = -4.(2)【答案】211e e -+. 【详解】因为()()()222222111ln ln 12ln 1ln 11222x x xx x x e e e x e x e e ⎡⎤⎡⎤=-+=-+=-+⎣⎦⎣⎦+ 由 1ln arctan 22+-=x x xe e e y ,得 )1ln(21arctan 2++-=xx e x e y ,所以 222222222()1()1211112112111x x x x x xx x x x x xe e e e e e y e e e e e e '''=-+=-+=-+++++++,所以22222221111111111x x x x x x dye e e e e dxe e e e e ==⎛⎫-=-+=-+= ⎪+++++⎝⎭.(3)【答案】12- 【详解】方法1:作积分变换,令1x t -=,则11:2:122x t →⇒-→ 所以211122(1)()f x dx f t dt --=⎰⎰=1121122()(1)f t dt dt -+-⎰⎰22211112222111122221111(1)(1)2222xx xxe dx dx e dx e ---=+-=--=-⎰⎰⎰11022=-=.(也可直接推出212120x xe dx -=⎰,因为21212x xe dx -⎰积分区间对称,被积函数是关于x 是奇函数,则积分值为零) 方法2:先写出的(1)f x -表达式()()21111,122(1)11,12x x e x f x x -⎧--≤-<⎪⎪-=⎨⎪- -≥⎪⎩即:2(1)13(1),22(1)31,2x x e x f x x -⎧-≤<⎪⎪-=⎨⎪-≥⎪⎩所以2322(1)2131222(1)(1)(1)x f x dx x edx dx --=-+-⎰⎰⎰2233(1)2(1)2211221311(1)22222x x e d x e --⎛⎫=---=- ⎪⎝⎭⎰11441111()02222e e =--=-=-.(4)【答案】⎪⎪⎪⎭⎫ ⎝⎛-100030003【详解】因为2A 010010100100001001--⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,为对角阵,故有422100100()010*********A A E --⎛⎫⎛⎫⎪⎪==--= ⎪⎪ ⎪⎪⎝⎭⎝⎭所以 211B P APP AP --=11()P A PP AP --=12,,P A P -=L200412004B P A P -=()50114P A P -=11P EP P P --==E =所以 200422B A -1002010001E -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭300030001⎛⎫ ⎪= ⎪ ⎪-⎝⎭.(5)【答案】T)0,0,1( 【详解】方法1:设12132122233132331a a A a a a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,是正交矩阵,故的每个行(列)向量都是单位向量 所以有 22121311a a ++=,22213111a a ++=,得121321310,0.a a a a ====故 2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,又由正交矩阵的定义T AA E =知A 是可逆矩阵,且1TA A -=. 则b Ax =,有唯一解.1x A b -=T A b =2232233310011000000a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦方法2:同方法1,求得111=a 的正交阵为2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 是正交阵,由正交矩阵的性质可知,11A =-或不等于零,故A 22231122233233323310(1)0a a a a a a a a +==-222332330a a a a =≠,即有222332330a a a a ≠,则原方程b Ax =为1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩ 解得1231,0x x x ===,即方程组有唯一解. (其中,由222332330a a a a ≠及齐次线性方程组0Ax =只有零解的充要条件是0A ≠,可知,方程组22223332233300a x a x a x a x +=⎧⎨+=⎩ 只有零解,故230x x ==. 进而1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩的解为1231,0x x x ===.)(6) 【答案】e1 【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算. 指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题 (7)【答案】(A) 【详解】方法1:如果()f x 在(,)a b 内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数()f x 在(,)a b 内有界.当x ≠ 0 , 1 , 2时()f x 连续,而2211sin(2)sin(12)sin 3lim ()lim (1)(2)(11)(12)18x x x x f x x x x ++→-→------===-------,220sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x --→→----===-----,22sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x ++→→--===----, 22111sin(2)sin(12)lim ()limlim (1)(2)(1)(12)x x x x x f x x x x x →→→--===∞----,222222sin(2)sin(2)1lim ()limlim lim (1)(2)(2)2x x x x x x x f x x x x x x →→→→--====∞----, 所以,函数f (x )在(-1 , 0)内有界,故选(A).方法2:因为0lim ()x f x -→存在,根据函数极限的局部有界性,所以存在0δ>,在区间[,0)δ-上()f x 有界,又如果函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界,根据题设()f x 在[1,]δ--上连续,故()f x 在区间上有界,所以()f x 在区间(1,0)-上有界,选(A).(8)【答案】 (D) 【详解】考查极限)(lim 0x g x →是否存在,如果存在,是否等于g (0),通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.因为 011lim ()lim ()lim ()x x u g x f u f u x x→→→∞= = = a ,又(0)0g =,所以, 当0a =时,)0()(lim 0g x g x =→,即()g x 在点0x =处连续,当0a ≠时,)0()(lim 0g x g x ≠→,即0x =是()g x 的第一类间断点,因此,()g x 在点0x =处的连续性与a 的取值有关,故选(D).(9) 【答案】C【详解】由于是选择题,可以用图形法解决,也可用分析法讨论.方法1:由于是选择题,可以用图形法解决, 令()(1)x x x ϕ=-,则211()24x x ϕ⎛⎫=-- ⎪⎝⎭,是以直线12x =为对称轴,顶点坐标为11,24⎛⎫- ⎪⎝⎭,开口向上的一条抛物线,与x 轴相交的两点坐标为()()0,0,1,0,()()y f x x ϕ==的图形如图.点0x =是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.方法2:写出()y f x =的分段表达式: ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,从而()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩, ()f x ''=2,102,01x x -<<⎧⎨-<<⎩,()0lim ()lim 1210x x f x x ++→→'=-=>,所以01x <<时,()f x 单调增, ()00lim ()lim 1210x x f x x --→→'=-+=-<,所以10x -<≤时,()f x 单调减, 所以0x =为极小值点.当10x -<<时, ()20f x ''=>,()f x 为凹函数; 当10x >>时,()20f x ''=-<,()f x 为凸函数, 于是(0,0)为拐点.(10)【答案】 (B)【详解】先求分段函数()f x 的变限积分⎰=xdt t f x F 0)()(,再讨论函数()F x 的连续性与可导性即可.方法1:关于具有跳跃间断点的函数的变限积分,有下述定理:设()f x 在[,]a b 上除点(),c a b ∈ 外连续,且x c =为()f x 的跳跃间断点,又设()()xcF x f t dt =⎰,则(1)()F x 在[],a b 上必连续;(2))()(x f x F =',当[],x a b ∈ ,但x c ≠;(3)()F c '必不存在,并且()(),()()F c f c F c f c +-+-''= =直接利用上述结论,这里的0c =,即可得出选项(B)正确. 方法2:当0x <时,x dt x F x-=-=⎰0)1()(;当0x >时,x dt x F x==⎰01)(,当0x =时,(0)0F =. 即()F x x =,显然,()F x 在(,)-∞+∞内连续,排除选项(A),又0(0)lim 10x x F x ++→-'==-,0(0)lim 10x x F x --→--'==--,所以在0x =点不可导. 故选 (B).(11)【答案】(D) 【详解】利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项. 方法1:举例说明(D)是错误的. 例:2()4,11f x x x =--≤≤,11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>.方法2:证明(A)、(B)、(C)正确.由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项(C)正确;另外,由导数的定义0)()(lim)(>--='+→ax a f x f a f a x ,根据极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >,所以选项(A)正确.同理,()()()lim 0x bf b f x f b b x-→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以选项(B)正确,故选(D).(12)【答案】(D ) 【详解】方法1:矩阵等价的充分必要条件:矩阵A 与B 等价⇔A ,B 是同型矩阵且有相同的秩,故由A 与B 等价,知A 与B 有相同的秩.因此,当0||=A 时, n A r <)(, 则有n B r <)(, 即0||=B , 故选(D).方法2:矩阵等价的充分必要条件:A 与B 等价⇔存在可逆,P Q ,使得PAQ B =. 两边取行列式,由矩阵乘积的行列式等于行列式的积,得PAQ P A Q B ==. ,P Q 可逆,由矩阵A 可逆的充分必要条件:0A ≠,故00P Q ≠≠,但不知具体数值.由P A Q B =,知0A ≠时,B 不能确定.但0A =有0B =.故应选(D).方法3:由经过若干次初等变换变为矩阵的初等变换对矩阵的行列式的影响有:(1)A 中某两行(列)互换得B ,则B A =-. (2)A 中某行(列)乘(0)k k ≠得B ,则B k A =. (3)A 中某行倍加到另一行得B ,则B A =.又由A 与B 等价,由矩阵等价的定义:矩阵A 经有限次初等变换变成矩阵B ,则称A 与B 等价,知.B k A =±故当0A ≠时,0B k A =±≠,虽仍不等于0,但数值大、小、正负要改变,但0||=A ,则0B =,故有结论:初等变换后,矩阵的行列式的值要改变,但不改变行列式值的非零性,即若0||=A 0B ⇒=,若0A ≠0B ⇒≠.故应选(D).(13) 【答案】(C)【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>. 或直接利用图形求解. 方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C). 方法2:图一 图二Oxy()f x{}P X u αα=Oxy{}P X x <=12α- ()f x如图一所示题设条件.图二显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n Λ独立同分布,所以必有:2, (,)0, i j i jCov X X i j σ⎧==⎨≠⎩又 222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n =21nσ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算. 可以看本题(C),(D)选项. 因为X 与Y 独立时,有()()()D X Y D X D Y ±=+. 所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n n σσ++-+=+++=+L =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-Λ=.222222σσn n nn n -=- 所以本题选 (A)三、解答题(15)【详解】求“∞-∞”型极限的首要步骤是通分,或者同乘、除以某一式以化简.22201cos lim()sin x x x x →- 通分222220sin cos lim sin x x x x x x →-sin x x :等价22240sin cos lim x x x x x →- 22401sin 24lim x x x x →-=洛()22041sin 24lim x x x x→'⎛⎫- ⎪⎝⎭'3012sin 42lim 4x x x x →-= 洛()0312sin 42lim 4x x x x →'⎛⎫- ⎪⎝⎭'201cos 4lim 6x x x →-=2202sin 2lim 6x x x →=sin 22x x :等2202(2)lim 6x x x →43=.(16)【详解】利用对称性与极坐标计算.方法1:令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,根据二重积分的极坐标变换:()()12{(,)|,}D x y r r r αθβθθ=≤≤≤≤,则:()()()()21,cos ,sin r r Df x y d f r r rdr βθαθσθθ=⎰⎰⎰⎰122D x y d σ+化为极坐标:221{(,)|4}{(,)|02,0D x y x y x y θπ=+≤=≤≤所以122D x y d σ+222220cos sin d r r rdr πθθθ=+⎰⎰2220d r dr πθ=⎰⎰;222D x y d σ+化为极坐标:2223{(,)|(1)1}{(,)|,02cos }22D x y x y x y r ππθθ=++≤=≤≤≤≤-所以222D x y d σ+32cos 222222cos sin d r r rdr πθπθθθ-=+⎰⎰32cos 222d r dr πθπθ-=⎰⎰所以⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d 22cos 33322020033r rd d θπππθθ-=-⎰⎰332288cos 233d ππθπθ-=⋅-⎰()32228821sin sin 33d πππθθ=⋅+-⎰332288sin 2sin 333ππθπθ⎛⎫=⋅+- ⎪⎝⎭16822333π⎛⎫=+-+ ⎪⎝⎭)23(916932316-=-=ππ 区域D 关于x 轴对称,Dyd σ⎰⎰中被积函数y 为y 的奇函数,根据区域对称性与被积函数的奇偶性:设(),f x y 在有界闭区域D 上连续,若D 关于x 轴对称,(),f x y 对y 为奇函数,则(),0Df x y d σ=⎰⎰,所以0=⎰⎰Dyd σ所以22()Dx y y d σ+⎰⎰22DDx y d yd σσ=++⎰⎰16(32)9π=-. 方法2:22()Dx y y d σ++⎰⎰22DDx y d yd σσ=++⎰⎰22D 20x y d σ=++⎰⎰上半极坐标变换22222002cos 22[]d r dr d r dr πππθθθ-+⎰⎰⎰⎰2233202cos 2[]233r r d ππθπθ-=⋅+⎰32888cos 2333d πππθθ⎛⎫=++ ⎪⎝⎭⎰()2288161sin sin 333d ππππθθ=++-⎰ 321616sin sin 333πππθθ⎛⎫=+- ⎪⎝⎭16(32)9π=-.(17)【详解】求复合函数的偏导数,求一阶线性微分方程的解 方法1:由2()(,)xy x ef x x -=,两边对x 求导有,222122(,)(,)(,)x x x y e f x x e f x x e f x x ---'''=-++()22122(,)(,)(,)x x e f x x e f x x f x x --''=-++()2122(,)(,)x y e f x x f x x -''=-++已知uv v u f v u f v u='+'),(),(,即12(,)(,)f u v f u v uv ''+=,则212(,)(,)f x x f x x x ''+=. 因此,()y x 满足下述一阶微分方程为 x e x y y 222-=+'.由一阶线性微分方程()()dyP x y Q x dx+=通解公式:()()()()P x dx P x dx f x e C Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这里()()222,x P x Q x x e -= =,代入上式得:2222()dx dxx y e x e e dx C --⎰⎰=+⎰2222()x x x e x e e dx C --=+⎰22()xex dx C -=+⎰323xx eC -⎛⎫=+ ⎪⎝⎭(C 为任意常数). 方法2:由2()(,)xy x ef x x -=有 2(,)()x f x x e y x = (1)已知(,)f u v 满足 (,)(,)u v f u v f u v uv ''+= (2)这是一个偏微分方程,当,u x v x ==时(2)式变为212(,)(,)f x x f x x x ''+=2(,)df x x x dx= 以(1)代入,有 22(())xe y x x '=,即2222()()xxe y x e y x x '+=, 化简得 22()2()xy x y x x e -'+=,由通解公式得x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数).(18)【详解】(I) 由于需求量对价格的弹性d E > 0,所以dPdQQ P E d =1005Q P =-()10051005P P P '--20P P -=-(0,20)P ∈ 20P P -; (II) 由R PQ =,得dR dP ()d PQ dP =dQ Q P dP =+(1)P dQ Q Q dP =+(1)20PQ P-=+-(1)d Q E =-要说明在什么范围内收益随价格降低反而增加,即收益为价格的减函数,0<dPdR,即证(1)01d d Q E E -<⇒>,换算成P 为120PP>-,解之得:10P >,又已知(0,20)P ∈,所以2010P >>,此时收益随价格降低反而增加.(19)【详解】当0x >时,0x -<,所以()()22()x x F x ee F x ---===,同理:当0x <时,x->,所以()()22()x xF x e e F x---===,所以()y F x=是关于y轴对称的偶函数.又2lim()lim0xx xF x e-→+∞→+∞==,2lim()lim0xx xF x e→-∞→-∞==,所以x轴与曲线()y F x=围成一无界区域,面积S可用广义积分表示.()y F x=图形如下:(I) ()S F x dx+∞-∞=⎰()F x偶函数22xe dx+∞-⎰2(2)xe d x+∞-=--⎰201xe+∞-=-= )(1tS表示矩形t x t-≤≤,0()y F x≤≤的面积,所以ttetS212)(-=,因此21()()12tS t S S t te-=-=-,(0,)t∈+∞.(II) 由于tettS2)21(2)(---=',令()0S t'=,得()S t的唯一驻点为21=t,又()S t''()22(12)tt e-'=--222448t t te e te---=+-28(1)tt e-=-,04)21(>=''eS,所以eS11)21(-=为极小值,它也是最小值.(20)【详解】已知T)1,1,1,1(--是该方程组的一个解,故可将T)1,1,1,1(--代入方程组,有110,21120,3(2)(4)41,λμλμ-+-=⎧⎪-++=⎨⎪-+++-=⎩解得μλ=.代入原方程,并对方程组的增广矩阵A施以初等行变换, 得1102112032441Aλλλλ⎛⎫⎪= ⎪⎪++⎝⎭1101(-2),(-3)0121200230224211λλλλλλ⎛⎫⎪--⎪⎪--⎝⎭u u u u u u u u u u u u u u u u r行乘分别加到,行110110(-1)012120001311 3013110121200λλλλλλλλ⎛⎫⎛⎫⨯ ⎪ ⎪--⎪ ⎪⎪ ⎪--⎝⎭⎝⎭u u u u u u u u u r u u u u u u u r2行2,3行加到行互换1102(21)013113002(21)2121λλλλλλ⎛⎫⨯- ⎪⎪ ⎪---⎝⎭u u u u u u u u u u u u u u r 行加到行 ()I 当21≠λ时,有 A 3(21)λ÷-u u u u u u u u u u u u u u r 行 1100131100211λλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,故43)()(<==A r A r . 定理:设A 是m n ⨯矩阵,方程组Ax b =,则,(1)有唯一解()()r A r A n ⇔==;(2)有无穷多解()()r A r A n ⇔=<;(3)无解:()1()r A r A ⇔+=,故方程组有无穷多解.所以,该方程组有无穷多解,对应的齐次线性方程组同解方程组为1234234343020x x x x x x x x x λλ+++=⎧⎪++=⎨⎪+=⎩ 由于此方程组的系数矩阵的秩为3,则基础解系的个数为43n r -=-=1,故有1个自由未知量.选2x 为自由未知量,取21x =-,得方程组的基础解系为Tη)2,1,1,2(--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0k ηξ+(k 为任意常数).当21=λ时,有 11110220131100000A ⎛⎫ ⎪⎪→ ⎪ ⎪⎪⎝⎭, 可知,42)()(<==A r A r ,所以该方程组有无穷多解,对应的齐次线性方程组的同解方程组为12342341102230x x x x x x x ⎧+++=⎪⎨⎪++=⎩ 则基础解系的个数为42n r -=-=2,故有2个自由未知量.选34,x x 为自由未知量,将两组值:(1,0),(0,2)代入,得方程组的基础解系为Tη)0,1,3,1(1-=,Tη)2,0,2,1(2--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--(21,k k 为任意常数).()II 当21≠λ时,方程组的通解为 0(1,0,0,1)(2,1,1,2)(21,,,21)T T T k k k k k k ξξη=+=-+--=---+若32x x =,即k k =-得0k =,故原方程组满足条件32x x =的全部解为(1,0,0,1)T-.当21=λ时,方程组的通解为 0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--=121212(1,32,,21)Tk k k k k k ----+若32x x =,即 12132k k k --=,得212k k =-,代入通解,得满足条件32x x =的全部解为1(3,1,14)(1,0,0,1)T Tk -+-(21)【分析】由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】()I A 的秩为2,于是0||=A ,所以|0|0E A A ⋅-==,因此A 的另一特征值03=λ.特征值的性质:若i λ是矩阵A 的k 重特征值,则矩阵A 属于的线性无关的特征向量的个数不超过k 个又621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量个数2≤. 因此123,,ααα必线性相关.由题设知T α)0,1,1(1=,T α)1,1,2(2=为A 的属于特征值6的线性无关的两个特征向量.定理:实对称矩阵对应与不同特征值的特征向量是正交的.设03=λ所对应的特征向量为Tx x x α),,(321=,所以,01=ααT,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x则基础解系的个数为32n r -=-=1,故有1个自由未知量. 选2x 为自由未知量,取21x =得方程组的基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).()II 令矩阵),,(21αααP =,求1P -121100111010011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭M M M 1211001(1)2012110011001-⎛⎫ ⎪⨯--- ⎪ ⎪⎝⎭MM u u u u u u u u u u u u u u u u u u u r M 行加到行 12110012012110003111-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u u u r M 行加到行1211000121100011/31/31/3-⎛⎫ ⎪÷-- ⎪ ⎪-⎝⎭M M u u u u u u u r M 3行3 1211000101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪⎪-⎝⎭M M u u u u u u u u u u u u u u u u r M 3行(-2)+2行10001120101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪ ⎪-⎝⎭M Mu u u u u u u u u u u u u u u u u u u u u u u u u u u u u r M 3行,2行依次加到1行, 1000112(1)0101/31/32/30011/31/31/3-⎛⎫ ⎪⨯-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u r M 行则 1P -=011112333111333⎛⎫ ⎪- ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以 1066-⎪⎪⎪⎭⎫⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661********⎪⎪⎪⎭⎫ ⎝⎛--=422242224.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意。
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y lnx上与直线x y 1垂直的切线方程为.(2)已知 f (e x) xe x,且f(1) 0,则f(x)=.(3)设L为正向圆周x2 y2 2在第一象限中的部分,则曲线积分Lxdy 2ydx的值为.(4)欧拉方程x2嗅4xdy 2y 0(x 0)的通解为^dx2dx -------------2 1 0(5)设矩阵A 1 2 0,矩阵B满足ABA* 2BA* E ,其中A*为A的伴随矩阵,E 0 0 1是单位矩阵,则|B =.(6)设随机变量X服从参数为的指数分布,则P{ X JDX} =.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中只有一个符合题目要求,把所选项前的字母填在题后的括号内)x o x2- ■ x(7)把x 0时的无力小重cost出,tandtdt, sin t dt ,使排在后面的0 0 0是前一个的高阶无穷小,则正确的排列次序是(A),,(C),,(8)设函数f (x)连续,且f⑼0,则存在(A)他)在(0,)内单调增加(C)对任意的x (0,)有f(x) f(0) (B),,(D),,0,使得(B)“刈在(,0)内单调减少(D)对任意的x ( ,0)有f(x) f(0)(9)设 a n 为正项级数,下列结论中正确的是 n 1 (A)若 limna n =0, 则级数 a n 收敛ndn 1(B)若存在非零常数,使得lim na n,则级数 a n 发散ndn 1(C)若级数 a n 收敛,则n imn 2a n 0n 1n(D)若级数 a n 发散,则存在非零常数,使得lim na n n 1 n(10)设 f(x)为连续函数,F(t) 1t dy : f (x)dx ,则 F (2)等于(B) f(2)(C) f ⑵(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足AQ C 的可逆矩阵Q 为0 1 0(B) 1 0 10 0 1 0 1 1(D) 1 0 00 0 1(12)设A,B 为满足AB O 的任意两个非零矩阵,则必有(13)设随机变量X 服从正态分布N(0,1),对给定的(01),数u 满足P{X u} ,若 P{X x} ,则 x 等于(A) 2 f (2) 0 1 0(A) 1 0 01 0 1 0 1 0(C) 1 0 00 1 1(A) A 的列向量组线性相关 (B) A 的列向量组线性相关 (C) A 的行向量组线性相关(D) A 的行向量组线性相关 ,B 的行向量组线性相关 ,B 的列向量组线性相关 ,B 的行向量组线性相关,B 的列向量组线性相关(A) u(B) u1 _22(C) u 二 (D) U 1n(14)设随机变重X i ,X 2,,X n (n 1)独立同分布,且其万差为20.令Y - X i , n i 1(A) Cov(X 1,Y)一n三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算 步骤)(15)(本题满分12分)设 e a b e 2,证明 ln 2b ln 2a --2- (b a). e(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速 伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打 开后,飞机所受的总阻力与飞机的速度成正比 (比例系数为k 6.0 106).问从着陆点 算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分 I2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,其中 是曲面 z 1 x 2 y 2(z 0)(18)(本题满分11分)设有方程x n nx 1 0,其中n 为正整数.证明此方程存在惟一正实根 x n ,并证明当 1时,级数X n 收敛.n 1(B) Cov(X 1,Y) (C) D(X 1 Y)42n(D) D(X 1 Y)— n(19)(本题满分12分)设z z(x,y)是由x2 6xy 10y2 2yz z2 18 0确定的函数,求z z(x,y)的极值点和极值.(20)(本题满分9分)(1 a)x1 x2 L x n 0,设有齐次线性方程组2x1 (2 a)x2 L 2x n 0, (n 2),L L L L L Ln% n” L (n a)x n 0,试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)1 2 3设矩阵A 1 4 3的特征方程有一个二重根,求a的值,并讨论A是否可相似1 a 5对角化.(22)(本题满分9分)设A,B 为随机事件,且P(A) 1,P(B|A) 1,P(A|B) L 令 4 32X 1, A发生,Y 1, B发生,0,A不发生;0,B不发生.求:(1)二维随机变量(X,Y)的概率分布.(2) X 和Y 的相关系数(23)(本题满分9分)设总体X 的分布函数为其中未知参数 1,X 1,X 2, ,X n 为来自总体X 的简单随机样本,求:(1) 的矩估计量.(2) 的最大似然估计量2004年数学一试题分析、详解和评注填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx 上与直线x y 1垂直的切线方程为y x 1.【分析】本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
南京邮电大学2013年数字信号处理初试真题一:填空题(每空2’共20’)1.已知以模拟信号采样频率,求传输速率,一分钟存储容量2.已知一因果系统传递函数,求系统稳定a的取值范围(宝书上大题改编)3冲击响应不变法与双线新变换法模拟频率与数字频率的关系4DFT与FFT运算量5极限环震荡产生原因二判断题(每题2’共10’)1系统的因果稳定性2DTFT与FFT适用条件3并联型结构便于调整零点4双线性变换法只会改变个别点频率5三简答题(每题8’共40’)1简述窗口法设计线性相位滤波器的基本思想,并分析目标参数对系统性能的影响2画出4点按时间抽取FFT流图,并简述由FFT求得IFFT步骤3用DFT进行频谱分析,影响模拟频率分辨率的参数,已知一模拟频率分辨率,如何确定信号持续时间4什么是频谱泄露现象,并分析如何减小频谱泄漏的影响5已知零极点分布图,写出收敛域,并指出序列(左边,右边,双边);若已知是双边序列,问序列有几种,写出收敛域四证明题10’已知振幅函数证明二阶Butterworth FR传递函数(反归一)五画图计算设计题(1—410'5—615'共70')1求一长度为八矩形序列的传函,用几何法定性画出幅频响应,并画出零极点分布图(常规)2线性卷积与圆周卷积计算bi并由此得出圆周卷积代替线卷的条件(原题)3已知一LTI是不变因果系统传函,求单位脉冲响应、差分方程、频率响应(常规)4已知一线性相位结构图:判断第几类何种滤波器、写出单位脉冲响应、求出在0、pi的一半和pi的幅值、画出相频响应(原题重考)5求x(n)=cos(npi)的四点DTFT,FFT,不通过公式求8点FFT、由此推出DFT与FT的关系(宝书资料上)6已知一传函,定点舍入,量化噪声通过线性系统,求出并联结构的输出噪声总功率(原题)PS:这三天几乎没吃饭也没睡觉,考研已把我折磨的精疲力尽,无论结果如何,都将无怨无悔,毕竟木已成舟,竭尽全力。
2000年试题参考答案一、填空 1、)(log 2i x p -∑∞=-12)(l o g )(i i i x p x p p(x i )=n1i=1,2,3…2、)2)(exp(21)(22σσπa x x f --=ak 0(a H t E ∙=)0()]([ξ) π2020hw n k (输出噪声功率谱密度H o w w k n w p ≤=200)()3、恒参信道 随参信道 恒参信道4、接收信号中除当前码元以外的所有码元在抽样时刻的总和si s sT w T T i w H ππ22)4(≤=+∑+∞-∞= 部分响应系统 滚降系统(均衡?)5、相位连续 幅度恒定(能量集中) 带宽最小6、2,17、hc c w w w w H w w H ≤=-++常数)()( 相干二、1、信息熵H=-p(x 1)2log p(x 1)-p(x 0)2log p(x 0)=0.97 bit/符号 信息速率Rb=1000×0.97bit/s=970 bit/s2、接收端收到0的概率p(0)=0.4×0.97+0.02×0.6=0.4(全概率公式) 接收端收到1的概率p(1)=1-p(0)=0.6 平均丢失信息量H(x/y)= -p(0)[p(0/0)2log p(0/0)-p(1)2logp(1/0)] -p(1)[p(0/1)2logp(0/1)-p(1)2logp(1/1)]=0.4[0.972log 0.97-0.022log 0.02]-0.6[0.032log 0.03-0.982log 0.98]=0.16 bit/符号 信息传输速率R=1000(H -H(x/y))bit/s=810 bit/s三、1、mm f f w A k m =11022/1044=⨯===f m m f m radw v A srad k ππ2、)]102sin(102cos[)(46t t A t m s ⨯+⨯=ππ3、khz B mkhz f m f B ff 40110)1(2===+=4、调制制度增益6)1(32=+=f fm m G 接收机输出信噪比3106161⨯==oo ii N S N S噪声功率w k B n Ni7120108401010222--⨯=⨯⨯⨯=⨯⨯=接收机输入信号功率w N S i i 4310341061-⨯=⨯⨯=平均发射功率w S Si 3400106=⨯=四、1、等效带宽0041221ττππ=⨯=B 奈奎斯特传输速率baudR B 0max 21412ττ=⨯=2、系统实际带宽002121ττππ=⨯=B 最高频带利用率hz baud B R B /10max ==η3、s bit R R B b /238log 02max τ=⨯=4、s bit R s bit R b b /23/340max 0ττ=<=但由于,2,1230=≠k kR b τ因此存在码间干扰(无码间干扰传输要求⋅⋅⋅==,2,1,max n nR R B B ) 五、发送”1”错判为”0”的概率2)1()1()(21011-=-+=-=⎰⎰+-+-A dV A V dV A V f Pe AA发送”0”错判为”1”的概率2)1()1()(210100-=--=-=⎰⎰--A dV A V dV A V f Pe AA系统误码率2)1(2121201-=+=A Pe Pe Pe (对双极性信号,最佳判决门限为Vd *=0)六、1、用π相位表示”1”,用0相位表示 ”0”,2PSK 波形如图1 1 0 0 1 1 0 02、baudk R sbit k R B b 2048/2048== 信号频率khz f s 2048=带宽khz f B s 40962== 频带利用率hz baud BR B /5.0==η3、 框图如下图 (反向抽判)各点波形如下图参考”0” 1 1 0 0 1 1 0 0abcd七、1、输出信噪比No Mq S 222==,由题意7,102,10,40lg10424≥≥≥≥N qS qS No o 即2、抽样频率m 2f f s ≥,码元周期s T s μ2=,码元速率MbaudT R sB 5.01==,时分复用时,hz f R f m B s 3571,710≤≤⨯⨯3、为保证不过载,要求m s m s m m f f A f f A πσπ200,01.02≥=≤∙ 八、1、1),()(=-=k t T ks t h 一般情况2、3、最佳判决时刻取20T t =,02max 2max 2A ,41,2n T r T A E n E r ===故九、1、当输入为时,)(t δ系统冲激响应为)2()()(s T t t t h --=δδ,wTs j e w H 21)(--=2、易知该系统为第Ⅳ类部分响应系统,因此12-=r C r2001年试题参考答案一、填空 1、M2logMsT 2l o g 1sT 2M2log212、R (∞) R(0) R(0)-R (∞)3、接收信号中除当前码元以外的所有码元在抽样时刻的总和si ssT w T T i w H ππ≤=+∑+∞-∞=)2( 部分响应系统 滚降系统(均衡?)4、552khz 96khz (为余数为最大整数,,k n kB nB f nk B f h s 22),1(2+=+=)5、最大似然比准则 -1 2psk6、最大输出信噪比准则 )()(*d jwt t t kS e W kS d--二、1、22/105.0)()()(322B f f B f hzw k f H f P f P c c i o +≤≤-⨯==-w B k df k df f P N Bf B f o o c c 32223210105.02)(-+--∞+∞-⨯=⨯⨯==⎰⎰(系数2是由于双边功率谱密度)2、)310)(5.0)(-⨯=τδτi R (注:)(频域,时域频域)((时域w t πδδ211↔↔))]()([105.0)(32c B c B o f f g f f g k f P ++-⨯=-(选用f 作变量时,无系数2π)tf j c B tf j c B c c eBt BSa f f g eBt BSa f f g ππππ22)()(,)()(-↔+↔-(频域平移,c c f w π2=)32223210)2cos()(])()([105.0)(---⨯=+⨯=τπτπππτππc tf j tf j o f B BSa k eBt BSa e Bt BSa k R c c 三、 1、5=mm f W A k rad w v A v rad km m f33102,10,/10⨯===ππ,)102sin(10)(3t t m ⨯=π2、5==mm f f W A k m3、khz m f B f 126102)1(23=⨯⨯=+=,载频hz f c 610=4、输入信号功率w v S i 50002)100(2==输入噪声功率w B f Pn N i 4.2)(2==调制制度增益450)1(32=+=f fm m G 310375.94.25000450⨯=⨯=oo N S四、信息码 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 差分码0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 HDB3 +1 0 -1 0 +1 -1 +1 -1 +1 -1 0 0 0 –V +B 0 0 +V 0 0 五、1、抽样频率khz f s 8= 编码位数38log 2==N 带宽khz khz B 2408310=⨯⨯=2、khz B B 480)1('=+=α 六、发送”1”错判为”0”的概率=--=-=⎰⎰∞-∞-dx A x dx A x f Pe Vdnn Vd]2)(exp[21)(221σσπ发送”0”错判为”1”的概率dx A x dx A x f Pe VdnnVd⎰⎰∞-+-=+=]2)(exp[21)(220σσπ系统误码率为dxA x p dx A x p Pe p Pe p Pe VdnnVdnn⎰⎰∞-∞-+-+--=+=]2)(exp[21)0(]2)(exp[21)1()0()1(222201σσπσσπ最佳判决门限设为*d V ,应使系统误码率最小。
2004年考研真题答案一、政治理论1. 马克思主义哲学的基本原理包括:- 物质与意识的关系- 事物的发展规律- 社会历史发展的规律2. 社会主义市场经济的基本特征包括:- 公有制为主体- 多种所有制经济共同发展- 市场在资源配置中的决定性作用3. 社会主义初级阶段的基本路线是:- 坚持四项基本原则- 坚持改革开放- 以经济建设为中心二、英语1. 阅读理解部分答案:- 文章A的主题是...- 文章B讨论了...- 根据文章C,我们可以得出...2. 完形填空部分答案:- 第1题:选择A,因为...- 第5题:选择B,理由是...3. 翻译部分答案:- 中译英:原文... 翻译为...- 英译中:原文... 翻译为...三、数学1. 高等数学部分答案:- 第一题:根据微积分基本定理,我们可以得到...- 第二题:利用泰勒展开,我们可以推导出...2. 线性代数部分答案:- 第三题:矩阵的秩可以通过...- 第四题:通过特征值和特征向量的计算,我们可以确定...3. 概率论与数理统计部分答案:- 第五题:根据大数定律,我们可以推断出...- 第六题:利用中心极限定理,我们可以得出...四、专业课1. 专业基础理论部分答案:- 第一题:该理论的核心观点是...- 第二题:在实际应用中,我们需要注意...2. 专业综合能力测试部分答案:- 第三题:结合案例分析,我们可以得出...- 第四题:在解决实际问题时,我们应该考虑...结束语以上是2004年考研真题的部分答案示例,考生在复习时应结合具体科目和真题内容,深入理解知识点,加强练习,以提高解题能力。
同时,考生应注意答题技巧和时间管理,确保在考试中能够发挥出最佳水平。
请注意,以上内容仅为示例,具体的答案需要根据实际的考研真题进行填写。
如果需要特定科目的详细答案,请提供具体的题目或相关信息。