初中数学《整式的加减》单元教学设计以及思维导图
- 格式:doc
- 大小:154.00 KB
- 文档页数:10
整式的加减单元教学设计
主题单元学习目标
知识与技能
1.理解整式、单项式、多项式、同类项的概念;
2.熟练指出单项式的系数、次数和多项式的项数、次数,把一个多项式写成按某个字母的降幂或升幂排列;
3.掌握合并同类项法则;
4.能灵活应用去括号法则,进行整式加减运算.
过程与方法
1.通过回忆和交流,经历对已有知识的归纳;对本章内容的认识更全面、更系统化
2.通过应用与实践,提高分析问题、解决问题的能力;培养学生主动分
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结:
整式
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
活动2:自主学习,合作交流
出示相关练习:1.计算:―2y3+(3xy2―x2y)―2(xy2―y3)
化简求值:(2x3―xyz)―2(x3―y3+xyz)+(xyz―2y3),其中x=1,y=2,z=―3
小组之间,师生之间交流,共同总结整式的加减运算的步骤
活动3:巩固提升
布置适当的练习,巩固所学知识。
人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0 a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
整式加减大单元教学设计边角料
系数
次数
项数
书写要求
数字与字母相乘
1.数字写在字母的前面
2.乘号可以省略
系数要求
1.系数是±1时,1可以省略
2.系数不能是带分数
指数要求指数是1时省略不写
字母书写顺序和英语字母表的排列顺序相同主要考点推规律
核心内容
去括号
合并同类项
主要考点
单项式与单项式的和差还是单项式
单项式多项式次数相等
合并同类项后与某些字母无关或不含某些项
绝对值的化简
日历中的问题
数轴上的动点
实际应用问题。
人教版七年级数学上册知识点思维导图及总结 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1? a 、b 互为倒数;若ab=-1? a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
你现在的努力要对得起别人对你的好!
Math 实验室-1-人教版七年级数学上册章节思维导图
共4章
人教版七年级数学上册教材目录
第1章有理数的思维导图
1.1正数和负数
1.2有理数
1.3有理数的加减法
1.4有理数的乘除法
1.5有理数的乘方
第2章整式的加减的思维导图
2.1整式
2.2整式的加减
第3章一元一次方程的思维导图
3.1从算式到方程
3.2解一元一次方程(一)——合并同类项与移项
3.3解一元一次方程(二)——去括号与去分母
3.4实际问题与一元一次方程
第4章几何图形初步的思维导图
4.1几何图形
4.2直线、射线、线段
4.3角
4.4课题学习
设计制作长方体形状的包装纸盒。
初一上册二三单元数学思维导图2.1整式1、单项式:由数字和字母乘积组成的式子。
判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
2、多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。
每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
3、单项式和多项式统称为整式。
2.2整式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:一去、二找、三合(1)如果遇到括号按去括号法则先去括号.(2)结合同类项.(3)合并同类项3.1一元一次方程1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
注意:判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1.3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质:1)等式两边同时加(或减)同一个数(或式子),结果仍相等;2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.3.2、3.3解一元一次方程在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用.因此在解方程时还要注意以下几点:①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。
人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、个章节的内容.整式的加减、一元一次方程、图形的认识初步四第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成q 0)形式的数,都是有理数.正整数、0、负整数统称整数;正(p,q为整数且pp分数、负分数统称分数;整数和分数统称有理数.注意:即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零(2)有理数的分类: ①有理数零②有理数负整数负有理数负整数分数正分数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1 )只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是;(2)相反数的和为0 a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a 0)(a 0)a(2)绝对值可表示为:a0(a 0)或a a (a0);绝对值的问题经常分类讨论;a (a 0)5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是1 ;a若ab=1 a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律: a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-a n或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=a n 或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、个章节的内容.整式的加减、一元一次方程、图形的认识初步四第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成q 0)形式的数,都是有理数.正整数、0、负整数统称整数;正(p,q为整数且pp分数、负分数统称分数;整数和分数统称有理数.注意:即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零(2)有理数的分类: ①有理数零②有理数负整数负有理数负整数分数正分数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1 )只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是;(2)相反数的和为0 a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a 0)(a 0)a(2)绝对值可表示为:a0(a 0)或a a (a0);绝对值的问题经常分类讨论;a (a 0)5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是1 ;a若ab=1 a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律: a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-a n或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=a n 或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
第一章 有理数思维导图 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧<≤⨯⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧分配律乘法结合律加法结合律结合律乘法交换律加法交换律交换律运算律乘方的运算符号法则有理数的除法法则有理数的乘法法则有理数的减法法则有理数的加法法则法则运算方法叫做科学记数法是正整数),这种记数,的形式(其中把一个数表示乘——科学记数法数相同因数的个数叫做指相同的因数叫做底数,叫做幂叫做乘方,乘方的结果个相同因数的积的运算求——乘方的两个数互为倒数—乘积是—倒数的绝对值叫做数的点与原点的距离,一般地,数轴上表示数——绝对值数,叫做互为相反数—只有符号不同的两个—相反数相关概念负有理数正有理数按性质符号分分数整数按定义分分类有理数n 10a 110a n 1a a 0n第二章 整式的加减思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧合并同类项去括号步骤反的符号与原来的符号相去括号后原括号内各项——括号外因数为负同的符号与原来的符号相去括号后原括号内各项——括号外因数为正去括号作为合并后项的系数所得的结果把同类项的系数相加,——合并同类项同字母的指数也相同—所含字母相同并且相—同类项整式的加减的次数—多项式中次数最高项—次数—不含字母的项—常数项项式—组成多项式的每个单—项—几个单项式的和—定义多项式指数的和—单项式中所有字母的—次数—单项式中的数字因数—系数的式子—由数或字母的积组成—定义单项式用字母表示数减加的式整第三章 一元一次方程思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧际意义符合题意,是否符合实验:检验所求的解是否值中所要求的相关数量的出未知数的值以及题目解:解所列的方程,求一个数字列方程关系以及若干倍多或少关系、相等关系、倍数列:根据题目中的数量与所列方程有关的数量含未知数的代数式表示设:设未知数,并且用数量间的关系知量和未知量,明确各审:弄清题意,分清已解应用题一次方程列一元系数化为合并同类项移项去括号去分母解一元一次方程的步骤的数,结果仍相等,或除以同一个不为:等式两边乘同一个数性质,结果仍相等或式子同一个数或减:等式两边加性质等式的性质过程解方程:求方程的解的数的值号左右两边相等的未知方程的解:使方程中等等号两边都是整式,,未知数的次数都是元一个未知数一元一次方程:只含有式方程:含有未知数的等一元一次方程程方次一元一102)()(11)(第四章 几何图形初步思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧角的度量互补互余两角的特殊关系比较大小的方法表示方法定义角线段的和、差与画法线段的中点两点之间的距离段最短基本事实:两点之间线比较方法特点表示方法线段特点表示方法射线条直线基本事实:两点确定一特点表示方法直线线平面图形立体图形的平面展示图从上面看从左面看从正面看形从不同的方向看立体图常见的立体图形立体图形几何图形初步。
整式及其加减适用年级七年级所需时间共9课时主题单元学习概述《整式及其加减》是北师大版数学七年级上册的教学内容。
主要内容有字母表示数、代数式、整式、整式的加减、探索与表达规律。
学生在小学阶段已经初步接触过用字母表示数,但由于抽象思维水平有限,学生对字母表示数的认识还较浅显。
基于学生的知识经验水平,教科书注重在具体情境中让学生理解字母表示数的意义,重视代数式的解释,提倡学生自主活动,培养学生发现规律、探求模式的能力,加强对学生数学应用意识和解决实际问题能力的培养。
主题单元规划思维导图主题单元学习目标1.知识与技能(1)经历探索事物之间的数量关系,并用字母与代数式进行表示的过程。
(2)在具体情境中进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示。
(3)理解代数式的含义,能赋予一些简单代数式以实际背景或几何意义,体会数学与现实世界的联系。
(4)会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反应的规律。
(5)了解整式的相关概念,理解合并同类项和去括号法则,并会进行简单的整式加减运算。
(6)能利用字母表示数计整式加减运算,探索具体问题中的一般规律及解释具体问题中的现象或规律。
2.过程与方法(1)建立初步的符号意识,发展抽象思维。
(2)会进行简单的整式运算,发展运算能力。
(3)探索具体问题中的一般规律,积累数学活动经验。
(4)进一步学习用类比、归纳、转化等方法进行思考与运算,发展运算能力,并进一步体会字母表示数的意义,发展符号意识。
3.情感态度与价值观。
(1)在整式及其加减的学习过程中,发展勇于探究、质疑及合作交流的精神。
(2)积累数学活动经验,通过小组合作的方式,能够运用数学知识解决实际问题。
对应课标1.体验从具体情境中抽象出数学符号的过程,理解代数式,掌握必要的运算技能。
2.能分析简单问题中的数量关系,并用代数式表示。
3.会求代数式的值。
4.理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算。
第一章 有理数思维导图 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧<≤⨯⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧分配律乘法结合律加法结合律结合律乘法交换律加法交换律交换律运算律乘方的运算符号法则有理数的除法法则有理数的乘法法则有理数的减法法则有理数的加法法则法则运算方法叫做科学记数法是正整数),这种记数,的形式(其中把一个数表示乘——科学记数法数相同因数的个数叫做指相同的因数叫做底数,叫做幂叫做乘方,乘方的结果个相同因数的积的运算求——乘方的两个数互为倒数—乘积是—倒数的绝对值叫做数的点与原点的距离,一般地,数轴上表示数——绝对值数,叫做互为相反数—只有符号不同的两个—相反数相关概念负有理数正有理数按性质符号分分数整数按定义分分类有理数n 10a 110a n 1a a 0n第二章 整式的加减思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧合并同类项去括号步骤反的符号与原来的符号相去括号后原括号内各项——括号外因数为负同的符号与原来的符号相去括号后原括号内各项——括号外因数为正去括号作为合并后项的系数所得的结果把同类项的系数相加,——合并同类项同字母的指数也相同—所含字母相同并且相—同类项整式的加减的次数—多项式中次数最高项—次数—不含字母的项—常数项项式—组成多项式的每个单—项—几个单项式的和—定义多项式指数的和—单项式中所有字母的—次数—单项式中的数字因数—系数的式子—由数或字母的积组成—定义单项式用字母表示数减加的式整第三章第四章 一元一次方程思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧际意义符合题意,是否符合实验:检验所求的解是否值中所要求的相关数量的出未知数的值以及题目解:解所列的方程,求一个数字列方程关系以及若干倍多或少关系、相等关系、倍数列:根据题目中的数量与所列方程有关的数量含未知数的代数式表示设:设未知数,并且用数量间的关系知量和未知量,明确各审:弄清题意,分清已解应用题一次方程列一元系数化为合并同类项移项去括号去分母解一元一次方程的步骤的数,结果仍相等,或除以同一个不为:等式两边乘同一个数性质,结果仍相等或式子同一个数或减:等式两边加性质等式的性质过程解方程:求方程的解的数的值号左右两边相等的未知方程的解:使方程中等等号两边都是整式,,未知数的次数都是元一个未知数一元一次方程:只含有式方程:含有未知数的等一元一次方程程方次一元一102)()(11)(第五章第六章几何图形初步思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧角的度量互补互余两角的特殊关系比较大小的方法表示方法定义角线段的和、差与画法线段的中点两点之间的距离段最短基本事实:两点之间线比较方法特点表示方法线段特点表示方法射线条直线基本事实:两点确定一特点表示方法直线线平面图形立体图形的平面展示图从上面看从左面看从正面看形从不同的方向看立体图常见的立体图形立体图形几何图形初步。
整式的加减单元教学设计
主题单元学习目标
知识与技能
1.理解整式、单项式、多项式、同类项的概念;
2.熟练指出单项式的系数、次数和多项式的项数、次数,把一个多项式写成按某个字母的降幂或升幂排列;
3.掌握合并同类项法则;
4.能灵活应用去括号法则,进行整式加减运算.
过程与方法
1.通过回忆和交流,经历对已有知识的归纳;对本章内容的认识更全面、更系统化
2.通过应用与实践,提高分析问题、解决问题的能力;培养学生主动分
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结:
整式
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
活动2:自主学习,合作交流
出示相关练习:1.计算:―2y3+(3xy2―x2y)―2(xy2―y3)
化简求值:(2x3―xyz)―2(x3―y3+xyz)+(xyz―2y3),其中x=1,y=2,z=―3
小组之间,师生之间交流,共同总结整式的加减运算的步骤
活动3:巩固提升
布置适当的练习,巩固所学知识。