2-钢的回复、再结晶与控扎
- 格式:ppt
- 大小:1.86 MB
- 文档页数:60
金属塑性成形理论基础回复与再结晶加热对冷塑性变形后金属组织和性能的影响经冷塑性变形的金属,随着加热温度升高,依次发生回复、再结晶和晶粒长大三个阶段变化。
1.回复 3.晶粒长大2.再结晶回复是指经冷塑性变形的金属在加热时,发生某些亚结构及物理和化学性能变化的过程,这时的温度称为回复温度。
T回=(0.25~0.3)T熔1)回复后的组织金属的显微组织无显著变化,原子晶粒大小和形状并无改变,但晶格畸变减轻或消失。
2)回复后的性能 加工硬化后的强度和硬度基本不变,塑性略有提高,残余内应力明显下降或基本消除,物理和化学性能基本地恢复到变形前的水平。
•需进行回复退火处理,以提高导电性能。
进行回复退火以降低其内应力并使之定型,而强度和硬度基本保持不变冷拉钢丝弹簧冷拔铜丝导线去应力退火当经冷塑性变形的金属加热到高于回复阶段的温度时, T再=(0.35~0.4)T熔,在变形组织的基体上又形成新的无畸变的等轴晶粒,取代了原来已变形的组织,这一过程称为再结晶。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)1)再结晶组织:破碎的、被拉长压扁的晶粒出现重新生核、结晶,变为等轴晶粒。
(f)(e)(d)(c)(b)(a)2)再结晶性能:经过再结晶,金属的强度、硬度显著下降,塑性、韧性提高,内应力和加工硬化完全消除,所有性能恢复到变形之前的状态。
再结晶退火有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)晶粒长大,是由于晶界的逐渐移动,晶粒相互吞并来完成的。
强度、硬度将继续下降,塑性会继续提高,在晶粒粗化严重时下降。
3.晶粒长大。
第六章金属与合金的回复与再结晶复习题金属与合金的回复与再结晶复习题一、名词解释:1. 回复:指冷塑性变形的金属在加热时,在显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。
2. 再结晶:是指冷变形金属加热到一定温度之后,在原来的变形组织中重新产生无畸变的新等轴晶粒,而性能也发生明显的变化,并恢复到冷变形之前状态的过程。
3. 临界变形度:使晶粒发生异常长大的变形度(2~10%)生产上应尽量避免在临界变形度范围内进行塑性加工变形。
4. 热加工:在金属的再结晶温度以上的塑性变形加工称为热加工。
5. 冷加工:在金属的再结晶温度以下的塑性变形加工称为冷加工。
二、填空题:1.变形金属的最低再结晶温度是指通常用经大变形量(70%以上)的冷塑性变形的金属,经一小时加热后能完全再结晶(>95%的转变量)的最低温度为再结晶温度。
2.钢在常温下的变形加工称为加工,而铅在常温下的变形加工称为热加工。
3.影响再结晶开始温度的因素预变形度、金属的熔点、微量杂质和合金元素、加热速度、保温时间。
4.再结晶后晶粒的大小主要取决于预变形度和加热温度。
5.金属在塑性变形时所消耗的机械能,绝大部分(占90%)转变成。
6.但有一小部分能量(约10%)是以增加金属晶体缺陷(空位和位错)和因变形不均匀而产生弹性应变的形式(残余应力)储存起来,这种能量我们称之为形变储存能。
7.金属在热加工过程中,由于加工温度高于再结晶温度,金属在塑性变形过程中同时发生回复(动态回复)与再结晶(动态再结晶),使其发生软化。
三、判断题:1.金属的预先变形度越大,其开始再结晶的温度越高。
(×)2.其它条件相同,变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。
(√)3.金属铸件可以通过再结晶退火来细化晶粒。
(×)4.热加工是指在室温以上的塑性变形加工。
(×)5.再结晶能够消除加工硬化效果,是一种软化过程。
金属热加工中的回复与再结晶在金属热加工过程中,材料的微观结构和性能会发生变化,以适应加工过程中的高温和应力条件。
其中,回复和再结晶是两个非常重要的过程,它们对金属热加工的质量和最终产品的性能有着至关重要的影响。
回复是指在一定温度和应力作用下,金属内部微观结构发生调整的过程。
这个过程可以消除部分或全部加工过程中的应力,使材料恢复到接近原始态的稳定结构。
回复主要通过位错的滑移和攀移来实现。
在回复过程中,位错发生相对移动,进而重新排列成较为规则的几何排列,从而减少材料内部的应力。
这种排列的改变可以在一定程度上提高材料的塑性和韧性。
在金属热加工过程中,回复现象可以被用来消除加工产生的残余应力,提高材料的力学性能。
例如,在锻造和轧制过程中,适当的回复可以降低残余应力,提高产品的质量。
回复还可以改善材料的尺寸精度和稳定性。
再结晶是指金属在高温下失去有序的晶体结构,然后在较低的温度下重新获得有序结构的过程。
这个过程通常包括晶核的形成和晶核的长大两个阶段。
再结晶主要通过形核和长大来实现。
在形核阶段,金属内部形成新的晶核,这个过程需要一定的能量。
在长大阶段,新的晶核不断吸收周围的原子,使其体积不断增大。
在金属热加工过程中,再结晶现象可以用来细化材料的晶粒,提高其力学性能。
例如,在铸造和热处理过程中,适当的再结晶可以细化材料内部的晶粒结构,提高其强度和韧性。
再结晶还可以消除材料内部的残余应力,提高其尺寸精度和稳定性。
回复和再结晶是两个相互、相互影响的过程。
在金属热加工过程中,回复主要发生在再结晶之前,它可以消除加工过程中产生的残余应力,为再结晶创造良好的条件。
而再结晶则是在回复的基础上,通过形核和长大等过程,使金属内部结构重新有序化,进一步提高材料的性能。
回复和再结晶对金属热加工性能的影响也十分重要。
在适当的条件下,回复和再结晶可以有效地提高材料的强度、韧性、尺寸精度和稳定性等指标,使产品具有更好的使用性能。
因此,在实际金属热加工过程中,应充分考虑回复和再结晶的影响,通过优化工艺参数来获得高质量的产品。
金属及合金的回复与再结晶回复:冷变形金属在低温加热时,其显微组织无可见变化,但其物理、力学性能却部分恢复到冷塑性变形以前的过程。
晶粒仍保持伸长的纤维状.再结晶:冷变形金属被加热到适当温度后,在变形组织内部新的无畸变的等轴晶粒逐步取代变形晶粒,而使形变强化效应完全消失的过程。
回复与再结晶的驱动力都是储存能的降低储存能:存在于冷形变金属内部的一小部分(约为10%)变形功.形变温度越低,形变量越大,则储存能越高。
储存能存在形式:弹性应变能(3%~12%)+点阵畸变能点阵畸变能包括点缺陷能和位错能,点缺陷能所占的比例较小,而位错能所占比例较大,约占总储存能的80~90%。
力学性能的变化在回复阶段:强度、硬度均略有下降,而塑性有所提高.在再结晶阶段:硬度、硬度均显著下降,塑性大大提高.在晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗化严重时下降另外,金属的电阻与晶体中点缺陷的浓度有关。
随着加热温度的升高,变形金属中的点缺陷浓度明显降低,因此在回复和再结晶阶段,电阻均发生了比较明显的变化,电阻不断下降。
此外,点缺陷浓度的降低,应力腐蚀倾向显著减小。
回复过程及其动力学特征回复是指经冷塑性变形的金属在加热时,在光学显微组织发生变化前所产生的某些亚结构和性能的变化过程.回复的程度是温度和时间的函数.温度越高,回复的程度越大.温度一定时,回复的程度随时间的延长而逐渐增加.但在回复初期,变化较大,随后就逐渐变慢,当达到一个极限值后,回复停止。
回复机制低温回复时,主要涉及空位的运动。
空位可以移至表面、晶界或位错处消失,也可以聚集形成空位对、空位群,还可以与间隙原子相互作用而消失,总之空位运动的结果使空位密度大大减小。
电阻率对空位密度比较敏感,因此其数值会有显著下降。
而力学性能对空位的变化不敏感,没有变化。
中温回复时,主要涉及位错的运动。
由于位错滑移会导致同一滑移面上异号位错合并而相互抵消,位错密度略有下降,但降低幅度不大,力学性能变化不大。
冷变形Q235钢的回复与再结晶实验报告根据加热温度不同,发生回复、再结晶及晶粒长大过程,经塑性变形后的金的过程称之为“退火”回复阶段,从光学显微镜下观察的组织几乎没有变化,晶粒仍是冷变形之后的纤维状;在再结晶阶段,首先是出现新的无畸变的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止;晶粒长大阶段,是在界面能的驱动下,再结晶的新晶粒相互吞并而长大,以获得该温度下更为稳定的晶粒尺寸回复和再结晶的驱动力是内部储存的畸变能(内应力),在回复和再结晶过程中全部释放出来,不同的金属类型,再结晶以前释放的储能不同,从纯金属→不纯金属→合金,储能的释放增加;由于杂质和溶质原子阻碍再结晶的形核和长大,推迟再结晶过程.三个阶段金属的性能变化:①电阻率在回复阶段就已明显下降,到再结晶时下降更快,最后恢复到变形前的电阻;②强度和硬度在回复阶段下降不多,再结晶开始后硬度急剧下降,降低的规律因金属的种类不同而不同;③内应力在回复阶段明显下降,宏观内应力在回复时可以全部或大部分被消除,微观内应力部分消除;在再结温度以上,微观内应力被全部消除.④材料的密度随退火温度升高而增加.所谓回复是指冷变形金属在加热时,在新的无畸变晶粒出现之前,所产生的亚结构与性能的变化过程.回复动力学研究材料的性能向变形前回复的速率问题:①回复过程没有孕育期;②在一定的温度下,初期的回复速率很高,以后逐渐减慢,直到最后回复的速率为零.③每一个温度的回复过程都有一个极限值,退火温度越高,这个极限值越高,需要时间越短.回复过程的组织变化与回复机制多边形化:金属塑性变形后,滑移面上塞积的同号刃型位错沿原滑移面水平排列,高温时通过滑移和攀移使位错变成沿垂直滑移面的排列,形成所谓的位错墙,每组角度晶界分割晶粒成亚晶,这一过程称为位错的多边形化.只在产生単滑移的晶体中,多边形化过程最典型,多滑移情况下可能存在,更易形成胞状组织.胞状组织的规整化:过剩空位消失,变形胞状组织内的位错被吸引到胞壁,并与胞壁中的异号位错互相抵消位错密度降低,位错变得平直较规整,当回复继续时,胞胞壁中的位错缠结逐渐形成能量较低的位错网,胞壁变薄,单胞有所长大,构成亚晶粒.亚晶粒的合并:可能通过位错的攀移和位错壁的消失,从而导致亚晶转动来完成.。