五年级奥数.几何.正方体与长方体表面积与体积(B级).学生版
- 格式:doc
- 大小:375.50 KB
- 文档页数:10
长方体和正方体的表面积和体积知识框架一、立体图形的体积计算常用公式:二、立体几何相关数学方法:接法:与平面几何中的方法类似,将不规则的图形体积化作规则图形的体积进行加减计算.视图法:主要适用于求正方体积木塔建图形的表面积计算.以及染色问题或计数问题,从上、前、左(下、后、右)这几个基本视角,分析图形的表面.片法:适用于求具有穿孔结构或内部结构的立体图形的体积计算,将立体图形沿某个方向切成多片,化立体为平面.重难点重点:长方体与正方体的表面积和体积的计算公式的理解性记忆与运用.难点:三视图法、内孔结构例题精讲】一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体1【例平方厘米.厘米.那么,这个立体图形的表面积是________5厘米、2厘米、1的棱长分别为厘米的四个正方体紧贴在一起,则所得到的多面体厘米、厘米、【巩固】如图,棱长分别为厘米、2153 _______平方厘米.的表面积是厘米,把它们拼在一起可组成一个3厘米、4厘米、【例2】两个完全相同的长方体的长、宽、高分别为5 平方厘米。
新长方体,在这些长方体中,表面积最小的是________的、86、5、、7432115【巩固】一个正方体木块,棱长是.从它的八个顶点处各截去棱长分别是、、、小正方体.这个木块剩下部分的表面积最少是多少?】有一塔形几何体由若干个正方体构成,构成方式如下图所示,上层正方体下底面的四个顶点是下3【例层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是________.【巩固】有个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如n果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么为多少?n【例4】边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?【巩固】按照上题的堆法一直堆到层(),要想使总表面积恰好是一个完全平方数,则的最小值NN 3N是多少?【例5】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩)写出符合要求的全部答案(下部分的表面积是多少?图42图图 1图3【巩固】如图所示,一个的立方体,在一个方向上开有的孔,在另一个方向上开有的51?25?5??11?55?孔,剩余部分的表面积为多少?【例6】有一个棱长为的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(右上图),求这5cm个立体图形的内、外表面的总面积.【巩固】如图所示,一个的立方体,在一个方向上开有的孔,在另一个方向上开有2?1?5?51555??1?的孔,在第三个方向上开有的孔,剩余部分的体积是多少?表面积为多少?5?1?3.【例7】一个的立方体,在三个方向上分别开有如图所示打通的孔,剩余部分的表面积为多少?55?5?【巩固】一个的立方体,在三个方向上分别开有如图所示打通的孔,剩余部分的表面积为多少?555【例8】如图,底面积为100平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体厘米。
五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。
这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。
根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。
例2:一个零件形状大小如下图,求它的表面积。
由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。
长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。
例3:有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
求它的表面积。
(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。
长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。
例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
首先可以将这个立体图形分解为一个长方体和两个正方体。
长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。
正方体的边长为5,表面积为6×(5×5)=150平方厘米。
因此这个立体图形的表面积为300+150+150=600平方厘米。
例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。
长方体和正方体的表面积例1、一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,它的表面积是多少平方厘米?例2、一个零件形状大小如下图:算一算,它的表面积时多少平方厘米。
例3、有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
你能算出它的表面积吗?(单位:厘米)例4、下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
例5、一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?例6、一个正方体和一个长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方米。
原来正方体的表面积是多少平方厘米?例7、一个长方体,高截去2厘米,表面积就减少了48平方厘米,剩下部分成为一个正方体,原长方体的表面积是多少平方厘米?例8、一个正方体的棱长是3厘米,表面涂满了红漆,把它切成棱长为1厘米的小正方体若干块,问:在这些小正方体中,三面涂有红色的有多少块?两面涂有红色的有多少块?一面涂有红色的有多少块?六个面都没有涂上红色的有多少块?例9、用6块棱长分别为1、2、3厘米的长方体木块拼成一个大长方体,共有多少种拼法?表面积最大可以是多少平方厘米?例10、一个长方体的长、宽、高分别是6厘米、5厘米、4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?应用与拓展1、一个长方体和一个正方体的棱长和相等,已知长方体的长、宽、高分别是6分米、4分米、2分米,正方体的表面积是多少平方分米?2、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积是多少?3、有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下的物体的体积和表面积各是多少?4、19个棱长为1厘米的小正方体堆成如下图的形状,求它的表面积是多少平方厘米?5、把一根长方体木料锯成5个相等的正方体,表面积比原来增加了96平方厘米,这根木料原来的表面积是多少平方厘米?6、下图正方体木块的表面积是36平方分米,把它沿虚线截成体积相等的8个正方体木块,这时表面积增加了多少平方分米?7、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?8、把若干个棱长为1厘米的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,堆成的大正方体的表面积是多少平方厘米?9、若将三个棱长分别为1、2和3厘米的正方体粘在一起成为物体甲,则物体甲的表面积最小是多少平方厘米?10、有三块完全一样的长方体,每块长8厘米,宽5厘米,高3厘米。
长方体、正方体的体积【知识讲述】在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。
解答上述问题,必须掌握这样几点:1,将一个物体变形为另一种形状的物体(不计损耗),体积不变;2,两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;3,物体浸入水中,排开的水的体积等于物体的体积。
【例题精讲】例1、有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?练习、有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它的长6分米、宽和高都是4分米。
现在要从甲水池中抽一部分水到乙水池,使甲水池中水面是乙水池水面高度的2倍。
问甲水面高多少?例2、将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。
练习、有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。
现将三块铁熔成一个大正方体,求这个大正方体的体积例3、有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。
如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?练习、有一个正方体容器,边长是24厘米,里面注满了水。
有一根长50厘米,横截面是12平方厘米的长方形的铁棒,现将铁棒垂直插入水中。
问:会溢出多少立方厘米的水?例4、有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。
如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米?练习、有两个长方体水缸,甲缸长3分米,宽和高都是2分米;乙缸长4分米、宽2分米,里面的水深1.5分米。
第15讲长方体和正方体(三)一、知识要点解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
二、精讲精练【例题1】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少平方厘米?练习1:1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?【例题2】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?练习2:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?【例题3】有一个正方体,棱长是3分米。
如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?练习3:1.用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?【例题4】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?【例题5】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。
【五年级奥数举一反三—全国通用】测评卷18《长方体和正方体的表面积》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共9小题,满分18分,每小题2分)1.(2分)如图,一个长8厘米、宽6厘米、高10厘米的长方体木块中,挖去一个棱长为3厘米的正方形的孔,木块现在的表面积是()平方厘米.A.367 B.376 C.412 D.430【解答】解:(86810106)334⨯+⨯+⨯+⨯⨯=+37636=(平方厘米)412答:木块现在的表面积是412平方厘米.故选:C。
2.(2分)把10个相同的小正方体按如图所示的位置堆放,它的外表含有若干个小正方形,如图将图中标有字母A的一个小正方体搬去,这时外表含有的小正方形个数与搬动前相比()A.不增不减B.减少1个C.减少2个D.减少3个【解答】解:由图可知,搬动前小正方体A外表含有3个小正方形,搬动后A所在的位置有3个小正方形作为外表露出,所以小正方形的个数与搬动前相比不增不减.故选:A。
3.(2分)两个相同的正方体拼成一个长是2a厘米的长方体,这个长方体的表面积是()平方厘米.A.2a B.28a D.210a6a C.2【解答】解:22÷=(厘米)a a2⨯⨯=(平方厘米)1010a a a故选:D。
4.(2分)一个长方体,它的高和宽相等,若把长去掉2.5厘米,就成为表面积是150平方厘米的正方体,长方体的长是宽的()倍.A.1.5 B.2 C.2.5 D.3【解答】解:正方体的一个的面积是:150625÷=(平方厘米),正方体的棱长是:因为5的平方是25,所以正方体的棱长是5厘米,长方体的长是:5 2.57.5+=(厘米),长是宽的:7.55 1.5÷=倍;故选:A。
5.(2分)把4l个棱长为l的正方体,在地面上堆叠成如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A.21 B.24 C.33 D.37【解答】解:根据以上分析红色部分面积为:+⨯++94(123)=+⨯946924=+=.33答:红色部分的面积为33.故选:C。
★巧求长方体和正方体的面积:L求较复杂的长方体和正方体的周长、表面积、体积奪的一些方法.£灵活运用长方体和正方体的特征以及体积、表面欣计算公式,想一想、填一填口1. 长力体有()个面、(〉个顶点,〔)条棱勺2. 如果这个长方体的长为s宽为趴髙为阳请写出它的表面税和体积的计算方法。
(D表面积’___________________ $(右体积:3.当长方体的长.宽,高相等时,它就是一个正方体,所以我们说,正方体是特殊的(卄它的6个面都是()a4.如果这不正方体的棱长是◎请写出它例2 —个长$分米、宽5井米. 高2分米的纸箱,用三根绳子捆起来•如旳•打结处要用1分米绳子,这二根绳子的总长至少是多少分米?例勺下图是由18个棱长为1厘米的小正方形拼成的,求它的表面积榔例夕 下图是由16块棱长为3厘米的小正方体堆成的,它的表 面积是多少平方厘米?例5 —个长方休,它的高和宽相等*若把长去掉乙5厘米,就战为表面积是150平方厘米的正方仏长方体的长是宽的几 亠如下图,-个正方体木块用长是15o 从它的八个顶点处各 倍?-可编辑修改我去域长分别是1的小正方俟。
这个木块剩下部分的表面积最少是多少?的表面积和体积的计算方法。
(1)表面积: _______________ *(2)体积: _________{例4J 在一个棱长为5分米的 正方体上放一个棱长为4分奉的小正 方徘(右图人求这个立体图形的表 面积.例4下图是一个棱长为4唱米的立方体木块,将它染成红色, 然后锯成棱长为1厘米的小立方体木块'其中每个面都没有染 色的有多少块?例召一个长方休的长、SL高分别長两位整数■其中长最大,高最小*并且一条长、一条寛、一条高的和为偶数。
长方体的体积是下面四个数之一:873趴6禍4、&967J85昭求这个长方体的长*宽俩。
例7如图表示一个正方休■它的棱长为4 11米*在它的上下、前后*左右的正中位置各挖去一个梭长为1厘米的正方体■问此图的表面积是多少?3. 一根截面是正方形的式方体木料*表面积是210平方厘米。
第14讲长方体和正方体(二)一、知识要点在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。
解答上述问题,必须掌握这样几点:1.将一个物体变形为另一种形状的物体(不计损耗),体积不变;2.两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;3.物体浸入水中,排开的水的体积等于物体的体积。
二、精讲精练【例题1】有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?练习1:1.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。
现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。
问水面高多少?2.有一个长方体水箱,从里面量长40厘米、宽30厘米、深35厘米,箱中水面高10厘米。
放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。
这时水面高多少厘米?【例题2】将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。
练习2:1.有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。
现将三块铁熔成一个大正方体,求这个大正方体的体积。
2.将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。
【例题3】有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。
如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?练习3:1.有一个小金鱼缸,长4分米、宽3分米、水深2分米。
把一块假山石浸入水中后,水面上升0.8分米。
五年级长方体和正方体奥数题(B5版本)例题1:给定一个形状如图的零件,求它的体积和表面积。
练1:1.将一根长2米的长方体木料锯成两段,使得表面积增加了2平方分米,求原木料的体积。
2.一个长8厘米,宽1厘米,高3厘米的长方体木块,在左右两角各切掉一个正方体,求切掉正方体后的表面积和体积。
例题2:一个长方体形状的零件中间挖去了一个正方体的孔,求它的体积和表面积。
例题3:一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
求原正方体的表面积。
练3:1.将两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?2.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?3.将4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?例题4:将11块相同的长方体砖拼成一个大长方体,已知每块砖的体积是288立方厘米,求大长方体的表面积。
练4:1.一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?2.一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。
3.有24个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体?用图画出来。
例题5:一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为单位的数都是质数。
求这个长方体的体积和表面积。
练5:1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?2.一个长方体的长、宽、高是三个连续偶数,体积是96立方厘米,求它的表面积。
第14讲长方体和正方体(二)一、知识要点在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。
解答上述问题,必须掌握这样几点:1.将一个物体变形为另一种形状的物体(不计损耗),体积不变;2.两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;3.物体浸入水中,排开的水的体积等于物体的体积。
二、精讲精练【例题1】有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?练习1:1.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。
现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。
问水面高多少?2.有一个长方体水箱,从里面量长40厘米、宽30厘米、深35厘米,箱中水面高10厘米。
放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。
这时水面高多少厘米?【例题2】将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。
练习2:1.有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。
现将三块铁熔成一个大正方体,求这个大正方体的体积。
2.将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。
【例题3】有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。
如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?练习3:1.有一个小金鱼缸,长4分米、宽3分米、水深2分米。
把一块假山石浸入水中后,水面上升0.8分米。
新人教版五年级下册,奥数辅导第六周,长方体正方体长方体和正方体班级:姓名:得分:3、一个正方体的棱长总和是48厘米,它的表面积是(),体积是()。
4、把三个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是(),体积是()。
5、把一个棱长是a米的正方体木材,任意截成两个小长方体后,表面积比原来多()。
6、把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()。
7、一个正方体的棱长扩大到原来的5倍,则表面积扩大到原来的()倍,它的体积扩大到原来的()倍。
8、一个长方体各条棱长和是96厘米,并且它的长是宽的2倍,宽与高相等,那么这个长方体的体积是()立方厘米。
9、将两块棱长相等的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米。
则这个长方体的体积是()10、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。
原来长方体的体积是()立方厘米。
6、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个大的长方体,这个大长方体的表面积最大是62平方厘米,最小是54平方厘米. 三、基础题。
1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?3、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?6、把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少46平方厘米,而长是原来的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?3. 用3个同样大小的正方体拼成一个长方体,长方体的表面积比原来3个正方体的表面积之和少64平方厘米,求原来每个正方体的表面积?7、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?11、把一个长16 厘米,宽12厘米,高8厘米的长方体木块,锯成若干个棱长为2厘米的小正方体,(没有剩余)可以锯成多少个这样的小正方体?表面积一共增加多少平方方厘米?9、一个长方体,它的前面和上面的面积和是110平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?1、把一个长、宽、高分别为8厘米、7厘米、3厘米的长方体铁块熔铸成一个高是12厘米的长方体铁块,这个长方体铁块的底面积是多少?6、如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?7、用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?- 2 -11、右图是一个表面被涂上红色的棱长为lO厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?12、右图是3层没有缝隙的小立方块组成的.如果它的外表面(包括底面)全都被涂成红色,那么把它们再分开成一个个小立方块时,有多少个小立方块恰有三面是红色的?本讲内容是在学生认识了长方体、正方体的面、棱、顶点等结构与特征,理解并熟练掌握了长方体、正方体的表面积、体积和容积的意义及计算方法,能进行几何体与其展开图之间的转化,并能灵活运用这些知识解决实际问题的基础上,进一步探索比较复杂的此类问题的解题方法。
北京大学附属小学对于长、正方体等简单的立方体和其体积、表面积的计算方法,都是相对比较简单的,今天我们一起将这部分内容掌握后着重对其进行拓展研究.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.1.在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)2.长方体的表面积和体积的计算公式是:长方体的表面积:S 长方体=2(ab +bc +ac );长方体的体积:V 长方体=abc .正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:S 正方体=6a 2,V 正方体=a 3.典型例题【例1】 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积。
【例2】一个长方体的相邻的三个面的面积分别是7平方厘米、8平方厘米和14平方厘米,那么这个长方体的体积是多少立方厘米?【例3】在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积最小是多少?最大是多少【例4】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?北京大学附属小学位置挖去一个截口是边长为a 厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长.【例6】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【例7】有一个棱长为 5 cm 的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(右下图),求这个立体图形的内、外表面的总面积。
【例8】有49个同样大的长方体积木块,每块的长、宽、高分别是3,2,1。
用这些积木粘合成一个大长方体,粘合后的大长方体的表面积最小是多少?【思考】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态。
本讲内容主要考察学生的空间想象力。
重点:观. 难点:活.【例 1】把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米.这根木料原来的体积是_____立方厘米.【巩固】把一根长方体木料锯成4个小正方体(如图),表面积比原来增加了54平方厘米.这根木料原来的体积是_____立方厘米.【例 2】两个棱长分别为1cm 和3cm的立方体如图放置,如果在这个立体图形上切一刀,要求切面与已有重难点知识框架例题精讲展开、切割与封装立方体的表面平行,那么得到的两个立体图形的表面积之和最大是_____cm3.【巩固】一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面之和为600平方分米.求这个大长方体的体积.【例3】用6个如图甲所示的小长方体拼成一个如图乙所示的大长方体,已知小长方体的体积是8立方厘米,则大长方体的表面积是平方厘米。
【巩固】用九个如图甲所示的小长方体拼成一个如图乙所示的大长方体,已知小长方体的体积是750立方厘米,则大长方体的表面积是平方厘米。
【例4】把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成个小正方体.【巩固】有甲、乙、丙3种大小的正方体木块,棱长比是1:2:3.如果用这三种正方体拼成尽量小的一个正方体,且每种都至少用一个,则最少需要这三种正方体共多少?【例5】下列图形经过折叠不能围成正方体的是________.【巩固】左下图是一个正方体,四边形APQC表示用平面截正方体的截面.请在右下方的展开图中画出四边形APQC的四条边.H P FQGBC D EAFEH G DC B A【例 6】图1是下面 的表面展开图①甲正方体; ②乙正方体; ③丙正方体;④甲正方体或丙正方体.甲 乙 丙【巩固】 选项中有4个立方体,其中是用左边图形折成的是( ).DC B A【例 7】把2、4、6、8、10、12这六个数字依次写在一个立方体的正面、背面、两个侧面以及两个底面上,然后把立方体展开,如图1,最左边的正方形上的数字是12,则最右边的正方形上的数字是 。
第四讲 立体图形的体积内容概述★★★正方体:我们也可以称其为立方体,它是一种特殊的长方体,它的六个面都是正方形.如果它的棱长为a ,那么可得: 正方体的表面积:S 正方体=6a 2 ; 正方体的体积:V 正方体=a 3.★★★ 长方体:若长方体的长、宽、高分别为a 、b 、c ,那么可得: 长方体的表面积:S 长方体=2(ab +bc +ac ); 长方体的体积:V 长方体=abc .★★★ 圆柱体:如右图,圆柱体的底面是圆,其半径为r ;圆柱体的侧面展开图是一个长方形,长方形的宽相当于圆柱体的高,长相当于圆柱体的底面周长; 圆柱体的表面积:S 圆柱体=侧面积+2个底面积=2πr h+2πr 2圆柱体的体积:V 圆柱体=底面积×高=πr 2 h★★★ 圆锥体:如右图,圆锥体的底面是圆,其半径为r ;圆锥体的侧面展开图是一个扇形;圆锥体的体积:V 圆锥体=13πr 2 h ★★★ 球体:V 球体=43πr 3 例题精讲类型Ⅰ:进行立体图形的体积计算时,许多时候我们是可以通过分析直接利用公式求得结果。
【例1】 一个木盒从外面量长10厘米,宽8厘米,高5厘米,木板厚度1厘米,那么这个盒子的容积是多少立方厘米?分析:(10-2)×(8-2)×(5-2)=144(立方厘米)。
【例2】 (第五届华杯赛初赛)有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?分析:两个圆柱直径的比是l :2,所以底面面积的比是l :4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的41(注意此条件:乙杯中的水未外溢,如果溢出我们就不能这样计算了),即:2×41=0.5(厘米).注意运用比例解决问题。
一、立体图形的体积计算常用公式:
重点:观察并找出. 难点:三视图法
【例 1】 大正方体的棱长是小正方体棱长的4倍,那么它的表面积是小正方体表面积的______倍.
【巩固】边长l 米的正方体2100个,堆成了一个实心的长方体。
它的高是10米,长、宽都大于高。
问长
方体的表面积和体积是多少?
【例 2】 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表
重难点
知识框架
例题精讲
表面积与体积
面积.
【巩固】如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?
【例3】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?
【巩固】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.
【例4】边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?
【巩固】按照上题的堆法一直堆到N层(3
N ),要想使总表面积恰好是一个完全平方数,则N的最小值是多少?
【例5】由27个棱长为1的小正方体组成一个棱长为3的大正方体,若自上而下去掉中间的3个小正方体,如图所示,则剩下的几何体的表面积是。
【巩固】如右图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口a的边长.
【例6】有一个棱长为5cm的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(右上图),求这个立体图形的内、外表面的总面积.
【巩固】 如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215
⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?
【例 7】 若长方体的三个侧面的面积分别是6,8,12,则长方体的体积是 。
【巩固】某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图所示)在三个方向上的加
固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米
?
高
长
【例 8】 如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体
木块,木块浮出水面的高度是2厘米。
若将木块从容器中取出,水面将下降________厘米。
【巩固】有大、中、小三个正方形水池,它们的内边长分别是6米、3米、2米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4厘米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米?
【例9】如图,已知A、B、C分别是相邻的三条棱的中点.沿三个中点连成一个正三角形,把原来的立方体切掉一角.如果原来的立方体棱长为8,求:
⑴切掉的小部分的体积是多少?
⑵剩下的大部分的体积是多少?
B
C A
【巩固】一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(如下图所示)和正方体体积的比是多少?
【例 10】 如图,是一个正方体,将正方体的A 、C 、B '、D '四个顶点两两连接就构成一个正四面体,已
知正方体的边长为3,求正四面体的体积.
D′
C′
B′
A′
D
C B
A
【巩固】 连接正方体各面的中心构成一个正八面体(如图所示)。
已知正方体之边长为12cm ,请问正八
面体之体积为多少立方厘米?
第4题
1. 一个长方体,如果长减少2厘米,宽和高不变,则体积减小48平方厘米;如果宽增加3厘米,长和
高不变,则体积增加99平方厘米;如果高增加4厘米,长和宽不变,则体积增加352平方厘米,那么,原长方体的表面积是( )平方厘米。
2. 右图是一个边长为5厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l 厘米的
正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)
3. 用棱长是1厘米的立方块拼成如右图所示的立体图形,求该图形的表面积。
A
4. 一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三等分点,从这个正方体切下一个角,
这样一共切下八个角,则余下部分的体积(如下图所示)和正方体体积的比是多少?
课堂检测
1. 某工人用木板钉成一个长方体邮件包装箱,并用三根长度分别为235厘米、445厘米、515厘米的尼
龙带进行加固(如下图),若每根尼龙带加固时截头重叠都是5厘米,那么这个长方体包装箱的体积是立方 米。
2. 如图,用455个棱长为1 的小正方体粘成一个大的长方体,若拆下沿棱的小正方体,则余下371个小
正方体,问:所堆成的大长方体的棱长各是多少?拆下沿棱的小正方体后的多面体的表面积是多少?
3. 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,
接着在小洞的底面正中向下挖一个棱长为1
2
厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为
1
4
厘米,那么最后得到的立体图形的表面积是多少平方厘米?
4. 用棱长是1厘米的立方块拼成如右图所示的立体图形,求该图形的表面积。
家庭作业
5.如图所示,一个555
⨯⨯的孔,⨯⨯的立方体,在一个方向上开有115
⨯⨯的孔,在另一个方向上开有215在第三个方向上开有315
⨯⨯的孔,剩余部分的表面积为多少?
6.如图正方体中沿平面ABC和平面DEF切下两个角,,则余下部分的体积和切去部分体积的比是多少?
D
C
教学反馈。