03五年级奥数上册第三讲-巧求表面积-和体积
- 格式:ppt
- 大小:920.00 KB
- 文档页数:23
小学奥数趣味知识点学习——之表面积计算1.如图,求出它的体积和表面积(单位:厘米)。
分析与解答1、正方体迭在长方体上,体积是原来两部分之和:52+15×5×5=500(立方厘米)。
表面积则发生了变化,重合部分的面积不能计入:15×5×4+5×5×2+5×5×6-5×5×2=450(平方厘米)2.一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60块,如下图。
问这60块长方体表面积的和是多少平方米?【解析】原来的正方体有六个外表面,每个面的面积是1×1=1(平方米),无论后来锯成多少块,这六个外表面的6平方米总是被计入后来的小木块的表面积的。
再考虑每锯一刀,就会得到两个1平方米的表面,1×2=2(平方米)现在一共锯了:2+3+4=9(刀),一共得到2×9=18(平方米)的表面。
因此,总的表面积为:6+(2+3+4)×2=24(平方米)。
这道题只要明白每锯一刀就会得到两个一平方米的表面,然后求出锯了多少刀,就可以求出总的表面积。
3.右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积.【解析】这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD,可以看出,三角形ABD与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD是三角形 ABD与三角形 ACD的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形 ABG与三角形 GCD面积仍然相等.根据等量代换,求三角形ABC的面积等于求三角形BCD 的面积,等于4×4÷2=8。
五年级几何体的表面积与体积的计算优质资料(可以直接使用,可编辑优质资料,欢迎下载)空间与图形教师辅导讲义——立体图形的知识与应用知识要点长方体、正方体、圆柱体、圆锥体的表面积及体积1.表面积:物体表面面积的总和,叫做物体的表面积。
表面积通常用S 表示。
常用面积单位是平方千米、平方米、平方分米、平方厘米。
2.体积:物体所占空间的大小,叫做物体的体积。
体积通常用V 表示。
常用体积单位是立方米、立方分米、立方厘米。
3.容积:箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积或容量。
常用容积单位是升、毫升。
4.体积与容积单位之间的换算:1立方分米=l 升,1立方厘米=l 毫升。
5.体积和容积的异同点 容积的计算方法跟体积的计算方法相同,但要从容器的里面量长、宽、高,而计算体积要从物体的外面量长、宽、高。
计量体积用体积单位,计量容积除了用体积单位外,还可以用容积单位升和毫升。
6. 立体图形的表面积、侧面积和体积计算公式相同点不同点 面棱顶点面的特点 面的大小 棱长 长方体6个12条8个6个面一般都是长方形,也可能有两个相对的面是正方形相对的面的面积相等每一组互相平行的四条棱的长度相等正方体6个12条8个6个面都是相等的正方形6个面的面积都相等12条棱长的长度都相等精典题型分析1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米。
(单位:厘米)练习:学校生物小组做了一个昆虫箱(如图)。
昆虫箱的上、下、左、右面是木板,前、后面装纱网。
①制作这样一个昆虫箱,至少需要多少平方厘米的木板?②制作这样一个昆虫箱,至少需要多少平方厘米的纱网?2、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水。
如果在水中沉入一个棱长为30厘米的正方体铁块,那么,水箱中水深多少分米?练习1:一个长方体的玻璃缸内有一些水,水面距离上沿0.6分米(如图)。
准备在缸内放入一块体积是60立方分米的假山石(假山石能全部浸在水中),水会溢出吗?如果会溢出,溢出多少立方分米?练习2:一个正方体玻璃容器,从里面量棱长是2dm。
五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。
这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。
根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。
例2:一个零件形状大小如下图,求它的表面积。
由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。
长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。
例3:有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
求它的表面积。
(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。
长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。
例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
首先可以将这个立体图形分解为一个长方体和两个正方体。
长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。
正方体的边长为5,表面积为6×(5×5)=150平方厘米。
因此这个立体图形的表面积为300+150+150=600平方厘米。
例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。
小学数学点知识归纳体积和表面积的计算在小学数学学习中,体积和表面积的计算是一个重要的知识点。
学好这两个概念的计算方法,可以帮助学生更好地理解和应用数学知识。
本文将对小学数学中体积和表面积的计算进行归纳和总结。
一、体积的计算体积是指物体所占的空间大小。
在小学数学中,我们通常计算的是立体图形的体积,如长方体、正方体等。
1. 长方体的体积计算长方体的体积计算公式为:体积 = 长 ×宽 ×高。
即将长方体的三条边的长度相乘即可得到体积。
2. 正方体的体积计算正方体的体积计算公式与长方体类似,也是边长的立方,即:体积= 边长 ×边长 ×边长。
3. 其他立体图形的体积计算除了长方体和正方体之外,小学生还需要学习其他立体图形的体积计算方法。
例如,圆柱体的体积计算公式为:体积 = 底面积 ×高。
底面积可以根据圆的面积公式计算得到。
二、表面积的计算表面积是指一个物体外部几何图形所占的面积大小。
在小学数学中,常见的表面积计算包括长方体和正方体。
1. 长方体的表面积计算长方体的表面积计算公式为:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)。
即将长方体的六个面的面积相加得到表面积。
2. 正方体的表面积计算正方体的表面积计算公式也比较简单,即边长的平方乘以6,即:表面积 = 6 ×边长 ×边长。
3. 其他立体图形的表面积计算除了长方体和正方体之外,小学生还需要学习其他立体图形的表面积计算方法。
例如,圆柱体的表面积计算公式为:表面积= 2πr² + 2πrh。
其中,r表示圆柱的底面半径,h表示圆柱的高度。
总结:体积和表面积的计算是小学数学中重要的基础知识。
对于体积的计算,我们需要知道不同立体图形的计算公式,并能运用到实际问题中。
对于表面积的计算,我们需要了解各种立体图形的表面积计算公式,并注意区分不同图形的特点。
五年级上册数学知识点归纳认识面积和体积的计算方法认识面积和体积的计算方法面积和体积是数学中常见的概念,它们在几何学和物理学中都起着重要作用。
在五年级上册的数学学习中,我们接触到了不少与面积和体积相关的知识点。
本文将对这些知识点进行归纳总结,并介绍相关的计算方法。
一、长方形的面积计算方法长方形是我们最早接触到的几何图形之一,计算长方形的面积也是我们最基本的数学常识之一。
如果一个长方形的长为a,宽为b,那么它的面积可以用公式 S = a * b 来计算。
其中,S代表面积。
当我们已知长方形的长和宽时,只需要将这两个数相乘,就可以得到长方形的面积了。
二、正方形的面积计算方法正方形是一种特殊的长方形,它的四个边长相等。
当我们已知正方形的边长为a时,可以通过公式 S = a * a 来计算正方形的面积。
这是因为正方形的边长相等,所以两个边长相乘即可得到正方形的面积。
三、三角形的面积计算方法三角形是一个常见的几何图形,在五年级上册的数学学习中我们也学习了如何计算三角形的面积。
当我们已知三角形的底边长为a,高为h时,可以通过公式 S = 1/2 * a * h 来计算三角形的面积。
其中,S代表面积。
公式中的1/2是因为三角形是一个半长方形的形状,所以需要将计算结果除以2。
四、立方体的体积计算方法立方体是我们日常生活中常见的几何体之一。
当我们已知立方体的边长为a时,可以通过公式 V = a * a * a 来计算立方体的体积。
其中,V代表体积。
立方体的体积可以看做是边长的三次方,所以我们将边长相乘三次就可以得到立方体的体积。
五、长方体的体积计算方法长方体是由长方形拉伸得到的几何体,它的体积计算方式和长方形的面积计算方式非常类似。
当我们已知长方体的长、宽、高分别为a、b、h时,可以通过公式 V = a * b * h 来计算长方体的体积。
总结起来,五年级上册的数学学习中,我们学习了如何计算长方形、正方形、三角形、立方体和长方体的面积和体积。
长方体和正方体的表面积和体积【知能大展台】1.长方体和正方体的特征:(1)定义:长方体和正方体六个面的总面积叫做它们的表面积。
(2)计算公式:长方体的表面积S=2(AB+AH+BH)正方体的表面积(3)长方体和正方体的体积(1)定义:物体所占空间的大小叫做物体的体积。
(2)长方体的体积V=ABH(3)正方体的体积V=长方体或正方体的体积还可以这样计算:V=S·H【试金石】例1一个正方体的棱长5厘米,表面涂满了红漆,4它切成棱长为1厘米的小正方体若干块,问:在这些小正方体中,三面涂有红漆的有多少块?两面涂红色有多少块?一面涂有红色的有多少块?没有涂上红色有多少块?【分析】先看这个正方体可以切多少块小正方体。
如图:一共可以切成=125块小正方体。
为方便起见,我们用不同的阴影表示不同涂色情况网影表示三面涂有红色的小正方体。
三面涂有的小正方体位于顶点处,每个顶点上有一块。
点影表示两面涂有红色的小正方体。
两面涂色的小正方体位于棱长,每条棱上有(5-2)块。
斜影表示一面涂有红色的小正方体。
一面涂色的小正方体位于面中,没个面中间有(5-2)2块。
没有涂上红色的小正方体位于大正方体内部,共有(5-2)3块。
【解答】三面涂有红色的正方体有8块。
两面涂有红色的小正方体有:(5-2)×12=36(块)一面涂有红色的小正方体有:没有涂上红色的小正方体有:面棱顶点面的形状面积大小棱长长方体6个12条8个都是长方形(也可能有两个相对的面是正方形)相对的两个面的面积相等相对的4条棱长度相等正方体6个12条8个都是正方形6个面的面积相等12条棱长度相等【智力加油站】【针对性训练】一个正方体的棱长4分米,表面涂满了红漆,4它切成棱长为1分米的小正方体若干块,问:在这些小正方体中,三面涂有红漆的有多少块?两面涂红色有多少块?一面涂有红色的有多少块?没有涂上红色有多少块?【试金石】例2 把一块长30厘米的长方形铁皮,在四个角上剪去边长为5厘米的正方形,在焊接成一个无盖的长方体铁盒,这个铁盒的容积是1500立方厘米。
第三讲巧求表面积我们已经学习了长方体和正方体,知道长方体或正方体六个面面积的总和叫做长方体或正方体的表面积。
如果长方体的长用a表示、宽用b表示、高用h表示,那么,长方体的表面积=(ab +ah+bh)×2。
如果正方体的棱长用a表示,则正方体的表面积=6a2。
对于由几个长方体或正方体组合而成的几何体,或者是一个长方体或正方体组合而成的几何形体,它们的表面积又如何求呢?涉及立体图形的问题,往往可考查同学们的看图能力和空间想象能力。
小学阶段遇到的立体图形主要是长方体和正方体,这些图形的特点都是可以从六个方向去看,特别是求表面积时,就是上下、左右和前后六个方向(有时只考虑上、左、前三个方向)的平面图形的面积的总和。
有了这个原则,在解决类似问题时就十分方便了。
例1 在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积。
(例2图)分析我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面。
这样这个立体图形有表面积就可以分成这样两部分:上下方向:大正方体的两个底面;侧面:小正方体的四个侧面大正方体的四个侧面。
解:上下方向:5×5×2=50(平方分米)侧面:5×5×4=100(平方分米)4×4×4=64(平方分米)这个立体图形的表面积为:50+100+64=214(平方分米)答:这个立体图形的表面积为214平方分米。
例2 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方体小洞,第三个正方体小洞的挖法与前两个相同,棱长为14厘米。
那么最后得到的立体图形的表面积是多少平方厘米?分析这道题的难点是洞里的表面积不易求。
在小洞里,平行于上下表面的所有面的面积和等于边长为1厘米的正方形的面积,这个边长为1厘米的正方形再与图中阴影部分的面积合在一起正好是边长为2厘米的正方体的上表面的面积。
★巧求长方体和正方体的面积:L求较复杂的长方体和正方体的周长、表面积、体积奪的一些方法.£灵活运用长方体和正方体的特征以及体积、表面欣计算公式,想一想、填一填口1. 长力体有()个面、(〉个顶点,〔)条棱勺2. 如果这个长方体的长为s宽为趴髙为阳请写出它的表面税和体积的计算方法。
(D表面积’___________________ $(右体积:3.当长方体的长.宽,高相等时,它就是一个正方体,所以我们说,正方体是特殊的(卄它的6个面都是()a4.如果这不正方体的棱长是◎请写出它例2 —个长$分米、宽5井米. 高2分米的纸箱,用三根绳子捆起来•如旳•打结处要用1分米绳子,这二根绳子的总长至少是多少分米?例勺下图是由18个棱长为1厘米的小正方形拼成的,求它的表面积榔例夕 下图是由16块棱长为3厘米的小正方体堆成的,它的表 面积是多少平方厘米?例5 —个长方休,它的高和宽相等*若把长去掉乙5厘米,就战为表面积是150平方厘米的正方仏长方体的长是宽的几 亠如下图,-个正方体木块用长是15o 从它的八个顶点处各 倍?-可编辑修改我去域长分别是1的小正方俟。
这个木块剩下部分的表面积最少是多少?的表面积和体积的计算方法。
(1)表面积: _______________ *(2)体积: _________{例4J 在一个棱长为5分米的 正方体上放一个棱长为4分奉的小正 方徘(右图人求这个立体图形的表 面积.例4下图是一个棱长为4唱米的立方体木块,将它染成红色, 然后锯成棱长为1厘米的小立方体木块'其中每个面都没有染 色的有多少块?例召一个长方休的长、SL高分别長两位整数■其中长最大,高最小*并且一条长、一条寛、一条高的和为偶数。
长方体的体积是下面四个数之一:873趴6禍4、&967J85昭求这个长方体的长*宽俩。
例7如图表示一个正方休■它的棱长为4 11米*在它的上下、前后*左右的正中位置各挖去一个梭长为1厘米的正方体■问此图的表面积是多少?3. 一根截面是正方形的式方体木料*表面积是210平方厘米。
1.一个零件形状大小如图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?6−2=4(厘米),所以这个零件是两个长宽高分别为10厘米、4厘米、2厘米的长方体;所以:体积为:2×4×10×2=160(立方厘米),表面积为:(2×10+10×4+2×4)×2×2−10×2×2,=(20+40+8)×4−40,=68×4−40,=272−40,=232(平方厘米);2.有一个长方体形状的零件。
中间挖去一个正方体的孔。
你能算出它的体积和表面积吗?8×6×5−2×2×2,=240−8,=232(立方厘米);(8×6+8×5+6×5)×2+4×2×2,=118×2+16,=236+16,=252(平方厘米)3.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?50÷4×6,=12.5×6,=75(平方厘米)4.长方体的不同的的三个面的面积分别为10cm2,15cm2和6cm2.这个长方体的体积是多少立方厘米?10=2×515=3×56=2×32×3×5=6×5=30(立方厘米)5.把11块相同的长方体砖拼成一个长方体,已知每块砖的体积是288立方厘米,大长方体的表面积是______平方厘米。
设小长方体的长、宽、高分别为a、b、h,则a=4h,即h=14a,2a=3b即b=23a,每块砖的体积为:a×23a×14a=16a3.再据16a3=288可得:a=12(厘米),则b=23×12=8(厘米),h=14×12=3(厘米),于是可得:大长方体的长是12×2=24厘米,宽12厘米,高是8+3=11厘米,大长方体表面积就为:24×12×2+24×11×2+12×11×2,=288×2+264×2+132×2,=576+528+264,=1368(平方厘米)。
五年级奥数题及答案:巧求表面积问题1 编者小语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。
这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:巧求表面积问题,可以帮助到你们,助您快速通往高分之路!!巧球表面积在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(右图),求这个立体图形的表面积。
分析:我们把上面的小正方体想象成是可以向下"压缩"的,"压缩"后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面,解:上下方向:5×5×2=50(平方分米);侧面:小正方体的四个侧面和大正方体的四个侧面5×5×4=100(平方分米),4×4×4=64(平方分米)。
这个立体图形的表面积为:与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
50+100+64=214(平方分米)。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
课前热身:如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.立体图形的体积计算常用公式: 立体图形 示例 体积公式 相关要素长方体V abh =V Sh = 三要素:a 、b 、h 二要素:S 、h 正方体3V a =V Sh =一要素:a 二要素:S 、h知识精讲:【例 1】 将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a ),从左向右看到的视图是图(b ),从上向下看到的视图是图(c ),则这堆木块最多共有___________块。
【考点】长方体与正方体 【难度】2星 【题型】填空cb a H GFE D CBA【考点】长方体与正方体【难度】2星【题型】选择【关键词】2008年,清华附中,入学测试【解析】图中A、C、D项展开后的图形均为下图,只有B项展开后的图形与题中左边图形相符,所以答案为B.【答案】B【例 16】图1是下面的表面展开图①甲正方体;②乙正方体;③丙正方体;④甲正方体或丙正方体.甲乙丙【考点】长方体与正方体【难度】3星【题型】选择【解析】从展开图可以看出,每个面上至少有一块阴影,从而排除丙;又每个面上没有相邻的两块阴影,从而排除乙.故选甲答案为①.【答案】①【例 17】如图,一个有底无盖圆柱体容器,从里面量直径为10厘米,高为15厘米.在侧面距离底面9厘米的地方有个洞.这个容器最多能装毫升水(π取3.14).【考点】长方体与正方体【难度】4星【题型】填空【关键词】2006年,第4届,走美杯,6年级,决赛,第10题,10分【解析】 现在要求这个容器尽可能的多装一些水,则将圆柱适当的倾斜,可得新的圆柱的体积为:221963009422πππ⨯⨯+⨯⨯⨯==55毫升水。
图1 图2 图3图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.【例 7】从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是平方厘米.【考点】长方体与正方体【难度】3星【题型】填空【解析】可以将这个图形看作一个八棱柱,表面积和为:⨯-⨯⨯+⨯+++++++=()()(平方厘米).87662616661787292也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,【考点】长方体与正方体 【难度】3星 【题型】填空 【关键词】2010年,第8届,走美杯,3年级,初赛,第12题【解析】 注意底面放在桌子上,不能被染到。
从上向下看有10个:从左向右看有6个;从前向后看有7个。
因此被染色的面有()1067236++⨯=个面【答案】36【例 11】 用6块右图所示(单位:cm )的长方体木块拼成一个大长方体,有许多种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?【考点】长方体与正方体 【难度】4星 【题型】解答【解析】 要使表面积最小,需重叠的面积最大,如图⑴的拼接方式新的长方体长为5,宽为4,高为3,所以表面积为2(343334)266(cm )⨯+⨯+⨯⨯=;要使表面积最大需重叠的面积最小,如图⑵所示,长为18,宽为2,高为1,所以最大的表面积为2(18118212)2112(cm )⨯+⨯+⨯⨯=【答案】112【例 12】 要把12件同样的长a 、宽b 、高h 的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?(1)的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比:::。
【考点】长方体与正方体【难度】4星【题型】填空【关键词】2007年,第五届,走美杯,初赛,六年级,第11题【解析】体积比为3:8:13【答案】3:8:13【例 14】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【考点】长方体与正方体【难度】3星【题型】解答【解析】44(1234)456⨯++++⨯=(平方米).【答案】56【例 15】如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂成红色,那么,把这个模型拆开以后,有三面涂上红色的小正方体比有两面涂上红色的小正方体多______ 块.【考点】长方体与正方体 【难度】4星 【题型】填空【解析】 三面涂上红色的小正方体有:425428⨯+⨯=个,两面涂上红色的小正方体有:341416⨯+⨯=个,所以三面涂红色的比两面涂红色的多281612-=块. 【答案】12【例 16】 小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图1所示,从上面看如图2,那么这个几何体至少用了 块木块.【考点】长方体与正方体 【难度】4星 【题型】填空 【关键词】2007年,迎春杯,中年级,复赛,9题【解析】 这道题很多同学认为答案是26块.这是受思维定势的影响,认为图2中每一格都要至少放一块.其实,有些格不放,看起来也是这样的.如下图,带阴影的3块不放时,小正方体块数最少,为23块.【答案】23块【例 17】 右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红图1图2倍. 【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】2008年,迎春杯,六年级,初赛【解析】 ()2264:616:1a a ⎡⎤⎡⎤⨯⨯=⎣⎦⎣⎦. 【答案】16:1【例 20】 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】2010年,迎春杯,高年级复赛,3题【解析】 假设小正方体棱长是1,大正方体棱长就是6,大正方体露在外面的表面积是6661215⨯⨯-=,小正方体露在外面的表面积是5,所以有215543÷=倍.【答案】43【例 21】 如图,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起,则所得到的立体图形的表面积是 平方厘米。
五年级上册数学表面积和体积公式全文共四篇示例,供读者参考第一篇示例:数学是一门让许多学生都头疼的学科,尤其是对于小学五年级的学生来说,学习面积和体积公式可能会让他们感到困惑。
只要掌握了正确的方法和技巧,这些概念其实并不难理解。
今天,我们就来详细地学习一下五年级上册数学中关于表面积和体积的公式。
我们来看一下什么是表面积和体积。
简单来说,表面积是指一个物体外部的总面积,而体积则是指一个物体内部所占据的空间。
在日常生活中,我们经常会遇到需要计算表面积和体积的问题,比如购买家具时需要计算柜子的表面积,或者装水时需要计算容器的体积等等。
接下来,我们来学习一下常见的几何图形的表面积和体积公式。
首先是长方形和正方形。
长方形的表面积公式为S=2(l+w),其中l为长,w为宽;体积公式为V=l×w×h,其中h为高。
正方形的表面积公式为S=4a^2,其中a为边长;体积公式为V=a^3。
以上就是五年级上册数学中关于表面积和体积的常见公式。
通过不断练习和掌握这些公式,相信大家一定可以轻松解决相关问题。
数学虽然有些难,但只要坚持下去,就一定能够取得优异的成绩。
希望本文对大家有所帮助,祝愿大家在学习数学的道路上一帆风顺!第二篇示例:五年级上册数学课程涉及到表面积和体积的公式,这是一个非常重要的概念,能够帮助我们计算和理解各种形状的物体。
表面积和体积是几何学中的两个重要概念,分别表示物体的外表面积和内部空间大小。
在这篇文章中,我们将详细介绍五年级上册数学课程中涉及到的一些表面积和体积的公式,帮助学生更好地理解和掌握这些知识。
让我们来介绍一下表面积的概念。
表面积是指一个物体的外表面的总面积,通常用单位面积(如平方厘米或平方米)来表示。
在五年级上册数学课程中,学生将学习如何计算不同形状物体的表面积,比如长方形、正方形、圆柱体等。
对于不同形状的物体,我们可以使用不同的公式来计算其表面积。
让我们来看看长方形的表面积公式。
五年级数学技巧如何正确使用立体形的表面积和体积概念数学技巧在学习数学的过程中起着关键的作用。
对于五年级的学生来说,学习立体形的表面积和体积概念是一个重要的课题。
正确使用数学技巧可以帮助他们更好地理解和应用这些概念。
本文将介绍一些五年级数学技巧,以帮助学生正确理解和运用立体形的表面积和体积概念。
一、理解表面积和体积的概念在讲解数学技巧之前,首先要确保学生对表面积和体积的概念有清晰的理解。
表面积是指立体形的外部总面积,而体积则是指立体形所占据的空间量。
举例来说,一个长方体的表面积就是它的所有侧面相加得到的结果,而体积则是它的长度、宽度和高度相乘得到的结果。
二、正确计算表面积和体积1. 计算立方体的表面积和体积对于立方体,计算表面积和体积是相对简单的。
学生只需要将公式应用到实际问题中。
例如,如果一个立方体的边长为5厘米,学生可以使用公式Surface Area = 6s^2来计算它的表面积,其中s是边长。
类似地,他们可以使用公式Volume = s^3来计算体积。
2. 计算其他立体形的表面积和体积除了立方体,学生还需要学会计算其他立体形的表面积和体积。
例如,对于圆柱体,他们可以使用特定公式来计算。
圆柱体的表面积可以通过公式Surface Area = 2πrh + 2πr^2来计算,其中r是底面圆的半径,h是圆柱体的高度。
体积可以通过公式Volume = πr^2h来计算。
三、运用技巧解决实际问题数学技巧的真正价值在于能够帮助学生解决实际问题。
通过合理运用数学技巧,学生可以更好地理解立体形的表面积和体积,并将其应用到实际生活中。
1. 解决日常生活问题学生可以通过解决一些与立体形有关的日常生活问题来巩固所学的技巧。
举个例子,他们可以计算一个水杯的容量,或者计算一个盒子的表面积以确定包装纸的用量。
通过这些练习,他们可以更好地掌握运用技巧解决实际问题的能力。
2. 探索建筑设计立体形的表面积和体积概念在建筑设计中起着重要的作用。