勾股定理的应用教案
- 格式:docx
- 大小:3.62 MB
- 文档页数:10
北师大版八年级数学上册:1.3《勾股定理的应用》教案一. 教材分析《勾股定理的应用》是北师大版八年级数学上册第一章第三节的内容。
本节课主要让学生掌握勾股定理在实际问题中的应用,培养学生的解决问题的能力。
教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探索直角三角形斜边与两直角边的关系,从而引入勾股定理。
学生通过观察、实验、猜想、验证等过程,体验数学的探索乐趣,提高解决问题的能力。
二. 学情分析学生在七年级已经学习了直角三角形的性质,对直角三角形的边长关系有一定了解。
但勾股定理的应用涉及实际问题,对学生来说是一个新的挑战。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解勾股定理的含义,掌握勾股定理在直角三角形中的应用。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的合作、交流、探究能力,体验数学探索的乐趣。
四. 教学重难点1.重难点:勾股定理的应用。
2.难点:如何将实际问题转化为勾股定理的形式,求解问题。
五. 教学方法1.采用问题驱动法,引导学生探究勾股定理的应用。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.采用启发式教学法,教师提问、学生回答,激发学生的思维。
4.利用多媒体辅助教学,展示勾股定理的应用实例。
六. 教学准备1.准备相关课件、教学素材。
2.设计好教学问题,准备好答案。
3.安排好教学过程中的各个环节。
七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的动画故事,引导学生了解勾股定理的背景。
同时,提问学生:“你们认为直角三角形的斜边与两直角边有什么关系?”2.呈现(10分钟)教师提出一组实际问题,如:“一个直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
”让学生尝试解决。
学生在解决过程中,发现无法直接运用已知的直角三角形性质解决问题,从而引出勾股定理。
3.操练(10分钟)教师提出多个关于勾股定理的应用问题,让学生在小组内讨论、交流,共同解决。
勾股定理教案(表格式)教学目标:1. 了解勾股定理的定义及其在几何学中的应用。
2. 学会使用勾股定理计算直角三角形的长度。
3. 培养学生的观察、分析和解决问题的能力。
教学重点:1. 勾股定理的定义及应用。
2. 学会使用勾股定理计算直角三角形的长度。
教学难点:1. 理解并应用勾股定理解决实际问题。
教学准备:1. 教学PPT或黑板。
2. 直角三角形模型或图片。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍勾股定理的背景和重要性。
2. 展示直角三角形模型或图片,引导学生观察并提问:你们能发现什么规律吗?二、探索勾股定理(15分钟)1. 引导学生通过观察和实验,发现直角三角形两条直角边的平方和等于斜边的平方。
2. 学生分组讨论,总结出勾股定理的表达式:a^2 + b^2 = c^2。
三、验证勾股定理(15分钟)1. 学生使用三角板或直角三角形模型,进行实际测量和计算,验证勾股定理。
2. 学生展示验证结果,教师点评并总结。
四、应用勾股定理(15分钟)1. 教师提出实际问题,引导学生运用勾股定理解决问题。
2. 学生分组讨论并解答问题,展示解题过程和结果。
五、总结与评价(5分钟)1. 教师引导学生总结本节课的学习内容,强调勾股定理的重要性和应用。
2. 学生评价自己的学习成果,提出疑问和困惑。
教学延伸:1. 引导学生进一步探究勾股定理的证明方法。
2. 布置课后作业,巩固勾股定理的应用。
教学反思:本节课通过引导学生观察、实验、讨论和应用,让学生深入了解勾股定理的定义和应用。
在教学过程中,注意关注学生的学习情况,及时解答疑问,帮助学生克服学习难点。
通过实际问题的解决,培养学生的观察、分析和解决问题的能力。
总体来说,本节课达到了预期的教学目标。
六、实践练习(15分钟)1. 教师提供一系列有关勾股定理的练习题,让学生独立完成。
2. 学生展示解题过程和结果,教师点评并给予反馈。
七、拓展活动(15分钟)1. 学生分组,每组设计一个关于勾股定理的有趣活动,如小游戏、演示实验等。
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
勾股定理的应用 教学目标: 知识与技能: 1 能应用勾股定理解决一些简单的实际问题..2 学会选择适当的数学模型解决实际问题..过程与方法: 通过问题情境的设立;使学生明白数学来源于生活;又应用于生活;积累 利用数学知识解决日常生活中实际问题的经验和方法..情感、态度和价值观:使学生认识到数学来自生活;并服务于生活;从而增强学生学数学、 用数学的意识;体会勾股定理的文化价值..发展运用数学的信心和能力;初步形成积极参与数学活动的意识..教学重点: 应用勾股定理解决实际问题是本节课的教学重点;教学难点.: 把实际问题化归成勾股定理的几何模型直角三角形则是本节课的难点..教学关键:应用数形结合的思想;从实际问题中;寻找可应用的RT △;然后有针对性解决.. 教学媒体:电子白板教学过程:一、导入1、由犍为岷江大桥图片引入一是拉近和学生的关系;激发学生对家乡的热爱之情;同时由斜拉桥上的直角三角形引入勾股定理的应用另出具复习引入题如图;长2.5m 的梯子靠在墙上;梯子的底部离墙角1.5m;如何求梯子的顶端与地面的距离h 先让学生复习勾股定理的简单应用..2、复习勾股定理内容3、板书课题二、新课探究1、例 小明想知道学校旗杆的高度;但又不能把旗杆放倒测量;但他发现旗杆顶端的绳子垂到地面还多1米;当他把绳子下端拉开5米后;绳子刚好斜着拉直下端接触地面;你能帮小明算算旗杆的高度吗首先让学生审题并画出几何图形;再引导其完成..题中隐含了什么条件解:设旗杆高AB=x 米;则绳子长AC=x+1米;在Rt ABC 中;由勾股定理得:答:旗杆的高度为12米..12,)1(5222222==+=++x x x AC BC AB 解方程,得即及时小结方程思想在勾股定理中的应用.. 2、课堂小测1 校园内有两棵树;距离12米;一棵树高8米;另一棵树高13米;一只小鸟从一棵树的顶端飞到另一棵树的顶端;小鸟至少要飞多少米看谁做得对又快 一张长方形纸片宽AB=8cm;长BC=10cm.现将纸片折叠;使顶点D 落在BC 边上的点F 处折痕为AE;求EC 的长. 教师设置问题:从“折叠”这个条件中;你获得了什么信息要求EC 的长能根据已知条件直接求出吗 如果不能;那该怎么办 练习题以学生讲解为主;教师引导..3、数学奇闻 聪明的葛藤葛藤是一种刁钻的植物;它自己腰杆不硬;为了得到阳光的沐浴;常常会选择高大的树木为依托;缠绕其树干盘旋而上..如图1所示..葛藤又是一种聪明的植物;它绕树干攀升的路线;总是沿着最短路径——螺旋线前进的..若将树干的侧面展开成一个平面;如图2;可清楚的看出葛藤在这个平面上是沿直线上升的..有 一棵树直立在地上;树高2丈;粗3尺;有一根葛藤从树根处缠绕而上;缠绕7周到达树顶;请问这根葛藤条有多长 1丈等于10尺从树干圆柱的侧面展开图构建直角三角形;让学生明白为什么葛藤走的是直线..学生探讨第二个问题..合作交流方法;看哪个组先想出办法;比比谁的办法最好..教师根据学生活动情况进行指导..4、拓展:帮一帮牧童一牧童在A 处牧马;牧童家在B 处;A 、B 处距河岸的距离AC 、BD 的长分别为700米和800米;且CD=800米;天黑前牧童从A 点将马牵到河边去饮水后;再赶回家;那么牧童最少要走多少米.AB C F ED D C BA本题主要考察学生初一轴对称的运用与勾股定理的结合;属于拓展题..课堂小测2:疗养院中心划定了一块正方形空地作为绿化带和修建文化长廊;其中文化长廊的形状是一个直角三角形..如图;长廊的两直角边AE=36m、EB=48m;则草坪的面积是多少平方米课堂小结:1、学生说自己的感悟与收获;总结勾股定理应用的方法..2、教师小结..作业布置:作业设计。
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
勾股定理的应用教案 This manuscript was revised on November 28, 2020
121教学模式
科目_________________________
年级_________________________
教师____________
课前1分钟交通安全教育
“121”教学模式导学案(______科) 2013 年 9
数 学 八年级 潘明明 数学
检测预习交代目标检测预习:
1、一个三角形的两边长分别是1
2、15,则第三边长为__时,这个三角形是直角三角形。
(三角形的三边长都是正整数)
2、底边长为10cm,底边上的高为12cm的等腰三角形的腰长为_____。
交代目标:
1、能正确运用勾股定理及直角三角形的判别方法解决简单实际问题
2、将立体图形问题转化成平面图形问题
合作探究交流共享第一环节:情境引入
内容:
情景1:多媒体展示:
提出问题:从二教楼到综合楼怎样走最近
情景2:
如图:在一个圆柱石凳上,若小明在吃东西时留下
了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一
信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近意图:
通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.
效果:
从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.
第二环节:合作探究
内容:
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
意图:
通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念.
效果:
学生汇总了四种方案:
(1) (2) (3) (4)
学生很容易算出:情形(1)中A →B 的路线长为:'AA d +,
情形(2)中A →B 的路线长为:'2d AA π+
所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA ’剪开圆柱得到矩形,情形(3)A →B 是折线,而情形
(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.
如图:
(1)中A →B 的路线长为:'AA d +.
(2)中A →B 的路线长为:''AA A B +>AB .
(3)中A →B 的路线长为:AO +OB >AB .
(4)中A →B 的路线长为:AB .
得出结论:利用展开图中两点之
间,线段最短解决问题.在这个环节
中,可让学生沿母线剪开圆柱体,具体
观
察.接下来后提问:怎样计算AB
在Rt △AA′B 中,利用勾股定理可得222'B A A A AB +'=,若已知圆柱体高为12cm ,底面半径为3cm ,π取3,则
22212(33),15AB AB =+⨯∴=. 注意事项:本环节的探究把圆柱侧面寻最短路径拓展到了圆柱表面,目的仅仅是让学生感知最短路径的不同存在可能.但这一拓展使学
A
’ A ’ A ’
生无法去论证最短路径究竟是哪条.因此教学时因该在学生在圆柱表面感知后,把探究集中到对圆柱侧面最短路径的探究上.
方法提炼:解决实际问题的关键是根据实际问题建立相应的数学模型,解决这一类几何型问题的具体步骤大致可以归纳如下:
1.审题——分析实际问题;
2.建模——建立相应的数学模型;
3.求解——运用勾股定理计算;
4.检验——是否符合实际问题的真实性.
合作探究交流共享第三环节:做一做
内容:
李叔叔想要检测雕塑底座正面的AD边和BC边是否
分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗
(2)李叔叔量得AD长是30厘米,AB长是40厘米,
BD长是50厘米,AD边垂直于AB边吗为什么
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD 边是否垂直于AB边吗BC边与AB边呢
解答:(2)2222
30402500
AD AB
+=+=
∴AD和AB垂直.
意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,利用允许的工具灵活处理问题.
效果:
先鼓励学生自己寻找办法,再让学生说明李叔叔的办法的合理性.当刻度尺较短时,学生可能会在上面解决问题的基础上,想出多种办法,如利用分段相加的方法量出AB,AD和BD的长度,或在AB,AD边上各量一段较小长度,再去量以它们为边的三角形的第三边,从而得到结论.
第四环节:练习
内容:
1.如图,在棱长为10 cm 的正方体的一个顶点A 处有一只蚂蚁,现要向顶点B 处爬行,已知蚂蚁爬行的速度是1 cm/s ,且速度保持不变,问蚂蚁能否在20 s 内从A 爬到B
解:如图,在Rt △ABC 中: 222221020AB AC BC =+=+=500. ∵500>202 .
∴不能在20 s 内从A 爬到B . 2.在我国古代数学着作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少
解答:设水池的水深AC 为x 尺,则这根芦苇长为
AD =AB =(x +1)尺,
在直角三角形ABC 中,BC =5尺.
由勾股定理得:BC 2+AC 2=AB 2.
即 52+ x 2=(x +1)2
.
25+x 2= x 2+2x +1.
2x =24.
∴ x =12,x +1=13.
答:水池的水深12尺,这根芦苇长13尺.
意图:
第1题旨在对“蚂蚁怎样走最近”进行拓展,从圆柱侧面到棱柱侧面,都是将空间问题平面化;第2题,学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;运用方程的思想并利用勾股定理建立方程.
效果:
学生能画出棱柱的侧面展开图,确定出AB 位置,并正确计算.如有可能,还可把正方体换成长方体进行讨论.
学生能画出示意图,找等量关系,设适当的未知数建立方程. B A
B
A B C
注意事项:对于普通班级而言,学生完成“小试牛刀”,已经基本完成课堂教学任务.因此本环节可以作为教学中的一个备选环节,共老师们根据学生状况选用.
第六环节:交流小结
内容:
师生相互交流总结:
1.解决实际问题的方法是建立数学模型求解.
2.在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题.
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史.
效果:
学生畅所欲言自己的切身感受与实际收获,总结出在寻求曲面最短路径时,往往考虑其展开图,利用两点之间,线段最短进行求解.并赞叹我国古代数学的成就.
第七环节:布置作业
1.课本习题1.4第1,2,3题.
2.如图是学校的旗杆,旗杆上的绳子垂到了地面,并
多出了一段,现在老师想知道旗杆的高度,你能帮老师想
个办法吗请你与同伴交流设计方案
注意事项:作业2作为学有余力的学生的思考题.
新知检测精设预习新知检测:
1.如图,一只蚂蚁从A点沿圆柱侧面爬到顶面相对的B点处,如果圆柱的高为8 cm,圆柱的半径为
6
cm,那么最短路径AB长( ).
A.8 B.6 C.平方后为208的数D.10
2.一个圆桶,底面直径为24 cm,高32cm,则桶内所能容下的最长木棒为( ) .
A.24cm B.32cm C.40 cm D.45
3.已知小龙、阿虎两人均在同一地点,若小龙向北直走160 m,再向东直走80 m 后,可到神仙百货,则阿虎向西直走多少米后,他与神仙百货的距离为340 m A. 100 B. 180 C. 220 D. 260
精设预习:
无理数定义
板书设计1、情境引入;
2、合作探究;
3、做一做;
4、练习;
5、举一反三;
6、交流小结;
7、布置作业.
教学反思
学生课堂达标率
80%
原因分析
改进措施
学生不能积极思考问题
多分析问题,多做题
教师本课亮点
在教学过程中教师应通过情景创设,激发兴趣,鼓励引导学生经历探索过程,得出结论,从而发展学生的数学应用
能力,提高学生解决实际问题的能力.
附:课件:。