毛细管电泳技术发展及应用前景
- 格式:pdf
- 大小:26.73 KB
- 文档页数:3
五毛细管电泳展望一、毛细管电泳的兴起与发展毛细管电泳(capillary electrophoresis, CE),又称高效毛细管电泳(HPCE)是近年来发展最快的分析化学研究领域之一.1981年Jorgenson等[1]在75μm内径的毛细管内用高电压进行分离,创立了现代毛细管电泳。
1984年Terabe等[2]发展了毛细管胶束电动色谱(MECC)。
1987年比Hjerten[3]建立了毛细管等电聚焦(CIEF),Cohen和Karger[4]提出了毛细管凝胶电泳(CGF)。
1988—1989年出现了第一批CE商品仪器,1989年第一届国际毛细管电泳会议召开,标志了一门新的分支学科的产生.短短的几年内,由于CE符合了以生物工程为代表的生命科学各领域中对生物大分子(肽、蛋白、DNA等)的高度分离分析的要求,得到了迅速发展,正逐步成为生命科学及其它学科实验室中一种常用的分析手段.近三年来国际毛细管电泳会议与会者均达700—800人,1996、1997两年公开发表的有关CE论文达3600余篇。
可参见相关综述则[5-8]。
欧洲、美国国内及日本也相继召开CE地区性国际会议。
我国在CE领域研究起步早、发展快、研究工作较全面、有的研究成果达到国际先进水平。
定期召开全国CE 会议及亚太地区国际会议,在国际上已有一定的影响。
1984年中国科学院化学所竺安教授在国内率先开展CE研究,迄今国内已有几百个单位开展CE研究和应用.从CE理论到各种模式及各方面应用,国内均在进行。
1998年举行的第三届全国CE会议共收录论文129篇,同时举行的第二届亚太国际会议也取得了成功。
毛细管电色谱(CEC)、CE/MS联用、低背景毛细管梯度凝胶电泳、手性药物分离、逆流聚焦及脱氧核糖核酸(DNA)各种CE测定方法等一批研究成果均达到国际先进水平。
二、毛细管电泳基本原理CE是以高压电场为驱动力。
以毛细管为分离通道,依据样品中各组成之间淌度和分配行为上的差异,而实现分离的一类液相分离技术.仪器装置包括高压电源、毛细管、柱上检测器和供毛细管两端插入又和电源相连的两个缓冲液贮瓶,在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象称电泳。
药物分析中的毛细管电泳技术毛细管电泳技术(Capillary Electrophoresis,简称CE)是一种基于电动力的分离技术,被广泛应用于药物分析领域。
本文将介绍毛细管电泳技术在药物分析中的原理、应用和发展前景。
一、原理毛细管电泳技术的基本原理是利用电场作用下的离子迁移和分离。
这种技术借助于毛细管的高表面积和对电荷敏感性,通过调节电压和电流,使样品中的离子在毛细管中迁移,并在离子迁移速度不同的情况下实现分离。
二、应用1. 药物纯度检测毛细管电泳技术在药物纯度检测中具有很大优势。
通过测量样品中成分的峰高和面积,可以确定药物的含量和纯度。
毛细管电泳技术还可以检测含有多个成分的混合物,提高药物的纯度和质量。
2. 药物代谢研究毛细管电泳技术在药物代谢研究中也有广泛应用。
毛细管电泳技术可以快速分离和定量药物代谢产物,并提供与其他分析方法相比更高的分辨率和灵敏度。
这对于研究药物的代谢途径、代谢产物的生成和药物代谢动力学具有重要意义。
3. 药物配伍研究在多种药物联合使用时,毛细管电泳技术可以用于药物之间的相互作用研究。
通过测量药物在毛细管中迁移的速度和峰形,可以揭示药物之间的相互作用机制,为药物配伍的合理应用提供科学依据。
三、发展前景毛细管电泳技术在药物分析领域的应用前景广阔。
随着仪器设备的改进和方法的发展,毛细管电泳技术的分离效率和灵敏度得到提高,对药物分析的应用范围也越来越广泛。
未来,毛细管电泳技术有望在药物分析中发挥更重要的作用,如提高新药的研发效率、分析药物的药动学特性等。
总结:毛细管电泳技术作为一种快速、高效的药物分析方法,已经在药物纯度检测、药物代谢研究和药物配伍研究等方面取得了显著的应用效果。
在未来,随着技术的进一步发展和改进,毛细管电泳技术将在药物分析领域发挥更重要的作用,为药物研发和质量控制提供强有力的支持。
毛细管电泳技术在化学分析中的应用随着科学技术的不断进步,越来越多的新技术应用于化学分析领域。
其中,毛细管电泳技术是一种非常有潜力的技术,其应用广泛,可以应用于食品、医药、环境等多个领域,极大地提高了化学分析的效率和准确性。
下面,本文将从毛细管电泳技术的原理、优点、应用以及发展前景等方面,分析其在化学分析中的应用。
一、毛细管电泳技术的原理毛细管电泳技术是基于毛细管内样品分子的电荷和尺寸的差异进行分离的一种方法,其分离原理是利用电场力、液相流动力和溶剂静电引力等相互作用力,将带电分子分离开来的过程。
其中,毛细管电泳分离过程是在毛细管内部一个微小的空间内进行的,这个微小的空间称为分离柱。
分离柱中填充有分离介质,通常使用胶体硅、聚丙烯酰胺凝胶、聚合物微球等。
当外加高压电场作用于分离柱时,其他因素不影响下,分别具有不同电荷的分子将因其电荷大小而在分离柱内发生移动,这样就完成了样品分析。
二、毛细管电泳技术的优点毛细管电泳技术在化学分析中的应用范围非常广泛,具有以下优点:1.分离效率高:毛细管电泳技术分离效果很好,可以分离出电泳物质的同分异构体和混杂物,从而使分析的结果更加准确可靠。
2.快速分析:毛细管电泳技术可以在短时间内完成分析,不仅提高了分析效率,而且缩短了分析时间。
3.高选择性:毛细管电泳技术在分离和检测过程中,只会对一些特定的物质进行分离,因此,在检测过程中可以不用去关注所有的物质,从而可以降低实验成本和实验时间。
4.成本低:毛细管电泳技术不需要使用昂贵的设备,其使用成本比较低,适合化学实验室使用。
三、毛细管电泳技术在化学分析中的应用非常广泛,主要包括以下几个方面:1.食品领域:毛细管电泳技术可以用于饮料、果汁、啤酒等中硫酸盐和氰化物的检测和分析。
2.环境领域:毛细管电泳技术可以用于环境污染物的检测和分析,如有机污染物、金属离子等。
3.医药领域:毛细管电泳技术可以用于药物的研究和分析,包括药物分子的结构、成分、质量等。
品检中的毛细管电泳分析技术毛细管电泳分析技术是一种用于化学、生物和环境领域的重要分析方法。
它基于样品在电场中的迁移速度差异来分离和检测不同化学物质的方法。
在品质检验中,毛细管电泳分析技术被广泛应用于产品质量的监控和分析中。
本文将对毛细管电泳分析技术在品质检验中的应用进行详细介绍。
毛细管电泳分析技术在品质检验中的应用主要体现在对产品中各种成分的分离和定量分析上。
通过毛细管电泳分析技术,可以快速准确地检测出产品中的各种有机和无机化合物,如酸、碱、重金属、农药和药物等。
这对于确保产品的质量和安全性非常重要。
毛细管电泳分析技术在品质检验中还可以用于表征产品的特性和性能。
例如,在食品行业,通过毛细管电泳分析技术可以检测食品中的营养成分、添加剂和污染物,从而评估食品的营养价值和安全性。
毛细管电泳分析技术还可以用于药物的质量控制,确保药品的纯度和稳定性。
毛细管电泳分析技术在品质检验中的应用还包括对产品中杂质的检测和分析。
在制药和化妆品行业中,为了确保产品的质量,需要对产品中的杂质进行分析和识别。
毛细管电泳分析技术以其高分离效果和灵敏度,在检测产品中微量杂质方面具有突出优势。
通过毛细管电泳分析技术,可以对杂质进行定性和定量分析,并找出潜在的问题。
毛细管电泳分析技术还可以用于产品质量问题的溯源和调查。
当产品质量问题发生时,需要追溯问题的起源和原因。
通过毛细管电泳分析技术,可以对产品进行全面的分析和比对,找出问题的根源。
这有助于制定相应的改进措施,提高产品的质量和安全性。
总之,毛细管电泳分析技术在品质检验中具有广泛的应用前景。
它可以对产品的成分、特性、杂质以及质量问题进行全面而准确的分析,保障产品的质量和安全性。
随着科技的进步和技术的不断完善,毛细管电泳分析技术将进一步发展,并在品质检验中扮演更重要的角色。
毛细管电泳的应用和发展趋势HPCE检测方法的选择流程1.了解样品类型、是否溶于水、是否带电荷等2.根据样品的性质选择合适的分离模式3.选择合适的检测方法4.确定样品处理方式5.确定缓冲体系和pH值6.优化其它操作条件(毛细管内径、分离电压、添加剂等)不同物质分离模式的选择离子分子肽蛋白质多聚核酸DNA CZE MEKC CZE CZE CGE CGE CITP CZE MEKC CGE MEKCCITP CIEF CIEFCGE CITPCITP一、无机金属离子的分析1. K +;2. Ba 2+;3. Sr 2+;4. Na +;5. Ca 2+;6. Mg 2+;7. Mn 2+;8. Cd 2+;9. Li +;10. Co 2+;11. Pb 2+;12. Ni 2+;13. Zn 2+;14. La 3+;15. Ce 3+;16. Pr 3+;17. Nd 3+;18. Sm 3+;19. Gd 3+ ;20. Eu 3+;21. Tb 3+;22.Dy 3+;23. Ho 3+;24. Er 3+;25. Tb 3+;26. Yb 3+;27. Lu 3+无机阳离子在对甲苯胺背景中的高速高效分离 毛细管:60 cm ⨯ 75 μm缓冲液:15 mmol ⋅L -1乳酸+8 mmol ⋅L -1 4-甲基苯胺+5%甲醇pH4.25工作电压:30 kV检测波长:214 nm电泳模式:CZE二、蛋白质分析•毛细管对蛋白有强烈的吸附作用,导致分离下降或不出峰。
•三种抑制蛋白吸附的方法样品处理:利用变性剂或其它表面活性剂形成复合物。
管壁惰性化处理:利用化学方法在毛细管内形成亲水涂层。
缓冲液改性:在缓冲液中加入非离子表面活性剂。
聚乙烯醇添加到缓冲体系分离蛋白质谱图毛细管:57/75 cm ⨯ 75 μm缓冲液:20 mmol ⋅L -1磷酸盐+30 mmol ⋅L -1NaCl+0.05%(质量分数)PV A 1500pH 3.0工作电压:5 kV电动进样:5 s色谱峰:1.细胞色素;2. 溶菌酶;3. 胰蛋白酶; 4. 胰蛋白酶原;5. α-糜蛋白酶原三、核酸片段分析•毛细管凝胶电泳(CGE)1)琼脂糖凝胶电泳适合分离小于1000bp 的DNA2)聚丙烯酰胺凝胶:短链凝胶适合分离短链DNA;长链凝胶适合分离长链DNA。
药物分析中的电泳技术的新发展电泳技术是药物分析领域中一种重要的分离与分析方法。
随着科技的不断发展,电泳技术也在不断创新和进步。
本文将介绍药物分析中电泳技术的新发展,包括毛细管电泳、凝胶电泳和电喷雾质谱联用技术等方面。
一、毛细管电泳在药物分析中的应用毛细管电泳是一种基于电荷和大小的分离技术。
在药物分析中,毛细管电泳常用于药物的质量控制和残留分析。
通过调节毛细管的材料和填充剂类型以及优化运行条件,可以有效地分离和定量分析药物中的杂质和成分。
此外,毛细管电泳还可用于药物颗粒的表征与分析,包括粒径测定、表面电荷分析等。
二、凝胶电泳在药物分析中的应用凝胶电泳是一种常用于核酸和蛋白质分析的电泳技术,而在药物分析中也得到了广泛应用。
凝胶电泳可用于药物活性成分的纯度检验、同种物质的分子量测定以及药物的质量控制等方面。
尤其在蛋白质药物的分析中,凝胶电泳可以实现对蛋白质的定性和定量分析,有利于药物的研发和生产。
三、电泳质谱联用技术在药物分析中的应用电泳质谱联用技术是结合了电泳分离技术和质谱分析技术的一种分析方法。
电泳质谱联用技术能够实现对药物中各种成分的高效分离和准确分析。
通过将毛细管电泳或凝胶电泳与质谱仪相连,可以同时获得分子的分离和质量信息,提高分析的选择性和灵敏度。
这在药物研发、临床药代动力学研究以及药物残留检验中具有重要意义。
四、电泳技术在药物分析中的挑战与展望虽然电泳技术在药物分析领域中已取得了显著的成就,但仍然存在一些挑战。
例如,高性能电泳仪器的价格较高,限制了其在某些实验室和机构的应用;毛细管电泳和凝胶电泳的分离效率和分析速度还可以进一步提高;电泳质谱联用的方法开发和数据处理仍然需要不断改进。
未来,我们可以期待通过技术创新和仪器改进来解决这些问题,进一步推动电泳技术在药物分析中的应用。
总结:药物分析中的电泳技术不断创新和发展,为药物研发、质量控制和残留分析提供了有效工具。
毛细管电泳、凝胶电泳和电泳质谱联用技术等成为药物分析中重要的手段。
药物分析中的毛细管电泳法发展近年来,毛细管电泳法在药物分析领域中得到了广泛应用和发展。
毛细管电泳法是一种基于药物分子在电场中迁移速率的差异来进行分离和检测的技术。
它具有操作简便、分离效果好、分析速度快等优点,并且可以适用于各种药物分析的需求。
本文将从毛细管电泳法的原理、应用及发展前景等方面进行探讨。
一、毛细管电泳法的原理毛细管电泳法是基于毛细管对带电分子的选择性迁移来实现分离和检测的。
在毛细管电泳法中,主要利用了电双层效应和溶剂流体力学效应。
当样品溶液被注入到带电的毛细管中,带电粒子在电场的作用下迁移,由于不同药物分子的电荷量和分子结构不同,它们在电场中的迁移速率也不同,从而实现了分离。
同时,通过控制电场强度和溶液流速等参数,还可以实现对分离效果和灵敏度的调节。
二、毛细管电泳法在药物分析中的应用1. 药物成分分析:毛细管电泳法可以用于药物成分的分离和定量分析。
通过调节毛细管电泳法的分离条件,可以实现对药物中各个成分的分离并进行定量检测。
这对于药物的质量控制和药物研发具有重要意义。
2. 药物代谢物分析:毛细管电泳法也可以用于药物代谢物的分离和分析。
药物在人体内经过代谢后,会产生各种代谢产物。
通过毛细管电泳法的分离作用,可以将代谢产物从药物中分离出来,并进行鉴定和定量分析,有助于了解药物的代谢规律和代谢途径。
3. 药物残留量检测:毛细管电泳法可以用于药物残留量的检测。
在农药使用和食品加工过程中,会存在一定的农药残留量。
毛细管电泳法可以将农药残留物与食品基质分离开来,并进行定量检测,有助于保障食品安全。
三、毛细管电泳法发展前景展望毛细管电泳法具有多种优点,如分离效果好、操作简便、分析速度快等,因此在药物分析领域中具有广泛的应用前景。
随着科学技术的不断进步和技术的不断更新,毛细管电泳法将更加成熟和完善,其应用范围也将进一步拓展。
例如,近年来,一些新型的毛细管电泳仪器和柱材料的开发推动了毛细管电泳法在药物分析中的应用,使其在分离效果和分析速度上有了更大的突破。
毛细管电泳技术在化学分析中的应用研究毛细管电泳是一种高效、高分辨、低耗时的化学分析技术。
通过特定的毛细管,将样品移动到电泳平台上,并通过电流、电场等作用力来分离、检测并分析样品中的各种物质成分和化学性质。
干净、精确、快速的分析过程,使得毛细管电泳在化学分析中得到了广泛的应用。
一、毛细管电泳技术的发展历程毛细管电泳技术源于20世纪60年代中期,最初是由Albert J.P. Martin和Richard L. Synge发明了新的色谱技术--纸片色谱和薄层色谱,奠定了毛细管电泳技术的基础。
20世纪70年代,Schneider 和Righetti首次在毛细管内进行电泳实验,标志着毛细管电泳技术的诞生。
而在90年代初期,由于技术的突破和研究的深入,毛细管电泳技术得到了广泛的应用。
二、毛细管电泳技术的特点毛细管电泳技术具有以下特点:(1)高效:毛细管电泳作用的实际是分子电荷或尺寸。
在电性或性质不同的电场中,化合物在毛细管中的运动速度各异,从而实现了对化合物的分离。
(2)高分辨:由于毛细管的细小直径,使得实验分离效果很好,可以实现化合物的单一成分分离和检测。
(3)低耗时:毛细管电泳技术的分析时间不能超过几十分钟,而且分析成本低,测量灵敏度高。
(4)宽适用范围:毛细管电泳技术广泛适用于化合物的分离和检测,特别适用于药物分析。
三、毛细管电泳技术在化学分析中的应用毛细管电泳技术在化学分析中有着广泛的应用,具体展现在以下四个方面:(1)药物分析:毛细管电泳技术可以被用于药物分析,比如在药物杂质中检测和物质质量光谱图的分析。
家门口的诊所可以购买这样的仪器来检测药物杂质。
(2)食品分析:毛细管电泳技术可以快速准确的检测食品中的残留物。
比如,毛细管电泳技术可以快速准确地分离和检测牛奶中的脂肪、蛋白质、糖等成分。
(3)生物学分析:毛细管电泳技术可以快速分离、检测和测定生物学系统中的多种元素。
毛细管电泳在DNA碱基对的分离和分析以及其他生物分子的分析中都得到了广泛应用。
毛细管电泳分析技术的发展毛细管电泳(Capillary Electrophoresis,CE)是一种高效、高分辨率的色谱技术,在药物、食品、环境、疾病等领域具有广泛的应用。
随着科学技术的发展,毛细管电泳分析技术也不断发展,并逐步成为一种主流的分析技术。
毛细管电泳分析技术的原理是基于不同物质在电场中的迁移速率不同,通过控制电场强度和电荷数目等条件,把样品中的各组分分离出来,以便进行定性和定量分析。
与传统的色谱分析技术相比,毛细管电泳分析技术具有分析速度快、分离效率高、分析重复性好、试剂用量少等优点。
毛细管电泳分析技术的发展可以分为三个阶段。
第一阶段是20世纪70年代至80年代初,毛细管电泳分析技术被作为一种新兴的分析方法被引入。
这个时期的毛细管电泳分析仪器比较原始,不够精密,使用范围也相对狭窄。
第二阶段是80年代中期至90年代中期,毛细管电泳分析技术逐渐得到了广泛应用,同时也出现了一些技术上的突破,例如:深色物质的检测、自动进样、联用检测等。
第三阶段是90年代末至今,毛细管电泳分析技术融入了一些新技术和新思路,如微芯片技术、基于液相金属定量质谱技术的毛细管电泳、光电子束刻录技术等。
这些新技术和思路的出现,极大的丰富了毛细管电泳分析技术的应用范围和性能。
毛细管电泳分析技术主要包括毛细管区带电泳(Capillary Zone Electrophoresis,CZE)、毛细管等温电泳(Capillary Isoelectric Focusing,CIEF)、毛细管电泳色谱(Capillary Electrophoresis Chromatography,CEC)等。
其中,毛细管区带电泳是最基本的毛细管电泳技术,其在化学、生物等领域的应用都很广泛。
毛细管等温电泳常常用于蛋白质和多肽的分离和分析。
毛细管电泳色谱是融合了毛细管电泳和液相色谱的分析技术,其与现代分析科学的研究方向高度契合,是目前发展最为迅速的毛细管电泳技术之一。
毛细管电泳技术在生物医学领域中的应用随着生物医学领域的不断发展,越来越多的医学研究需要用到高效、准确的分析方法。
毛细管电泳技术作为一种高效、低成本、快速而且对样品无损的检测方法,在生物医学领域得到了广泛的应用。
本文将从毛细管电泳技术的原理、优势和应用方面进行探讨。
一、毛细管电泳技术的原理毛细管电泳技术是利用毛细管内表面电荷的存在、电场的作用和离子在电场中的迁移速度差异,将样品中的各种离子或分子进行分离的一种技术。
毛细管的内壁带有固定电荷,当毛细管两端通以电荷正负相间的电场后,样品中的负离子会被向阳极迁移,正离子则会被向阴极迁移。
由于不同分子的离子迁移速度差异不同,因此,分离出来的分子具有不同的速度,最终在毛细管中形成一道道不同的峰。
二、毛细管电泳技术的优势毛细管电泳技术具有以下优势:1、高效快速:毛细管电泳技术的分离效率高、分离速度快,可在短时间内完成样品分析。
2、高分离效果:毛细管电泳技术的分离效果好,能分离出非常相似的分子,如同构体和同分异构体等,并且可对几百种物质进行同时分离。
3、低成本:毛细管电泳技术所需成本相对较低,并且无需大型设备和复杂的仪器。
4、无损害:毛细管电泳技术对样品不会造成损害,并且可对生物大分子进行分离。
三、毛细管电泳技术在生物医学领域中已经得到了广泛的应用,其中包括:1、蛋白质分离和鉴定:毛细管电泳技术与质谱技术结合,可以快速高效地实现蛋白质的分离和鉴定。
毛细管电泳技术分离出的蛋白质样品可以与其他分析技术结合,如质谱技术,以进行更深入的分析。
2、核酸分离和鉴定:毛细管电泳技术可用于对DNA、RNA、mRNA和寡核苷酸等的分离和鉴定。
在分离和鉴定这些分子时,毛细管电泳技术在速度和准确性方面具有独特的优势。
此外,该技术还可用于药物筛选和基因检测等领域。
3、药物代谢研究:毛细管电泳技术可用于研究潜在的药物代谢通路。
通过毛细管电泳技术的高效分离,可以分离并鉴定药物代谢产物及其结构,并在药效学和毒理学方面提供有用的信息。
【资料】毛细管电泳技术发展及应用前景毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),毛细管电泳方法虽新工艺,但历史悠久,它是在电泳技术的基础上发展的一种分离技术。
电泳作为一种技术出现,已有近百年的历史,但真正被视为一种在生物化学中有重要意义的技术,是由1937年A. Tiselius 首先提出。
传统电泳最大的局限是难以克服由高电压引起的焦耳热,1967年Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis, CZE)。
但他没有完全克服传统电泳的弊端。
现在所说的毛细管电泳技术(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。
1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支:胶束电动毛细管色谱(MEKC)。
1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。
同年,Cohen发表了毛细管凝胶电泳的工作。
近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。
当电泳从凝胶板上移到毛细管中以后,发生了奇迹般的变化:分析灵敏度提高到能检测一个碱基的变化,分离效率达百万理论塔片数;分析片段能大能小,小到分辨单个核苷酸的序列,大到分离Mb到DNA;分析时间由原来的以小时计算缩减到以分、秒计算。
CE可以说是经典电泳技术与现代微柱分离技术完美结合的产物。
它使分析科学得以从微升水平进入纳升水平,并使单细胞分析,乃至单分子分析成为可能。
长期困扰我们的生物大分子如蛋白质的分离分析也因此有了新的转机。
毛细管电泳技术是一类以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度和分配行为上的差异而实现分离的一类液相分离技术,迅速发展于80年代中后期,它实际上包含电泳技术和色谱技术及其交叉内容,是分析科学中继高效液相色谱之后的又一重大进展,它使分析科学得以从微升水平进入纳升水平,并使细胞分析,乃至单分子分析成为可能。
毛细管电泳仪1.1毛细管电泳仪国内外发展现状1.1.1国内发展现状近几年,国产毛细管电泳仪无论从外部造型,光路系统,测量准确性上都有了长足的进步。
国产毛细管电泳仪在化学物质分离的测定方法,测定时间,样品含量,一体化结构,人机界面等方面,测定稳定性方面还有着很大的发展空间。
1.1.2国外毛细管电泳仪的发展现状欧美一些发达国家,已经在便携操作性,稳定性能上有着新的突破,多项组分的测量已经摆脱传统高效液相色谱法,或是在传统高效液相色谱基础上进行技术上的突破并有很多自己的独创专利。
1.1.2.1 PACE MDQ毛细管电泳仪美国PACE MDQ毛细管电泳仪,这款毛细管电泳仪仪可测量核酸/核苷酸、蛋白质/多肽、糖类/糖蛋白分析、PTA、无机盐酸等的分析。
PACE MDQ毛细管电泳仪的维护PACE MDQ毛细管电泳仪提供了人性化的操作流程,最大程度上减轻了维护工作,但由于样品质量参差不齐,需要定时对其进行维护,防止仪器损坏。
笔者从事此仪器日常维护及故障处理,针对某项目PTA检测,基本维护方法如下。
2.1冷却液添加PACE MDQ毛细管电泳仪在运行过程中冷却液存在损耗,冷却液不能完全填充毛细管柱外壁,影响分离效果,需要定期添加冷却液。
①将制冷剂接头添加接到制冷剂加注口。
②直到制冷剂视窗液位到3/4位置。
③移除注射器并关闭制冷剂添加门。
2.2更换电极PACE MDQ毛细管电泳仪再使用过程,电极需要深入到电解液试剂瓶中。
再穿透瓶盖过程中,电极容易折弯,当电极发生折弯时,电极需要更换,更换方法如下:①利用直接控制,托盘移动到加样位置。
②移除接口模块的毛细管卡盒。
③移除弹片盖和弹簧夹。
④捏住电极前方的弹片,将其移除。
⑤用一面镜子观察电极孔的位置,拆开尼龙一字螺丝,然后下拉移除电极。
⑥更换新的电极,用镜子观察电极位置。
⑦回装碳片及弹簧夹,弹片盖,毛细管卡盒。
⑧降低插入杆并拧紧蝶行螺丝,关上卡盒盖门。
药物分析中的毛细管电泳技术研究在药物分析领域,毛细管电泳(CE)技术被广泛应用于药物的质量控制、纯度测试、残留量测定等方面的研究。
本文将探讨药物分析中的毛细管电泳技术的研究进展,重点介绍其原理、应用和未来的发展方向。
一、毛细管电泳技术原理毛细管电泳技术是基于电荷、大小和形状等特性对化合物进行分离和测定的一种分析方法。
其原理是利用电场作用下,带电化合物在毛细管中进行电泳运动,根据它们的迁移时间来实现分离和定量分析。
二、毛细管电泳技术的应用1. 药物成分分离和鉴定:毛细管电泳技术可以高效地将复杂的药物混合物进行分离,因为不同的成分具有不同的迁移时间,可以准确鉴定药物中的各种成分。
2. 药物纯度测试:毛细管电泳技术可以用于检测药物中含有的杂质或者不纯物,通过分离和定量分析这些杂质,可以确定药物的纯度和质量。
3. 药物残留量测定:毛细管电泳技术可以用于检测食品、环境中的药物残留,对于保证人们的饮食安全和环境保护起着重要作用。
三、毛细管电泳技术的优点1. 快速分离和分析:相比传统的色谱技术,毛细管电泳技术具有分析速度快、峰形对称、分离效果好等优点。
2. 样品消耗少:毛细管电泳技术只需要极小的样品量,对于珍贵或者昂贵的药物样品,非常适用。
3. 环保节能:毛细管电泳技术无需大量有机溶剂和试剂,减少了对环境的污染,符合绿色分析的要求。
四、毛细管电泳技术的发展趋势1. 方法改进:研究人员不断改进毛细管电泳的操作和分析条件,提高分离效果和分析速度,减少毛细管的保养和更换频率,提高技术的稳定性和可靠性。
2. 多维毛细管电泳技术:多维毛细管电泳技术结合了不同的分析模式,如毛细管等温电泳、毛细管等电聚焦等,可以实现更高效的分离和分析。
3. 联用技术:毛细管电泳技术与质谱联用、光电化学检测器等技术相结合,可以进一步提高其分析灵敏度和选择性,扩展其应用领域。
综上所述,药物分析中的毛细管电泳技术具有快速、准确、环保等优点,被广泛应用于药物的质量控制、纯度测试和残留量测定等方面。
毛细管电泳技术及在微生物学中的应用摘要: 毛细管电泳技术是一种新型高效液相分离技术,应用领域广泛。
本文分别从毛细管电泳技术的发展概况及在微生物学检测中的应用加以综述。
关键词: 毛细管电泳;微生物;应用毛细管电泳迅速发展于80年代中后期,是分析科学中继高效液相色谱技术之后的又一重大进展,使分析科学得以从微升水平进入纳升水平,并使单细胞分析乃至单分子分析成为可能[1]。
毛细管电泳(CE)是一类以毛细管为分离通道,以高压直流电场为驱动力的新型液相分离技术。
广泛应用于核酸、蛋白质、多肽、药物等大分子物质的分析,但是,不同于毛细管电泳在无机离子、有机小分子和生物大分子等方面取得的巨大成功,毛细管电泳在微生物方面的应用在最近几年才取得较大进展,并逐渐显现出巨大的应用潜力。
在微生物学领域,毛细管电泳除了在微生物基因测序方面得到广泛应用外,在微生物学检测方面应用的报道不多见。
本文主要介绍了毛细管电泳的发展、原理、特点、分离模式及在微生物检测中的应用。
1、毛细管电泳技术1.1毛细管电泳发展历史1937年瑞典化学家Tiselius[2]利用电泳技术第一次从人血清中分离出白蛋白和α、β、γ球蛋白,并研制成第一台电泳仪,使电泳作为一种分离分析技术有了突破性的进展。
经典电泳法最大的局限性在于存在焦耳热,只能在低电场强度下操作,直接影响了其分离效率和分析速度的提高,为了解决这一问题,人们进行了多方探索。
1981年,Jorgenson和Lukacs[3]使用内径75um的石英毛细管进行电泳,成功地对丹酰化氨基酸进行了快速,高效分离获得了40万块/m理论塔板的高效率。
这一开创性工作成为电泳发展史上一个里程碑,使经典的电泳技术发展为高效毛细管电泳(HPCE)。
从此,毛细管电泳在理论研究,分离模式,商品仪器,应用领域等各方面获得了迅猛发展。
如今,HPCE可与GC、HPLC相媲美,成为现代分离科学的重要组成部分[4]。
1.2毛细管电泳基本原理和分离模式按毛细管内分离介质和分离原理的不同,毛细管电泳有以下几种分离模式[5]:(1)毛细管区带电泳毛细管区带电泳(CZE)的分离原理是基于各个分离物质的净电荷与其质量比(比荷)间的差异而进行物质的分离。
毛细管电泳及其应用摘要:毛细管电泳技术(Capillary Electrophoresis, CE),是近二十年来发展最为迅速的新型液相分离分析技术之一。
CE实际上包含电泳、色谱及其相互交叉的内容,是继高效液相色谱之后的又一重大进展,具有分离效率高、简单、经济、快速和微量、自动化程度高等优点。
毛细管电泳这些特点使其成为一种极为有效的分离技术,目前已是生命科学及其它学科中一种常用的分析手段,已广泛应用于蛋白质、氨基酸、无机离子、有机化合物等的分离分析。
关键词:毛细管电泳,分离效率高,生命科学引言毛细管电泳是在传统电泳技术的基础上逐步发展起来的。
电泳技术的出现可以追溯到100多年前[1]。
1807-1809年,俄国物理学家F.F.Reuss首次发现黏土颗粒的电迁移现象,并开始研究带电粒子在电场中的电迁移行为,测定它们的迁移速度。
起初电泳只是作为一种物理化学现象来研究。
电泳真正意义上进入分析化学被视为一种重要意义的技术,是在瑞士化学家Tiselius[2]公布了移动界面电泳技术的细节之后。
他首先将电泳现象成功的应用于人血清的分离,获得了多种血清蛋白,他制成第一台电泳仪,并进行自由溶液电泳。
Tisedius对电泳技术的发展和应用所做的巨大贡献,使他获得了1948年诺贝尔化学奖。
但是传统电泳最大的局限是难以克服由高电压引起的焦耳热。
1967年Hjerten[3]最先使用慢速旋转的内径为3 mm的石英玻璃管进行自由溶波电泳,以UV进行检测,成功地分离了蛋白质、多肽、无机离子、有机离子等,Hjerten最早证明可以把高电场用于细内径的毛细管电泳,但他没有完全克服传统电泳的弊端。
1974年Virtanen提出使用细毛细管提高分离效率,阐明电渗流就像泵一样可以驱动液体流过毛细管,并说明了使用更细内径的毛细管做毛细管电泳的特点。
1979年Everaerts和Mikkers[4]使用内径为200μm聚四氟乙烯毛细管,提高了毛细管的分离效率,成功分离了16种有机酸。
毛细管电泳在药物分析中的应用随着药物研发和制造的进一步发展,药物分析成为保证药物质量和安全性的重要环节之一。
毛细管电泳作为一种高效、快速、高灵敏度的分析技术,逐渐应用于药物分析领域。
本文将介绍毛细管电泳在药物分析中的应用,并探讨其在药物分析中的优势和挑战。
一、毛细管电泳的原理和基本步骤毛细管电泳是利用电流作用下的毛细管中离子迁移行为实现分离的一种分析方法。
它基于毛细管中的电动流动理论,通过施加电场将药物样品带到具有特定填充物的毛细管中进行分离。
毛细管电泳的基本步骤包括:样品进样、电泳分离、检测和数据处理等。
二、毛细管电泳在药物分析中的优势1. 高分离效率:毛细管电泳具有很高的分离效率,能够有效地将复杂的药物样品分离,提高分析的准确性。
2. 速度快:毛细管电泳是一种快速分析技术,通常只需几分钟到几十分钟就可完成分析,大大缩短了分析时间。
3. 灵敏度高:毛细管电泳具有很高的灵敏度,能够检测到微量的药物成分,对于药物分析中需要极低浓度检测的情况非常有优势。
4. 样品消耗少:毛细管电泳的样品消耗非常小,对于宝贵的药物样品的分析非常适用。
5. 环境友好:毛细管电泳是一种无或少有有机溶剂的分析技术,相对于传统的高效液相色谱等技术,对环境的影响更小。
三、毛细管电泳在药物分析中的应用1. 药物成分分析:毛细管电泳可用于药物成分的分析和检测,如对药物中各种成分进行定性和定量分析。
2. 药物质量评价:毛细管电泳可用于药物质量评价,对于分析药物的纯度、杂质等方面具有重要作用。
3. 药物代谢研究:毛细管电泳能够对药物代谢产物进行分析,深入研究药物在体内的转化过程和代谢途径,为药代动力学和药效学提供有力支持。
4. 生物样品分析:毛细管电泳可用于生物样品(如血液、尿液等)中药物的定性和定量分析,为生物体内药物浓度和代谢过程的研究提供便利。
5. 法药品质控制:毛细管电泳在药品质控中的应用越来越广泛,能够对药物中的活性成分进行分析和监测,保证药物的质量和安全性。
毛细管电泳技术发展及应用前景
毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),毛细管电泳方法虽新工艺,但历史悠久,它是在电泳技术的基础上发展的一种分离技术。
电泳作为一种技术出现,已有近百年的历史,但真正被视为一种在生物化学中有重要意义的技术,是由1937年A. Tiselius 首先提出。
传统电泳最大的局限是难以克服由高电压引起的焦耳热,1967年Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis, CZE)。
但他没有完全克服传统电泳的弊端。
现在所说的毛细管电泳技术(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。
1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支:胶束电动毛细管色谱(MEKC)。
1987年Hjerten 等把传统的等电聚焦过程转移到毛细管内进行。
同年,Cohen发表了毛细管凝胶电泳的工作。
近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。
当电泳从凝胶板上移到毛细管中以后,发生了奇迹般的变化:分析灵敏度提高到能检测一个碱基的变化,分离效率达百万理论塔片数;分析片段能大能小,小到分辨单个核苷酸的序列,大到分离Mb到DNA;分析时间由原来的以小时计算缩减到以分、秒计算。
CE可以说是经典电泳技术与现代微柱分离技术完美结合的产物。
它使分析科学得以从微升水平进入纳升水平,并使单细胞分析,乃至单分子分析成为可能。
长期困扰我们的生物大分子如蛋白质的分离分析也因此有了新的转机。
毛细管电泳技术是一类以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度和分配行为上的差异而实现分离的一类液相分离技术,迅速发展于80年代中后期,它实际上包含电泳技术和色谱技术及其交叉内容,是分析科学中继高效液相色谱之后的又一重大进展,它使分析科学得以从微升水平进入纳升水平,并使细胞分析,乃至单分子分析成为可能。
是分析科学中继高效液相色谱之后的又一重大进展,是近几年来分析化学中发展最为迅速的领域之一。
毛细管电泳技术的基本原理是根据在电场作用下离子迁移的速度不同而对组分进行分离和分析,以两个电解槽和与之相连的内径为20~100µm的毛细管为工具,毛细管电泳所用的石英毛细管柱,在 pH>3的情况下,其内表面带负电,和缓冲液接触时形成双电层,在高压电场的作用下,形成双电层一侧的缓冲液由于带正电荷而向负极方向移动形成电渗流。
同时,在缓冲液中,带电粒子在电场的作用下,以不同的速度向其所带电荷极性相反方向移动,形成电泳,电泳流速度即电泳淌度。
在高压电场的作用下,根据在缓冲液中各组分之间迁移速度和分配行为上的差异,带正电荷的分子、中性分子和带负电荷的分子依次流出,带电粒子在毛细管缓冲液中的迁移速度等于电泳淌度和电渗流的矢量和,各种粒子由于所带电荷多少、质量、体积以及形状不同等因素引起迁移速度不同而实现分离;在毛细管靠负极的一端开一个视窗,可用各种检测器。
目前已有多种灵敏度很高的检测器为毛细管电泳提供质量保证,如紫外检测器(UV)、激光诱导荧光检测器(LIF)、能提供三维图谱的二极管阵列检测器(DAD)以及电化学检测器(ECD)。
由于毛细管的管径细小、散热快,即使是高的电场和温度,都不会向常规凝胶电泳那样使胶变性,影响分辨率。
毛细管电泳技术的分离模式和检测模式的发展同样也是多方面的,经典的分离模式有毛细管区带电泳、毛细管胶束电动色谱、毛细管凝胶电泳等;新方法的发展研究难度大,但近年来却有不小的进展,其中建立新的分离模式和联用技术最为突出。
比如建立了阵列毛细管电泳(CAE),亲和毛细管电泳技术(ACE),芯片毛细管电泳(CCE),非水毛细管电泳技术(NACE);本文作者尝试将分子信标技术与毛细管电泳技术相结合进行基因检测,取得
较满意效果;国外已开始探索利用CE对PCR产物作DNA单链构象多态性(single strand conformation polymorphism, SSCP)分析筛查点突变。
毛细管电泳技术发展迅速,是色谱最活跃的领域之一。
毛细管电泳技术分离模式主要有以下几种。
(1)毛细管区带电泳(Capillary Zone Electrophoresis, CZE)用以分析带电溶质。
为了降低电渗流和吸附现象,可将毛细管内壁涂层。
CZE是最基本也是最常见的一种操作模式,应用范围最广,可用于多种蛋白质、肽、氨基酸的分析。
(2)胶束电动毛细管色谱(Micellar Electrokinetic Capillary Chromatography, MECC)在缓冲液中加入离子型表面活性剂如十二烷基硫酸纳,形成胶束,被分离物质在水和胶束相(准固定相)之间发生分配并随电渗流在毛细管内迁移,达到分离。
MECC是唯一一种既能用于中性物质的分离又能分离带电组分的CE模式。
(3)毛细管凝胶电泳(Capillary Gel Electrophoresis, CGE)在毛细管中装入单体,引发聚合形成凝胶。
CGE分凝胶和无胶筛分两类,主要用于DNA、RNA片段分离和顺序、PCR产物分析及蛋白质等大分子化合物的检测。
(4)亲和毛细管电泳,在毛细管内壁涂布或在凝胶中加入亲和配基,以亲和力的不同达到分离。
可用于研究抗原-抗体或配体-受体等特异性相互作用。
(5)毛细管电色谱,(Capillary Electrochromatography, CEC)是将高效液相色谱(HPLC)的固定相填充到毛细管中,或在毛细管内壁涂布固定相,以电渗流为流动相驱动力的色谱过程。
此模式兼具电泳和液相色谱的模式。
(6)毛细管等电聚焦电泳(Capillary Isoelectric Focusing, CIEF)是通过内壁涂层使电渗流减到最小,在两个电极槽分别装酸和碱,加高电压后,在毛细管内壁建立pH梯度,溶质在毛细管中迁移至各自的等电点,形成明显区带。
聚焦后,用压力或改变检测器末端电极槽储液的pH值使溶质通过检测器。
CIEF已经成功用于测定蛋白质等电点,分离异构体等方面。
(7)毛细管等速电泳,(Capillary isotachophoresis, CITP)采用先导电解质和后继电解质,使溶质按其电泳淌度不同得以分离。
(8)CE/MS联用,CE的高效分离与MS的高鉴定能力结合,成为微量生物样品,尤其是多肽、蛋白质分离分析的强有力工具。
可提供分子量及结构信息,适于目标化合物分析或窄质量范围内扫描分析,如多环芳香碳氢化合物(PAH)、寡聚核苷酸分析等。
毛细管电泳技术兼有高压电泳及高效液相色谱等优点,其突出特点是:
(1)所需样品量少、仪器简单、操作简便。
(2)分析速度快,分离效率高,分辨率高,灵敏度高。
(3)操作模式多,开发分析方法容易。
(4)实验成本低,消耗少。
(5)应用范围极广。
毛细管电泳技术可检测多种样品,如血清、血浆、尿样、脑脊液、红细胞、体液或组织及其实验动物活体实验;且可分离分析多种组分,如核酸/核苷酸、蛋白质/多肽/氨基酸、糖类/糖蛋白、酶、碱氨基酸、微量元素、小的生物活性分子等的快速分析,以及DNA序列分析和DNA合成中产物纯度测定等,甚至可用于碱性药物分子及其代谢产物、无机及有机离子/有机酸、单细胞分析、药物与细胞的相互作用和病毒的分析,如在缓冲液中加入表面活性剂则可用于手性分离中性化合物。
毛细管电泳技术不仅在基础科学中得到广泛应用,在临床医学等领域的应用也有较多应用。
如临床疾病诊断、临床蛋白分析、临床药物监测、代谢研究、病理研究、同工酶分析、PCR 产物分析、DNA片段及序列分析等。
随着人类基因组计划的实施,人类基因组计划的完成比预期时间一再提前,其主要工具是毛细管电泳仪。
但是人类基因组图谱并没有告诉我们所
有基因的“身份”以及它们所编码的蛋白质。
人体内真正发挥作用的是蛋白质,蛋白质扮演着构筑生命大厦的“砖块”角色,其中可能藏着开发疾病诊断方法和新药的“钥匙”。
“后基因时代”,一个以“蛋白质组”为重点的生命科学的新时代到来,需要对蛋白质更多的研究,毛细管电泳技术将发挥更大的作用。
在医学研究中毛细管电泳技术越来越受到重视,但其临床应用尚属起步阶段,随着毛细管电泳技术的不断发展和完善,CE将在临床研究和基础研究领域发挥更重要的作用。